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Last Time: Learning Log-Linear UGMs

We discussed log-linear parameterization of UGMs,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′), φjkl(s, s

′, s′′) = exp(wj,k,l,s,s′,s′′).

The likelihood of an example x given parameter w is given by

p(x | w) =
exp

(
wTF (x)

)
Z

,

and the feature functions F (x) count the number of times we use each wj .

This leads to a convex NLL of the form

− log p(x | w) = −wTF (x) + log(Z),

and gradient of the form

∇w − log p(x | w) = −F (x) + E[F (x)],

which (if you can do inference) can be optimzied with gradient descent methods.
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Log-Linear UGM Gradient

For 1 example, gradient in log-linear UGM with respect to parameter wj is

∇wjf(w) = −Fj(x) + E[Fj(x)].

Example of φ10(3) = exp(w10,3) (potential that feature 10 is in state 3).

Averaging over n examples, the gradient with no parameter tieing is given by

∇w10,3
f(w) = − 1

n

[
n∑

i=1

I[xi10 = 3]

]
︸ ︷︷ ︸

frequency in data

+ p(x10 = 3)︸ ︷︷ ︸
model “frequency”

.

So if ∇w10,3
f(w) = 0, probabilities match frequencies in training data.

At MLE, you match the frequencies of all the potentials in the training data.
Typical training method: deterministic gradient descent methods (if have Z).

But computing gradient requires inference (computing marginals like p(x10 = 3)).



Learning UGMs Boltzmann Machines

Approximate Learning: Alternate Objectives

One way to avoid cost of inference is to change the objective:

Pseudo-likelihood (fast, convex, and crude):

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =

d∏
j=1

p(xj | xnei(j)),

which turns learning into d single-variable problems (similar to DAGs).
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Approximate Learning: Approximate Marginals
Alternately, we can use approximate inference to use NLL:

Monte Carlo approximation of E[Fj(x)] given current parameters w:

∇f(w) = −F (x) + E[F (x)]

≈ −F (x) + 1

t

t∑
i=1

F (xi)︸ ︷︷ ︸
Monte Carlo approx

.

Simple method: generate lots of samples to approximate gradient given w,
then update w (many samples per iteration, can grow batch to converge fast).

Younes algorithm: alternate between steps of Gibbs sampling and stochastic gradient,
using 1 sample per iteration (“persistent contrastive divergence” in deep learning).

(SG updates w, Gibbs updates x)

Deterministic variational approximations of E[F (x)] can alternately be used (later).
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Pairwise UGM on MNIST Digits

Samples from a lattice-structured pairwise UGM:

Training: 100k stochastic gradient w/ Gibbs sampling steps with αt = 0.01.

Samples are iteration 100k of Gibbs sampling with fixed w.
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Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

φij(xi, xj) = exp(wijxixj).

If we set wij = 0, it sets φij(xi, xj) = 1 for all xi and xj .

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of wij values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wi,j,s,s′ .
In this case we can use “group L1-regularization” for structure learning.

Each group will be all parameters wi,j,·,· associated with an edge (i, j).
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Structure Learning on Rain Data

Large λ (and optimal tree):
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Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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Structure Learning on News Words
Group-L1 on newsgroups data:
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Outline

1 Learning UGMs

2 Boltzmann Machines
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http:

//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar

http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
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Deep Density Estimation

In 340 we discussed deep learning methods for supervised learning.

Does it make sense to talk about deep unsupervised learning?

Standard argument:

Human learning seems to be mostly unsupervised.
Supervision gives limited feedback: bits in a class label vs. an image.
Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).
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Cool Pictures Motviation for Deep Learning

First layer of zi trained on 10 by 10 image patches:

Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Many classes use these particular images to motivate deep neural networks.
But they’re not from a neural network: they’re from a DAG model.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Mixture of Independent Models

Recall the mixture of independent models:

p(x) =

k∑
c=1

p(z = c)

d∏
j=1

p(xj | z = c).

Given z, each variable xj comes from some “nice” distribution.

This is enough to model any distribution.

Just need to know cluster of example x and distribution of xj given z.
But not an efficient representation: number of cluster might need to be huge.

Need to learn each cluster independently (no “shared” information across clusters).
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Latent DAG Model

Consider the following model with binary z1 and z2:

Have we gained anything?

We have 4 clusters based on two hidden variables.
Each cluster shares a parent/part with 2 of the other clusters.

Hope is to achieve some degree of composition

Don’t need to re-learn basic things about the xj in each cluster.
Maybe one hidden zc models clusters, and another models correlations.
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Latent DAG Model

Consider the following model:

Now we have 16 clusters, in general we’ll have 2k with k hidden binary nodes.
This discrete latent-factors give combinatorial number of mixtures.

You can think of each zc as a “part” that can be included or not (“binary PCA”).

Usually assume p(xj | z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.).
Distributed representation where x is made of parts z.
With d visible xj and k hidden zj , we only have dk parameters.

Unfortunately, somewhat hard to use:
Combinatorial “explaining away” between zc value when conditioning on x.
Restricted Boltzmann Machines (RBMs) are a similar undirected model...
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Boltzmann Machines

Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine

Yet another latent-variable model for density estimation.

Hidden variables again give a combinatorial latent representation.

Hard to do anything in this model, even if you know all the z (or x).

https://en.wikipedia.org/wiki/Boltzmann_machine 
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Restricted Boltzmann Machine

By restricting graph structure, some things get easier:

Restricted Boltzmann machines (RBMs): edges only between the xj and zc.

Bipartite structure allows block Gibbs sampling given one type of variable:

Conditional UGM is disconnected.

Given visible x, we can sample each zc independently.

Given hidden z, we can sample each xj independently.
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Restricted Boltzmann Machines
The RBM graph structure leads to a joint distribution of the form

p(x, z) =
1

Z

 d∏
j=1

φj(xj)

( k∏
c=1

φc(zc)

) d∏
j=1

k∏
c=1

φjc(xj , zc)

 .

RBMs usually use a log-linear parameterization like

p(x, z) ∝ exp

 d∑
j=1

xjwj +

k∑
c=1

zcvc +

d∑
j=1

k∑
c=1

xjwjczc

 ,

for parameters wj , vc, and wjc (first term would be different for continuous xj).
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Generating Digits with RBMs

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html
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Generating Digits with RBMs
Visualizing each zc’s interaction parameters (w·c values) as images:

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html
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Learning UGMs with Hidden Variables

For RBMs we have hidden variables:

With hidden (“nuissance”) variables z the observed likelihood has the form

p(x) =
∑
z

p(x, z) =
∑
z

p̃(x, z)

Z

=
1

Z

∑
z

p̃(x, z)︸ ︷︷ ︸
Z(x)

=
Z(x)

Z
,

where Z(x) is the partition function of the conditional UGM given x.
Z(x) is cheap in RBMs because the z are independent given x.
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Learning UGMs with Hidden Variables

This gives an observed NLL of the form

− log p(x) = − log(Z(x)) + logZ,

where Z(x) sums over hidden z values, and Z sums over z and x.

The second term is convex but the first term is non-convex.
This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

−∇ log p(x) = −Ez | x[F (X,Z)] + Ez,x[F (X,Z)].

For RBMs, first term is cheap due to independence of z given x.

We can approximate second term using block Gibbs sampling.
For other problems, you would also need to approximate first term.
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Deep Belief Networks

Deep belief networks are latent DAGs with more binary hidden layers:

Data is at the bottom.

First hidden layer could be “basic ingredients”.

Second hidden layer could be general “parts”.

Third hidden layer could be “abstract concept”.
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Deep Belief Networks

If we were conditioning on top layer:
Sampling would be easy.

But we’re conditioning on the bottom layer:
Everything is hard.
There is combinatorial “explaining away”.

Common training method:
Greedy “layerwise” training as a restricted Boltzmann machine.
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)

Step 2:

Fix first hidden layer values.
Train an RBM.
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Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
Step 2:

Fix first hidden layer values.
Train an RBM.

Step 3:
Fix second hidden layer values.
Train an RBM.
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Deep Belief Networks

Keep top as an RBM.

For the other layers, use DAG parameters that implement block sampling.

Can sample by running block Gibbs on top layer for a while, then ancestral sampling.

Convolutional:
http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 
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Deep Belief Networks

Can add a class label to last layer.

Can use “fine-tuning” as a feedforward neural network to refine weights.

https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.youtube.com/watch?v=KuPai0ogiHk
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Deep Boltzmann Machines

Deep Boltzmann machines just keep as an undirected model.

Sampling is nicer: no explaning away within layers.
Variables in layer are independent given variables in layer above and below.
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Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf
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Summary

Approximate UGM learning:
1 Change objective function: pseudolikelihood.
2 Approximate marginals: Monte Carlo or variational methods.

Structure learning in UGMs with [group] L1-regularization.

Boltzmann machines are UGMs with binary hidden variables.

Restricted Boltzmann machines only allow connections between hidden/visible.

Deep belief networks and Boltzmann machines have layers of hidden variables.

Next time: we’ll use these tools for supervised learning.
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