CPSC 540: Machine Learning

Recurrent Neural Networks
Winter 2020
Motivation: Sequence Modeling

• We want to predict the next words in a sequence:
 – “I am studying to become a [??]”.
• Simple idea: supervised learning to predict the next word.
 – Applying it repeatedly to generate the sequence.
• Simple approaches:
 – Markov chain (doesn’t work well, see “Garkov”).
Motivation: Sequence Modeling

• We want to predict the next words in a sequence:
 – “I am studying to become a [??????????????????????????”.
• Simple idea: supervised learning to predict the next word.
 – Applying it repeatedly to generate the sequence.
• Simple approaches:
 – Higher-order Markov chain (“n-gram”):

```
Y_1 → Y_2 → Y_3 → Y_4 → Y_5
```

```
Motivation: Sequence Modeling

• We want to predict the next words in a sequence:
  – “I am studying to become a [?????????????????????????????????????????]”.

• Simple idea: supervised learning to predict the next word.
  – Applying it repeatedly to generate the sequence.

• Simple approaches:
  – Neural network.
State-Space Models

• Problem with simple approaches:
  – All information about previous decision must be summarized by $x_t$.
  – We ‘forget’ why we predicted $x_t$ when we go to predict $x_{t+1}$.

• More complex dynamics possible with state-space models:
  – Add hidden states with their own latent dynamics (HMM-style)
Challenges of State-Space Models

• Problem 1: inference only has closed-form in simple situations.
  – Only 2 cases: Gaussian $z$ and $y$ (Kalman filter) or discrete $z$ (HMMs).
  – Otherwise, need to use approximate inference.

• Problem 2: memory is very limited.
  – You have to choose a $z_t$ at time ‘t’.
    • But still need to compress information into a single hidden state.

• Obvious solution:
  – Have multiple hidden $z_t$ at time ‘t’, as we did before.
    • But now inference becomes hard.
Recurrent Neural Networks

- Recurrent neural networks (RNNs) give solution to inference:
  - At time ‘t’, hidden units are deterministic transformations of time ‘t-1’.
  - Basically turns the problem into a big and structured neural network.
Recurrent Neural Networks

• RNNs can be used to translate input sequence to output sequence:
  – A neural network version of latent-dynamics models.
  – Deterministic transforms mean hidden ‘z’ can be really complicated.
    • But with easy inference.
    • I’m using “z₁” as all the hidden units in a neural network.
Recurrent Neural Networks

- Can think of each time as implementing the same neural network:
  - But with connections from hidden units at previous time.
Sequence-to-Sequence

• An interesting variation on this for sequences of different lengths:
  – Translate from French sentence ‘x’ to English sentence ‘y’.

• Usually we tie parameters in two phases:
  – “Encoding phase” and “decoding phase”.
  – Special “BOS” at end of input, “EOS” at end of output.
Training Recurrent Neural Networks

• Train using **stochastic gradient**: “backpropagation through time”.
• Similar challenges/heuristics to training deep neural networks:
  • “Exploding/vanishing gradient”, initialization is important, slow progress, etc.

• **Exploding/vanishing gradient** problem is now worse:
  – Parameters are tied across time:
    • Gradient gets magnified or shrunk exponentially at each step.
  – Common solutions:
    • “Gradient clipping”: limit gradient norm to some maximum value.
    • **Long Short Term Memory (LSTM)**: make it easier for information to persist.
Summary

• **Fully-convolutional networks:**
  – Elegant way to apply convolutional networks for dense labeling problems.

• **Recurrent neural networks:**
  – Neural networks for model sequential inputs and/or sequential outputs.