
Learning UGMs Boltzmann Machines

CPSC 540: Machine Learning
Boltzmann Machines

Mark Schmidt

University of British Columbia

Winter 2020



Learning UGMs Boltzmann Machines

Last Time: Learning Log-Linear UGMs

We discussed log-linear parameterization of UGMs,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′), φjkl(s, s

′, s′′) = exp(wj,k,l,s,s′,s′′).

The likelihood of an example x given parameter w is given by

p(x | w) =
exp

(
wTF (x)

)
Z

,

and the feature functions F (x) count the number of times we use each wj .

This leads to a convex NLL of the form

− log p(x | w) = −wTF (x) + log(Z),

and gradient of the form

∇w − log p(x | w) = −F (x) + E[F (x)],

which (if you can do inference) can be optimzied with gradient descent methods.



Learning UGMs Boltzmann Machines

Log-Linear UGM Gradient

For 1 example, gradient in log-linear UGM with respect to parameter wj is

∇wjf(w) = −Fj(x) + E[Fj(x)].

Example of φ10(3) = exp(w10,3) (potential that feature 10 is in state 3).

Averaging over n examples, the gradient with no parameter tieing is given by

∇w10,3
f(w) = − 1

n

[
n∑

i=1

I[xi10 = 3]

]
︸ ︷︷ ︸

frequency in data

+ p(x10 = 3)︸ ︷︷ ︸
model “frequency”

.

So if ∇w10,3
f(w) = 0, probabilities match frequencies in training data.

At MLE, you match the frequencies of all the potentials in the training data.
Typical training method: deterministic gradient descent methods (if have Z).

But computing gradient requires inference (computing marginals like p(x10 = 3)).



Learning UGMs Boltzmann Machines

Approximate Learning: Alternate Objectives

One way to avoid cost of inference is to change the objective:

Pseudo-likelihood (fast, convex, and crude):

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =

d∏
j=1

p(xj | xnei(j)),

which turns learning into d single-variable problems (similar to DAGs).



Learning UGMs Boltzmann Machines

Approximate Learning: Approximate Marginals
Alternately, we can use approximate inference to use NLL:

Monte Carlo approximation of E[Fj(x)] given current parameters w:

∇f(w) = −F (x) + E[F (x)]

≈ −F (x) + 1

t

t∑
i=1

F (xi)︸ ︷︷ ︸
Monte Carlo approx

.

Simple method: generate lots of samples to approximate gradient given w,
then update w (many samples per iteration, can grow batch to converge fast).

Younes algorithm: alternate between steps of Gibbs sampling and stochastic gradient,
using 1 sample per iteration (“persistent contrastive divergence” in deep learning).

(SG updates w, Gibbs updates x)

Deterministic variational approximations of E[F (x)] can alternately be used (later).



Learning UGMs Boltzmann Machines

Pairwise UGM on MNIST Digits

Samples from a lattice-structured pairwise UGM:

Training: 100k stochastic gradient w/ Gibbs sampling steps with αt = 0.01.

Samples are iteration 100k of Gibbs sampling with fixed w.



Learning UGMs Boltzmann Machines

Structure Learning in UGMs

Recall that in Ising UGMs, our edge potentials have the form

φij(xi, xj) = exp(wijxixj).

If we set wij = 0, it sets φij(xi, xj) = 1 for all xi and xj .

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of wij values performs structure learning in UGM.

For general log-linear, each edge has multiple parameters wi,j,s,s′ .
In this case we can use “group L1-regularization” for structure learning.

Each group will be all parameters wi,j,·,· associated with an edge (i, j).



Learning UGMs Boltzmann Machines

Structure Learning on Rain Data

Large λ (and optimal tree):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 Small λ:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

15

17

18

19

20

21

22

23

24

28

25

26

27



Learning UGMs Boltzmann Machines

Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:

1,2

2,12,2

1,3

2,3

1,4

1,5

2,41,6

2,51,7

2,61,8

2,71,9

2,81,10

2,91,11

2,101,12

2,111,13

2,121,14

2,13

1,15

2,14

2,15 1,16

2,16

3,16

3,13,2

3,3

3,4

3,5

3,6

3,7

3,8

3,9

3,10

3,11

3,12

3,13

3,14

3,15

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

4,9

4,10

4,11

4,12

4,13

4,14

4,15

4,16

5,1

5,2

5,3

5,4

5,5

5,6

5,7

5,8

5,9

5,10

5,11

5,12

5,13

5,14

5,15

5,16

6,1

6,2

6,3

6,4

6,5

6,6

6,7

6,8

6,9

6,10

6,11

6,12

6,13

6,14

6,15

6,16

7,1

7,2

7,3

7,4

7,5

7,6

7,7

7,8

7,9

7,10

7,11

7,12

7,13

7,14

7,15

7,16

8,1

8,2

8,3

8,4

8,5

8,6

8,7

8,8

8,9

8,10

8,11

8,12

8,13

8,14

8,15

8,16

9,1

9,2

9,3

9,4

9,5

9,6

9,7

9,8

9,9

9,10

9,11

9,12

9,13

9,14

9,15

9,16

10,15

10,1

10,2

10,3

10,4

10,5

10,6

10,7

10,8

10,9

10,10

10,11

10,12

10,13

10,14

10,16

11,15

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8

11,9

11,10

11,11

11,12

11,13

11,14

11,16

12,15

12,1

12,2

12,3

12,4

12,5

12,6

12,7

12,8

12,9

12,10

12,11

12,12

12,13

12,14

12,16

13,15

13,1

13,2

13,3

13,4

13,5

13,6

13,7

13,8

13,9

13,10

13,11

13,12

13,13

13,14

13,16

14,15

14,1

14,2

14,3

14,4

14,5

14,6

14,7

14,8

14,9

14,10

14,11

14,12

14,13

14,14

14,16

15,1

15,2

15,3

15,4

15,5

15,6

15,7

15,8

15,9

15,10

15,11

15,12

15,13

15,14 15,15 15,16

16,1

16,2

16,3

16,4

16,5

16,6

16,7

16,8

16,9

16,10

16,11

16,12

16,13

16,14

16,15



Learning UGMs Boltzmann Machines

Structure Learning on News Words
Group-L1 on newsgroups data:

baseball

games

league

players

bible

christian

god

jesus

question

car

dealerdrive engine

card

driver

graphics

pc

problem

system

video

windows

case

course

evidence

fact

government

human

lawnumber power

rights

state

world

children

president

religionwar

computer

data

email

program

science

software

university

memory

research

space

disk

files

display

imagedos

mac scsi

earth

orbit

format

ftp

help

phone

jews

fans

hockey

team

version

nhl

season

win

gun

health

insurance

israel

launch moon

nasa

shuttle

technology

won



Learning UGMs Boltzmann Machines

Structure Learning on News Words
Group-L1 on newsgroups data:

baseball

games

league

players

bible

christian

god

jesus

question

car

dealerdrive engine

card

driver

graphics

pc

problem

system

video

windows

case

course

evidence

fact

government

human

lawnumber power

rights

state

world

children

president

religionwar

computer

data

email

program

science

software

university

memory

research

space

disk

files

display

imagedos

mac scsi

earth

orbit

format

ftp

help

phone

jews

fans

hockey

team

version

nhl

season

win

gun

health

insurance

israel

launch moon

nasa

shuttle

technology

won

baseball

games

league

players

bible

christian

god

jesus

question

car

dealerdrive engine

card

driver

graphics

pc

problem

system

video

windows

case

course

evidence

fact

government

human

lawnumber power

rights

state

world

children

president

religionwar

computer

data

email

program

science

software

university

memory

research

space

disk

files

display

imagedos

mac scsi

earth

orbit

format

ftp

help

phone

jews

fans

hockey

team

version

nhl

season

win

gun

health

insurance

israel

launch moon

nasa

shuttle

technology

won



Learning UGMs Boltzmann Machines

Outline

1 Learning UGMs

2 Boltzmann Machines



Learning UGMs Boltzmann Machines

http:

//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar

http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
http://engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar


Learning UGMs Boltzmann Machines

Deep Density Estimation

In 340 we discussed deep learning methods for supervised learning.

Does it make sense to talk about deep unsupervised learning?

Standard argument:

Human learning seems to be mostly unsupervised.
Supervision gives limited feedback: bits in a class label vs. an image.
Could we learn unsupervised models with much less data?

Deep belief networks started modern deep learning movement (2006).



Learning UGMs Boltzmann Machines

Cool Pictures Motviation for Deep Learning

First layer of zi trained on 10 by 10 image patches:

Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

Many classes use these particular images to motivate deep neural networks.
But they’re not from a neural network: they’re from a DAG model.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf


Learning UGMs Boltzmann Machines

Mixture of Independent Models

Recall the mixture of independent models:

p(x) =

k∑
c=1

p(z = c)

d∏
j=1

p(xj | z = c).

Given z, each variable xj comes from some “nice” distribution.

This is enough to model any distribution.

Just need to know cluster of example x and distribution of xj given z.
But not an efficient representation: number of cluster might need to be huge.

Need to learn each cluster independently (no “shared” information across clusters).



Learning UGMs Boltzmann Machines

Latent DAG Model

Consider the following model with binary z1 and z2:

Have we gained anything?

We have 4 clusters based on two hidden variables.
Each cluster shares a parent/part with 2 of the other clusters.

Hope is to achieve some degree of composition

Don’t need to re-learn basic things about the xj in each cluster.
Maybe one hidden zc models clusters, and another models correlations.



Learning UGMs Boltzmann Machines

Latent DAG Model

Consider the following model:

Now we have 16 clusters, in general we’ll have 2k with k hidden binary nodes.
This discrete latent-factors give combinatorial number of mixtures.

You can think of each zc as a “part” that can be included or not (“binary PCA”).

Usually assume p(xj | z1, z2, z3, z4) is a linear model (Gaussian, logistic, etc.).
Distributed representation where x is made of parts z.
With d visible xj and k hidden zj , we only have dk parameters.

Unfortunately, somewhat hard to use:
Combinatorial “explaining away” between zc value when conditioning on x.
Restricted Boltzmann Machines (RBMs) are a similar undirected model...



Learning UGMs Boltzmann Machines

Boltzmann Machines

Boltzmann machines are UGMs with binary latent variables:

https://en.wikipedia.org/wiki/Boltzmann_machine

Yet another latent-variable model for density estimation.

Hidden variables again give a combinatorial latent representation.

Hard to do anything in this model, even if you know all the z (or x).

https://en.wikipedia.org/wiki/Boltzmann_machine 


Learning UGMs Boltzmann Machines

Restricted Boltzmann Machine

By restricting graph structure, some things get easier:

Restricted Boltzmann machines (RBMs): edges only between the xj and zc.

Bipartite structure allows block Gibbs sampling given one type of variable:

Conditional UGM is disconnected.

Given visible x, we can sample each zc independently.

Given hidden z, we can sample each xj independently.



Learning UGMs Boltzmann Machines

Restricted Boltzmann Machines
The RBM graph structure leads to a joint distribution of the form

p(x, z) =
1

Z

 d∏
j=1

φj(xj)

( k∏
c=1

φc(zc)

) d∏
j=1

k∏
c=1

φjc(xj , zc)

 .

RBMs usually use a log-linear parameterization like

p(x, z) ∝ exp

 d∑
j=1

xjwj +

k∑
c=1

zcvc +

d∑
j=1

k∑
c=1

xjwjczc

 ,

for parameters wj , vc, and wjc (first term would be different for continuous xj).



Learning UGMs Boltzmann Machines

Generating Digits with RBMs

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html


Learning UGMs Boltzmann Machines

Generating Digits with RBMs
Visualizing each zc’s interaction parameters (w·c values) as images:

http://deeplearning.net/tutorial/rbm.html

http://deeplearning.net/tutorial/rbm.html


Learning UGMs Boltzmann Machines

Learning UGMs with Hidden Variables

For RBMs we have hidden variables:

With hidden (“nuissance”) variables z the observed likelihood has the form

p(x) =
∑
z

p(x, z) =
∑
z

p̃(x, z)

Z

=
1

Z

∑
z

p̃(x, z)︸ ︷︷ ︸
Z(x)

=
Z(x)

Z
,

where Z(x) is the partition function of the conditional UGM given x.
Z(x) is cheap in RBMs because the z are independent given x.



Learning UGMs Boltzmann Machines

Learning UGMs with Hidden Variables

This gives an observed NLL of the form

− log p(x) = − log(Z(x)) + logZ,

where Z(x) sums over hidden z values, and Z sums over z and x.

The second term is convex but the first term is non-convex.
This is expected when we have hidden variables.

With a log-linear parameterization, the gradient has the form

−∇ log p(x) = −Ez | x[F (X,Z)] + Ez,x[F (X,Z)].

For RBMs, first term is cheap due to independence of z given x.

We can approximate second term using block Gibbs sampling.
For other problems, you would also need to approximate first term.



Learning UGMs Boltzmann Machines

Deep Belief Networks

Deep belief networks are latent DAGs with more binary hidden layers:

Data is at the bottom.

First hidden layer could be “basic ingredients”.

Second hidden layer could be general “parts”.

Third hidden layer could be “abstract concept”.



Learning UGMs Boltzmann Machines

Deep Belief Networks

If we were conditioning on top layer:
Sampling would be easy.

But we’re conditioning on the bottom layer:
Everything is hard.
There is combinatorial “explaining away”.

Common training method:
Greedy “layerwise” training as a restricted Boltzmann machine.



Learning UGMs Boltzmann Machines

Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)



Learning UGMs Boltzmann Machines

Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)

Step 2:

Fix first hidden layer values.
Train an RBM.



Learning UGMs Boltzmann Machines

Greedy Layerwise Training of Stacked RBMs

Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
Step 2:

Fix first hidden layer values.
Train an RBM.

Step 3:
Fix second hidden layer values.
Train an RBM.



Learning UGMs Boltzmann Machines

Deep Belief Networks

Keep top as an RBM.

For the other layers, use DAG parameters that implement block sampling.

Can sample by running block Gibbs on top layer for a while, then ancestral sampling.

Convolutional:
http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf 


Learning UGMs Boltzmann Machines

Deep Belief Networks

Can add a class label to last layer.

Can use “fine-tuning” as a feedforward neural network to refine weights.

https://www.youtube.com/watch?v=KuPai0ogiHk

https://www.youtube.com/watch?v=KuPai0ogiHk


Learning UGMs Boltzmann Machines

Deep Boltzmann Machines

Deep Boltzmann machines just keep as an undirected model.

Sampling is nicer: no explaning away within layers.
Variables in layer are independent given variables in layer above and below.



Learning UGMs Boltzmann Machines

Deep Boltzmann Machines

Performance of deep Boltzmann machine on NORB data:

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf

http://www.cs.toronto.edu/~fritz/absps/dbm.pdf


Learning UGMs Boltzmann Machines

Summary

Approximate UGM learning:
1 Change objective function: pseudolikelihood.
2 Approximate marginals: Monte Carlo or variational methods.

Structure learning in UGMs with [group] L1-regularization.

Boltzmann machines are UGMs with binary hidden variables.

Restricted Boltzmann machines only allow connections between hidden/visible.

Deep belief networks and Boltzmann machines have layers of hidden variables.

Next time: we’ll use these tools for supervised learning.


	Learning UGMs
	Boltzmann Machines

