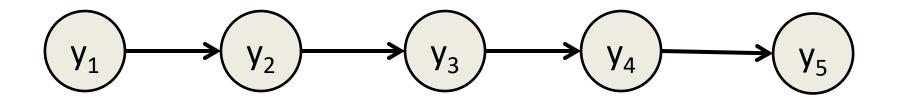
CPSC 540: Machine Learning

Recurrent Neural Networks
Winter 2020

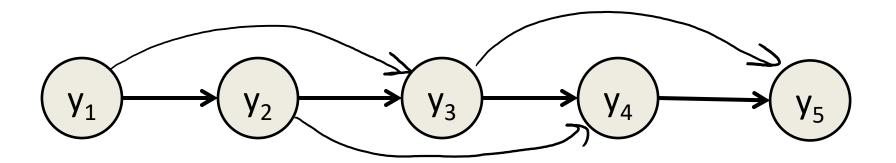
Motivation: Sequence Modeling

- We want to predict the next words in a sequence:
 - "I am studying to become a [?????????????????????????????.".
- Simple idea: supervised learning to predict the next word.
 - Applying it repeatedly to generate the sequence.
- Simple approaches:
 - Markov chain (doesn't work well, see "Garkov").



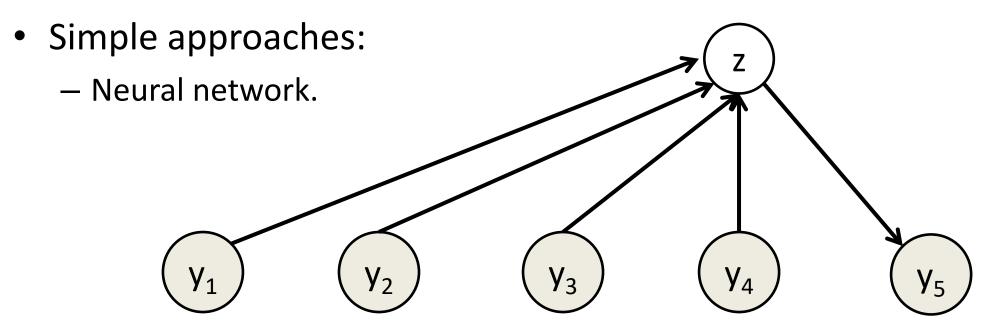
Motivation: Sequence Modeling

- We want to predict the next words in a sequence:
 - "I am studying to become a [?????????????????????????????.".
- Simple idea: supervised learning to predict the next word.
 - Applying it repeatedly to generate the sequence.
- Simple approaches:
 - Higher-order Markov chain ("n-gram"):



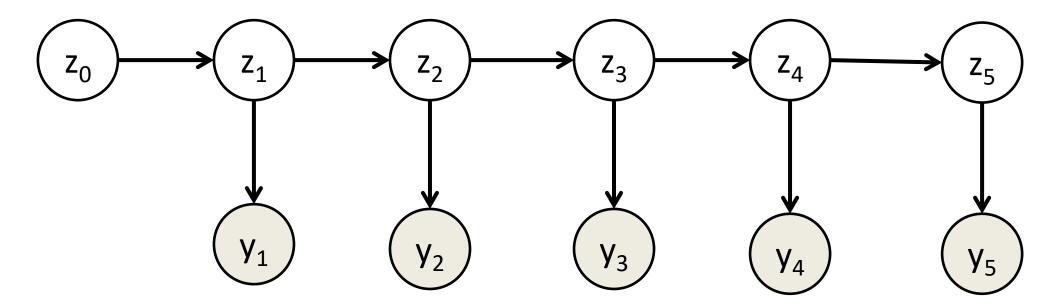
Motivation: Sequence Modeling

- We want to predict the next words in a sequence:
 - "I am studying to become a [?????????????????????????????.".
- Simple idea: supervised learning to predict the next word.
 - Applying it repeatedly to generate the sequence.



State-Space Models

- Problem with simple approaches:
 - All information about previous decision must be summarized by x_t .
 - We 'forget' why we predicted x_t when we go to predict x_{t+1} .
- More complex dynamics possible with state-space models:
 - Add hidden states with their own latent dynamics (HMM-style)



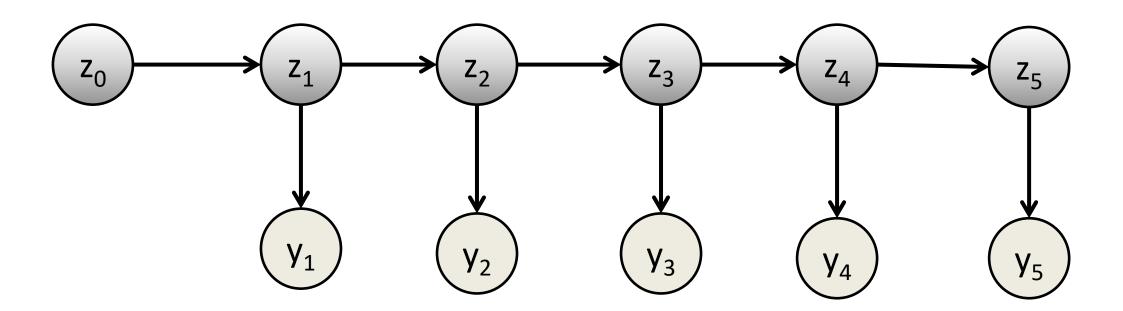
Challenges of State-Space Models

- Problem 1: inference only has closed-form in simple situations.
 - Only 2 cases: Gaussian z and y (Kalman filter) or discrete z (HMMs).
 - Otherwise, need to use approximate inference.

- Problem 2: memory is very limited.
 - You have to choose a z_t at time 't'.
 - But still need to compress information into a single hidden state.
- Obvious solution:
 - Have multiple hidden z_t at time 't', as we did before.
 - But now inference becomes hard.

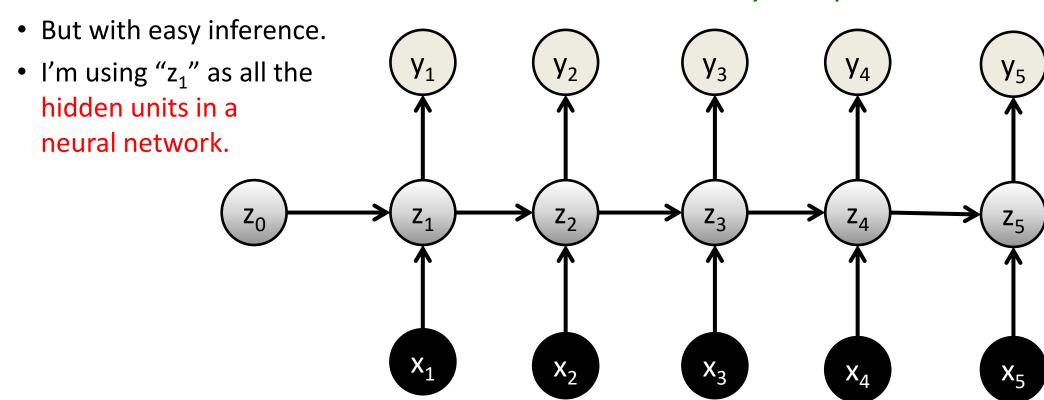
Recurrent Neural Networks

- Recurrent neural networks (RNNs) give solution to inference:
 - At time 't', hidden units are deterministic transformations of time 't-1'.
 - Basically turns the problem into a big and structured neural network.



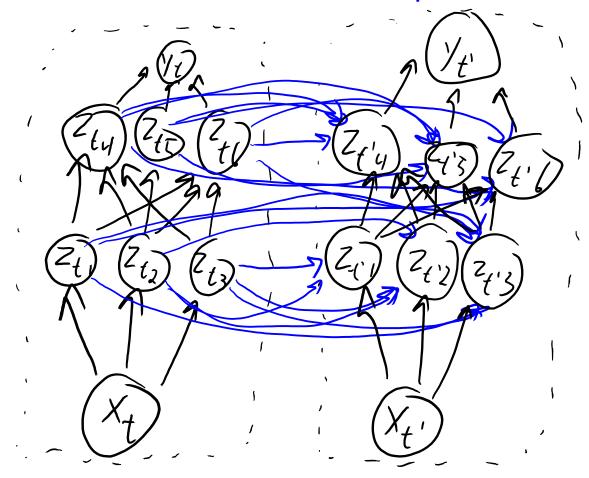
Recurrent Neural Networks

- RNNs can be used to translate input sequence to output sequence:
 - A neural network version of latent-dynamics models.
 - Deterministic transforms mean hidden 'z' can be really complicated.



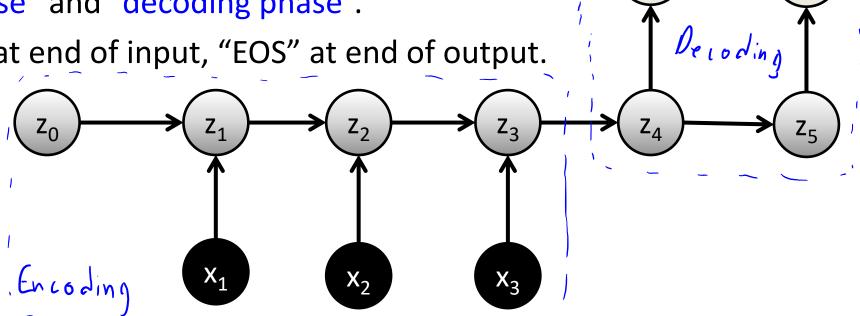
Recurrent Neural Networks

- Can think of each time as implementing the same neural network:
 - But with connections from hidden units at previous time.



Sequence-to-Sequence

- An interesting variation on this for sequences of different lengths:
 - Translate from French sentence 'x' to English sentence 'y'.
- Usually we tie parameters in two phases:
 - "Encoding phase" and "decoding phase".
 - Special "BOS" at end of input, "EOS" at end of output.



Training Recurrent Neural Networks

- Train using stochastic gradient: "backpropagation through time".
- Similar challenges/heuristics to training deep neural networks:
 - "Exploding/vanishing gradient", initialization is important, slow progress, etc.

- Exploding/vanishing gradient problem is now worse:
 - Parameters are tied across time:
 - Gradient gets magnified or shrunk exponentially at each step.
 - Common solutions:
 - "Gradient clipping": limit gradient norm to some maximum value.
 - Long Short Term Memory (LSTM): make it easier for information to persist.

Summary

- Fully-convolutional networks:
 - Elegant way to apply convolutional networks for dense labeling problems.
- Recurrent neural networks:
 - Neural networks for model sequenctial inputs and/or sequential outputs.