CPSC 540:
Machine Learning

Double Descent Curves
Winter 2020



“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:
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Training goes to 0 with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?
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Test error continues to go down!?! Where is fundamental trade-off??

There exist global mins with large #hidden units have test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.



Multiple Global Minima?

e For standard objectives, there is a global min function value f*:
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Multiple Global Minima?

* For standard objectives, there is a global min function value f*:
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e But this may be achieved by many different parameter values.
— These training error “global minima” may have very-different test errors.
— Some of these global minima may be more “regularized” than others.



Implicit Regularization of SGD

 There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

 Example of implicit regularization:

— Consider a least squares problem where there exists a ‘w’ where Xw=y.
* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution Xw=y that has the minimum L2-norm.
* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD

 Example of implicit regularization:

— Consider a logistic regression problem where data is linearly separable.
* We can fit the data exactly.
— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem.
* So using gradient descent is equivalent to encouraging large margin.
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e Similar result known for boosting and matrix factorization.



Double Descent Curves
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* What is going on???



Worst vs. Best “Global Minimum”
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Worst vs. Best “Global Minimum”
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* Learning theory results analyze global min with worst test error.
— Actual test error for different global minima be better than worst case bound.
— Theory is correct, but maybe “worst overfitting possible” is too pessimistic?



Worst vs. Best “Global Minimum”
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Consider instead the global min with best test error.

— With small models, “minimize training error” leads to unique (or similar) global mins.
— With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).
Gap between “worst” and “best” global min can grow with model complexity.



Worst vs. Best “Global Minimum”
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Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
— One way to do this: increase regularization as you increase model size.

Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
— But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.



Implicit Regularization of SGD (as function of size)

 Why would implicit regularization of SGD increase with dimension?
— Maybe SGD finds low-norm solutions?
* In higher-dimensions, there is flexibility in global mins to have a low norm?

— Maybe SGD stays closer to starting point as we increase dimension?

* This would be more like a regularizer of the form | |w —w?]| |.
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Summary

 Neural networks learn features for supervised learning.
— For structured prediction, may reduce need to rely on inference.

* Implicit regularization and double descent curves.
— Possible explanations for why deep networks often generalize well.

* Next time: combining deep learning with the rest of the course.



