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“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Training goes to 0 with enough units: we’re finding a global min.

• What should happen to training and test error for larger #hidden?
https://www.neyshabur.net/papers/inductive_bias_poster.pdf



“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??

• There exist global mins with large #hidden units have test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf
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Multiple Global Minima?
• For standard objectives, there is a global min function value f*:

• But this may be achieved by many different parameter values.
– These training error “global minima” may have very-different test errors.
– Some of these global minima may be more “regularized” than others.



Implicit Regularization of SGD

• There is growing evidence that using SGD regularizes parameters.
– We call this the “implicit regularization” of the optimization algorithm.

• Beyond empirical evidence, we know this happens in simpler cases.

• Example of implicit regularization:
– Consider a least squares problem where there exists a ‘w’ where Xw=y.

• Residuals are all zero, we fit the data exactly.

– You run [stochastic] gradient descent starting from w=0.

– Converges to solution Xw=y that has the minimum L2-norm.
• So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.



Implicit Regularization of SGD

• Example of implicit regularization:
– Consider a logistic regression problem where data is linearly separable.

• We can fit the data exactly.

– You run gradient descent from any starting point.

– Converges to max-margin solution of the problem.
• So using gradient descent is equivalent to encouraging large margin.

• Similar result known for boosting and matrix factorization.



Double Descent Curves

• What is going on???

https://openai.com/blog/deep-double-descent/



Worst vs. Best “Global Minimum”



Worst vs. Best “Global Minimum”

• Learning theory results analyze global min with worst test error.
– Actual test error for different global minima be better than worst case bound.
– Theory is correct, but maybe “worst overfitting possible” is too pessimistic?



Worst vs. Best “Global Minimum”

• Consider instead the global min with best test error.
– With small models, “minimize training error” leads to unique (or similar) global mins.
– With larger models, there is a lot of flexibility in the space of global mins (gap between best/worst).

• Gap between “worst” and “best” global min can grow with model complexity.



Worst vs. Best “Global Minimum”

• Can get “double descent” curve in practice if parameters roughly track “best” global min shape.
– One way to do this: increase regularization as you increase model size.

• Maybe “neural network trained with SGD” has “more implicit regularization for bigger models”?
– But this behavior is not specific to implicit regularization of SGD and not specific to neural networks.



Implicit Regularization of SGD (as function of size)

• Why would implicit regularization of SGD increase with dimension?

– Maybe SGD finds low-norm solutions?

• In higher-dimensions, there is flexibility in global mins to have a low norm?

– Maybe SGD stays closer to starting point as we increase dimension?

• This would be more like a regularizer of the form ||w – w0||.

https://rajatvd.github.io/NTK/



Summary

• Neural networks learn features for supervised learning.

– For structured prediction, may reduce need to rely on inference.

• Implicit regularization and double descent curves.

– Possible explanations for why deep networks often generalize well.

• Next time: combining deep learning with the rest of the course.


