CPSC 540: Machine Learning Deep Structured Models

Mark Schmidt

University of British Columbia

Winter 2020

Last Time: Neural Network Tricks and Double Descent Curves

- We overviewed some standard methods to improve training of neural networks.
 - Data transformations, ReLU, batch normalization, CNNs.
- We discussed some explanations for why large neural networks generalized.
 - Implicit regularization of using SGD to choose between global optima.

• Today: some more tricks, connection to CRFs, and deep structured predicction.

"Residual" Networks (ResNets)

• Suppose we fit a deep neural network to a linearly-separable dataset.

- Original features x are sufficient to perfectly classify training data.
- For a deep neural network to work, each layer needs to preserve information in x.
 - You might be "wasting" parameters just re-representing data from previous layers.
- Consider residual networks:

https://en.wikipedia.org/wiki/Residual_neural_network

- Take a previous (non-transformed) layer as input to current layer.
 - Also called "skip connections" or "highway networks".

"Residual" Networks (ResNets)

- ResNets seemingly make learning easier:
 - You can "default" to just copying the previous layer.
 - The non-linear transform is only learning how to modify the input.
 - "Fitting the residual".
- This was a key idea behind first methods that used 100+ layers.
 - Easy for information about x to reach y through huge number of layers.
 - Won all tasks in ImageNet 2015 competition.
 - Evidence that biological networks have skip connections like this.
- Dense networks (DenseNets): connect to many previous layers.
 - Basically gets rid of vanishing gradient issue.

DenseNets

Figure 1: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature-maps as input.

Pre-Training

- Suppose you want to solve a new object detection task.
 - Recognize a particular abnormality in radiology images.
- You only have a few labeled images, so is deep learning useless?
- An important concept in many computer vision applications is pre-training.
 - Learn new concepts faster by modifying networks trained on millions of images.
 - Uses that many "features" are common between tasks (edges, corners, shapes,...).
- Typical setup:
 - Take a network trained on ImageNet (typically VGG or ResNet).
 - Re-train the last layer to solve your problem (convex with usual losses).

Neural Networks and Message Passing

End-to-End Learning

Outline

1 Neural Networks and Message Passing

2 End-to-End Learning

Backpropagation as Message-Passing

- Computing the gradient in neural networks is called backpropagation.
 - Derived from the chain rule and memoization of repeated quantities.
- We're going to view backpropagation as a message-passing algorithm.
- Key advantages of this view:
 - It's easy to handle different graph structures.
 - It's easy to handle different non-linear transformations.
 - It's easy to handle multiple outputs (as in structured prediction).
 - It's easy to add non-deterministic parts and combine with other graphical models.

Backpropagation Forward Pass

• Consider computing the output of a neural network for an example *i*,

$$y^{i} = v^{T}h(W^{3}h(W^{2}h(W^{1}x^{i})))$$

= $\sum_{c=1}^{k} v_{c}h\left(\sum_{c'=1}^{k} W^{3}_{c'c}h\left(\sum_{c''=1}^{k} W^{2}_{c''c'}h\left(\sum_{j=1}^{d} W^{1}_{c''j}x^{i}_{j}\right)\right)\right)$.

where we've assume that all hidden layers have k values.

- In the second line, the h functions are single-input single-output.
- The nested sum structure is similar to our message-passing structures.
- However, it's easier because it's deterministic: no random variables to sum over.
 - The messages will be scalars rather than functions.

Backpropagation Forward Pass

• Forward propagation through neural network as message passing:

$$\begin{split} y^{i} &= \sum_{c=1}^{k} v_{c} h\left(\sum_{c'=1}^{k} W_{c'c}^{3} h\left(\sum_{c''=1}^{k} W_{c''c'}^{2} h\left(\sum_{j=1}^{d} W_{c''j}^{1} x_{j}^{i}\right)\right)\right)\right) \\ &= \sum_{c=1}^{k} v_{c} h\left(\sum_{c'=1}^{k} W_{c'c}^{3} h\left(\sum_{c''=1}^{k} W_{c''c'}^{2} h(M_{c''})\right)\right) \\ &= \sum_{c=1}^{k} v_{c} h\left(\sum_{c'=1}^{k} W_{c'c}^{3} h(M_{c'})\right) \\ &= \sum_{c=1}^{k} v_{c} h(M_{c}) \\ &= M_{y}, \end{split}$$

where intermediate messages are the z values.

.

Backpropagation Backward Pass

• The backpropagation backward pass computes the partial derivatives.

• For a loss f, the partial derivatives in the last layer have the form

$$\frac{\partial f}{\partial v_c} = z_c^{i3} f'(v^T h(W^3 h(W^2 h(W^1 x^i))))),$$

where

$$z_{c'}^{i3} = h\left(\sum_{c'=1}^{k} W_{c'c}^{3}h\left(\sum_{c''=1}^{k} W_{c''c'}^{2}h\left(\sum_{j=1}^{d} W_{c''j}^{1}x_{j}^{i}\right)\right)\right)$$

• Written in terms of messages it simplifies to

$$\frac{\partial f}{\partial v_c} = h(M_c) f'(M_y).$$

Backpropagation Backward Pass

• In terms of forward messages, the partial derivatives have the forms:

$$\begin{aligned} \frac{\partial f}{\partial v_c} &= h(M_c) f'(M_y), \\ \frac{\partial f}{\partial W_{c'c}^3} &= h(M_{c'}) h'(M_c) w_c f'(M_y), \\ \frac{\partial f}{\partial W_{c''c'}^2} &= h(M_{c''}) h'(M_{c'}) \sum_{c=1}^k W_{c'c}^3 h'(M_c) w_c f'(M_y), \\ \frac{\partial f}{\partial W_{jc''}^1} &= h(M_j) h'(M_{c''}) \sum_{c'=1}^k W_{c''c'}^2 h'(M_{c'}) \sum_{c=1}^k W_{c'c}^3 h'(M_c) w_c f'(M_y), \end{aligned}$$

which are ugly but notice all the repeated calculations.

Backpropagation Backward Pass

• It's again simpler using appropriate messages

$$\frac{\partial f}{\partial v_c} = h(M_c) f'(M_y),$$
$$\frac{\partial f}{\partial W^3_{c'c}} = h(M_{c'}) h'(M_c) w_c V_y,$$
$$\frac{\partial f}{\partial W^2_{c'c'}} = h(M_{c''}) h'(M_{c'}) \sum_{c=1}^k W^3_{c'c} V_c,$$
$$\frac{\partial f}{\partial W^1_{jc''}} = h(M_j) h'(M_{c''}) \sum_{c'=1}^k W^2_{c''c'} V_{c'},$$

where $M_j = x_j$.

Backpropagation as Message-Passing

 $\bullet\,$ The general forward message for child c with parents p and weights W is

$$M_c = \sum_p W_{cp} h(M_p),$$

which computes weighted combination of non-linearly transformed parents.

• In the first layer we don't apply h to x.

• The general backward message from child c to all its parents is

$$V_c = h'(M_c) \sum_{c'} W_{cc'} V_{c'},$$

which weights the "grandchildren's gradients".

- In the last layer we use f instead of h.
- The gradient of W_{cp} is $h(M_c)V_p$, which works for general graphs.

Automatic Differentiation

- Automatic differentiation:
 - Input is code that computes a function value.
 - Output is code computing is one or more derivatives of the function.
- Forward-mode automatic differentiation:
 - Computes a directional derivative for cost of evaluating function.
 - So computing gradient would be *d*-times more expensive than function.
 - Low memory requirements.
 - Most useful for evaluating Hessian-vector products, $\nabla^2 f(w)d$.
- sReverse-mode automatic differentiation:
 - Computes gradient for cost of evaluating function.
 - But high memory requirements: need to store intermediate calculations.
 - Backpropagation is (essentially) a special case.
- Reverse-mode is replacing "gradient by hand" (less time-consuming/bug-prone).

Combining Neural Networks and CRFs

• Last time we saw conditional random fields like

$$p(y \mid x) \propto \exp\left(\sum_{c=1}^{k} y_c v^T x_c + \sum_{(c,c') \in E} y_c y_{c'} w\right),$$

which can use logistic regression at each location c and lsing dependence on y_c .

• Instead of logistic regression, you could put a neural network in there:

$$p(y \mid x) \propto \exp\left(\sum_{c=1}^{k} y_c v^T h(W^3 h(W^2(W^1 x_c))) + \sum_{(c,c') \in E} y_c y_{c'} w\right).$$

- Sometimes called a conditional neural field or deep structured model.
- Backprop generalizes:
 - **(1)** Forward pass through neural network to get \hat{y}_c predictions.
 - **2** Belief propagation to get marginals of y_c (or Gibbs sampling if high treewidth).
 - Backwards pass through neural network to get all gradients.

End-to-End Learning

Multi-Label Classification

• Consider multi-label classification:

http://proceedings.mlr.press/v37/chenb15.pdf

- Flickr dataset: each image can have multiple labels (out of 38 possibilities).
- Use neural networks to generate "factors" in an undirected model.
 - Decoding undirected model makes predictions accounting for label correlations.

Multi-Label Classification

• Learned correlation matrix:

female	0.00	0.68	0.04	0.06	0.02	0.24	0.03	-0.00	-0.01	0.01	0.04	-0.00	-0.05	-0.01	0.07	-0.01	-0.00	-0.12	0.04	0.01	0.01	0.02	0.04	0.02
people	0.68	0.00	0.06	0.06	-0.00	0.36	0.03	-0.08	-0.05	-0.03	0.02	-0.06	-0.12	-0.05	0.74	-0.04	-0.03	-0.21	0.01	-0.03	-0.03	-0.03	0.05	-0.03
indoor	0.04	0.06	0.00	0.05	-0.06	0.07	-0.12	-0.07	-0.35	-0.03	-0.46	-0.02	-0.34	0.11	0.02	-0.15	-0.14	-0.01	-0.07	-0.21	0.03	-0.08	0.06	-0.03
baby	0.06	0.06	0.05	0.00	0.10	0.11	0.07	0.09	0.03	0.10	0.01	0.10	0.02	0.09	0.06	0.08	0.07	0.07	0.08	0.06	0.09	0.09	0.08	0.10
sea	0.02	-0.00	-0.06	0.10	0.00	0.04	0.08	0.05			-0.02	0.09	-0.02	0.06	0.03		0.36	0.06	0.05	0.01	0.08	0.14	0.06	0.10
portrait	0.24	0.36	0.07	0.11	0.04	0.00	0.01	0.03	-0.02	0.05	-0.02	0.04	-0.01	0.03	0.12	0.02	0.01	-0.07	0.05	0.05	0.03	0.04	0.07	0.05
transport	0.03	0.03	-0.12	0.07	0.08	0.01	0.00	0.02	0.14	0.07		0.04	0.05	0.03	0.06	0.08	0.07	-0.03	0.36	0.10	0.04	0.05	0.04	0.07
flower	-0.0	0.08	-0.07	0.09	0.05	0.03	0.02	0.00	0.02	0.07	-0.03	0.07	0.34	0.04	-0.04	0.04	0.04	0.02	0.05	0.06	0.06	0.06	0.02	0.07
sky	-0.03	1 -0.08	-0.35	0.03		-0.02	0.14	0.02	0.00	0.12		0.04	0.24	-0.02	-0.00	0.44	0.12	-0.04	0.10	0.30	0.01	0.23	0.05	0.11
lake	0.01	-0.03	-0.03	0.10		0.05	0.07	0.07	0.12	0.00	-0.00	0.09	0.09	0.07	0.01	0.12	0.26	0.06	0.06	0.10	0.07	0.12	0.07	0.18
structures	0.04	0.02	-0.46	0.01	-0.02	-0.02		-0.03		-0.00	0.00	0.01	0.04	-0.05	0.06	0.08	-0.04	-0.06		0.09	-0.00	0.06	0.03	0.02
bird	-0.0	0.06	-0.02	0.10	0.09	0.04	0.04	0.07	0.04	0.09	0.01	0.00	0.04	0.07	-0.01	0.06	0.09	0.26	0.06	0.05	0.07	0.09	0.05	0.09
plant life	-0.0	5 -0.12	-0.34	0.02	-0.02	-0.01	0.05	0.34	0.24	0.09	0.04	0.04	0.00	-0.03	-0.07	0.09	0.01	0.01	0.08	0.68	0.02	0.05	-0.07	0.10
food	-0.0	1 -0.08	0.11	0.09	0.06	0.03	0.03	0.04	-0.02	0.07	-0.05	0.07	-0.03	0.00	-0.01	0.03	0.03	0.03	0.05	0.01	0.06	0.06	0.04	0.07
male	0.07	0.74	0.02	0.06	0.03	0.12	0.06	-0.04	-0.00	0.01	0.06	-0.01	-0.07	-0.01	0.00	0.00	-0.01	-0.10	0.04	-0.02	0.01	0.00	0.06	0.01
clouds	-0.03	1 -0.04	-0.15	0.08		0.02	0.08	0.04	0.44	0.12	0.08	0.06	0.09	0.03	0.00	0.00	0.09	-0.00	0.07	0.11	0.05	0.22	-0.01	0.10
water	-0.0	0-0.03	-0.14	0.07	0.36	0.01	0.07	0.04	0.12	0.26	-0.04	0.09	0.01	0.03	-0.01	0.09	0.00	0.05	0.02	0.03	0.05	0.10	0.03	0.27
animals	-0.1	2 -0.21	-0.01	0.07	0.06	-0.07	-0.03	0.02	-0.04	0.06	-0.06	0.26	0.01	0.03	-0.10	-0.00	0.05	0.00	0.02	0.00	0.22	0.03	-0.01	0.05
car	0.04	0.01	-0.07	0.08	0.05	0.05	0.36	0.05	0.10	0.06		0.06	0.08	0.05	0.04	0.07	0.02	0.02	0.00	0.11	0.06	0.08	0.07	0.06
tree	0.01	-0.03	-0.21	0.06	0.01	0.05	0.10	0.06	0.30	0.10	0.09	0.05	0.68	0.01	-0.02	0.11	0.03	0.00	0.11	0.00	0.04	0.09	-0.00	0.12
dog	0.01	-0.03	0.03	0.09	0.08	0.03	0.04	0.06	0.01	0.07	-0.00	0.07	0.02	0.06	0.01	0.05	0.05	0.22	0.06	0.04	0.00	0.06	0.05	0.07
sunset	0.02	-0.03	-0.08	0.09	0.14	0.04	0.05	0.06		0.12	0.06	0.09	0.05	0.06	0.00		0.10	0.03	0.08	0.09	0.06	0.00	0.06	0.10
night	0.04	0.05	0.06	0.08	0.06	0.07	0.04	0.02	0.05	0.07	0.03	0.05	-0.07	0.04	0.06	-0.01	0.03	-0.01	0.07	-0.00	0.05	0.06	0.00	0.07
river	0.02	-0.03	8 -0.03	0.10	0.10	0.05	0.07	0.07	0.11	0.18	0.02	0.09	0.10	0.07	0.01	0.10	0.27	0.05	0.06	0.12	0.07	0.10	0.07	0.00
	£0.	\$¢.	್ರೆ	ک ي ا	So	×О	Š.	Ś	S.	~.	S.	ъ.,	0,	×°	no.	\$	40	85	°.	Č,	80	SS.	2,	<i>х</i> у.
	1	\$ ~ ~ \$	مح رہ	5 3	. 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	્રેશ્	<u>`</u> `4	14	"To	, `X	, `¢	y `9,	$\sim \sim$	y Vo	ું `જ્	~ TC	, Ya	2 TA	.6	3	-25	ુ `ઝ્ટ્ર	× 6.
							°C	~~~				No.	0	10	, ,									
															· ·									

http://proceedings.mlr.press/v37/chenb15.pdf

Automatic Differentiation (AD) vs. Inference

- If you use exact inference methods, automatic differentiation will give gradient.
 - You write message-passing code to compute Z.
 - AD modifies your code to compute expectations in gradient.
- With approximate inference, AD may or may not work:
 - AD will work for iterative variational inference methods (which we'll cover late).
 - AD will not tend to work for Monte Carlo methods.
 - Can't AD through sampling (but there exist tricks like "common random numbers").
- Recent trend: run iterative variational method for a fixed number of iterations.
 - AD can give gradient of result after this fixed number of iterations.
 - "Train the inference you will use at test time".

End-to-End Learning

Motivation: Gesture Recognition

• Want to recognize gestures from video:

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

- A gesture is composed of a sequence of parts:
 - And some parts appear in different gestures.

Motivation: Gesture Recognition

• We may not know the set of "parts" that make up gestures.

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

• We can consider learn the "parts" and their latent dynamics (transitions).

Motivation: Gesture Recognition

• We're given a labeled video sequence, but don't observe "parts":

http://www.lsi.upc.edu/~aquattoni/AllMyPapers/cvpr_07_L.pdf

- Our videos are labeled with "gesture" and "background" frames,
 - But we don't know the parts (G1, G2, G3, B1, B2, B3) that define the labels.

Latent-Dynamic Conditional Random Field

• Here we could use a latent-dynamic conditional random field

- Observed variable x_j is the image at time j (in this case x_j is a video frame).
- The gesture y is defined by sequence of parts z_j .
 - We're learning what the parts should be.
 - We're learning "latent dynamics": how the hidden parts change over time.
- Notice in the above case that the conditional UGM is a tree.

Neural Networks with Latent-Dynamics

• Neural networks with latent dynamics:

• Combines deep learning, mixture models, and graphical models.

• Achieved among state of the art in several applications.

Neural Networks and Message Passing

End-to-End Learning

Outline

1 Neural Networks and Message Passing

2 End-to-End Learning

Convolutional Neural Networks

• In 340 we discussed convolutional neural networks (CNNs):

http://blog.csdn.net/strint/article/details/44163869

- Convolutional layers where W acts like a convolution (sparse with tied parameters).
- Pooling layers that usually take maximum among a small spatial neighbourhood.
- Fully-connected layers that use an unrestricted W.

Motivation: Beyond Classification

- Convolutional structure simplifies the learning task:
 - Parameter tieing means we have more data to estimate each parameter.
 - Sparsity drastically reduces number of parameters.

https://www.cs.toronto.edu/~frossard/post/vgg16

- We discussed CNNs for image classification: "is this an image of a cat?".
 - But many vision tasks are not image classification tasks.

Object Localization

- Object localization is task of finding locations of objects:
 - Need to find *where* in the image the object is.
 - May need to recognize more than one object.

Region Convolutional Neural Networks: "Pipeline" Approach

- Early approach (region CNN):
 - Propose a bunch of potential boxes.
 - ② Compute features of box using a CNN.
 - Olassify each box based on an SVM.
 - In the second second

R-CNN: Regions with CNN features

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

• Improved on state of the art, but not very elegant with its 4 steps.

Region Convolutional Neural Networks: "End to End" Approach

- Modern approaches try to do the whole task with one neural network.
 - The network extracts features, proposes boxes, and classifies boxes.

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

• This is called an end-to-end model.

End-to-End Computer Vision Models

- Key ideas behind end-to-end systems:
 - **1** Write each step as a differentiable operator.
 - Irain all steps using backpropagation and stochastic gradient.
- There now exist end-to-end models for all the standard vision tasks.
 - Depth estimation, pose estimation, optical flow, tracking, 3D geometry, and so on.
 - A bit hard to track the progress at the moment.
 - A survey of ≈ 200 papers from 2016:
 - http://www.themtank.org/a-year-in-computer-vision

• We'l focus on the task of pixel labeling...

Summary

- Backpropagation can be viewed as a message passing algorithm.
- Combining CRFs with deep learning.
 - You can learn the features and the label dependency at the same time.
- End to end models: use a neural network to do all steps.
 - Computer vision can now actually work!
- Next time: generating poetry, music, and dance moves.