CPSC 540: Machine Learning

Fundamentals of Learning
Winter 2020

Admin

Registration forms:
— | will sign them at the end of class (need to submit prereq form first).

Website/Piazza:
— http://www.cs.ubc.ca/~schmidtm/Courses/540-W20
— https://piazza.com/ubc.ca/winterterm22019/cpsc540

Tutorials: start Monday after class (no need to formally register).
Office hours: start today after class.

Assignment 1 due Friday of next week.

— 2/3 of assignment posted.
— Rest of assignment and submission instructions coming soon.

Supervised Learning Notation

 We are given training data where we know labels:
Egg | Milk | Fish | Wheat | Shellfish | Peanuts | ..
0 0.7 0 0.3 0 0 1

0.3 0.7 0 0.6 0 0.01

1
X = y =
0 0 0 0.8 0 0 0
03 0.7 1.2 0 0.10 0.01 1
03 0 12 03 010 001 1

* But the goal is to do well on any possible testing data:
Egg | Milk | Fish | Wheat | Shellfish | Peanuts | ..
0.5 0 1 0.6 2 1 ?

X= . \V =
0 07 O 1 0 0 y

3 1 0 0.5 0 0 ?

?

“Test Set” vs. “Test Error”

 Formally, the “test error” is the expected error of our model:

EL1y=51]

— Here I’'m using absolute error between predictions and true labels.
* But you could use squared error or other losses.

— The expectation is taken over distribution of test examples.
* Think of this as the “error with infinite data”.

— We assume that our training examples are drawn [ID from this distribution.
* Otherwise, “training” might not help to reduce “test error”.

* Unfortunately, we cannot compute the test error.
— We don’t have access to the distribution over all test examples.

“Test Set” vs. “Test Error”

 We often approximate “test error” with the error on a “test set”:

1
i Ny r~
— = \
Al
— Here, we are using ‘t” examples drawn |ID from the test distribution.

* Note that “test set error” is not the “test error”.
— The goal is have a low “test error”, not “test set error”.

* The “golden rule” of machine learning:
— A “test set” cannot influence the “training” in any way.
— Otherwise, “test set error” is not an unbiased “test error” approximation.
— We run the risk of “overfitting” to the “test set”.

Typical Supervised Learning Steps (Are Bad?)

* Given data {X,y}, a typical set of supervised learning steps:

— Data splitting:
* Split {X,y}into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.
* We're going to use the validation set error as an approximation of test error.

— Tune hyper-parameters (number of hidden units, A, polynomial degree,etc.):

* For each candidate value “A” of the hyper-parameters:
— Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters “\”.
— Evaluate the model on the validation set {Xvalid,yvalid}.

— Choose the model with the best performance on the validation set.

* And maybe re-train using hyper-parameter “A” on the full dataset.

* Can this overfit, even though we used a validation set?

— Yes, we've violated the golden rule. But maybe it’s not too bad...

Validation Error, Test Error, and Approximation Error

* 340 discusses the “Fundamental Trade-Off of Machine Learning”.
— Simple identity relating training set error to test error.

* We have a similar identity for the validation error.
— If E,., is the test error and E__, 4 is the error on the validation set, then:

<£1\3€> - qullg) \/,\I;A

£e«,+ NS
&G‘OI)N)(
* If E pprox IS SMall, then E ;4 is @ good approximation of E.

so how do we know if E is small?

)
— We can’t measure E,, approx

Bounding E

approx

e Let’s consider a simple case:
— Labels y' are binary, and we try 1 hyper-parameter setting.
— |ID assumption on validation set implies E ;.4 is unbiased: E[E ;4] = E -

* We can bound probability E, ., is greater than .
— Assumptions: data is IID (so E ;4 is unbiased) and loss is in [0,1].
— By using Hoeffding’s inequality:

F(M’ 7&) < lexf (-4 £2f)

(/Y\\Am'rcr‘ 01C Cxa /g
60‘”’“" N validalin ;ff'

— Probability that E ., is far from E, . goes down exponentially with ‘t’.

* This is great: the bigger your validation set, the better approximation you get.

https://en.wikipedia.org/wiki/Hoeffding's_inequality

Bounding E

approx

e Let’s consider a slightly less-simple case:
— Labels are binary, and we tried ‘k” hyper-parameter values.
— In this case it’s unbiased for each k’: E[E,;qn)] = Eest-
— So for each validation error E, ;4 We have:

€ Cg) 76 S Qe (Z2E8)

— But our final validation error is E, ,;y = min{E 4oy}, Which is biased.

* We can’t apply Hoeffding because we chose best among ‘k’ values.

* Fix: bound on probability that all |E..; — E,,iqn | Values are < &.

valid
— We show it holds for all values of A, so it must hold for the best value.

Bounding E

approx

* The “union bound” for any events {A,, A,, ..., A } is that:

ke '/
ph Uk U VRIS 204 [Ean BY Y,
@@ a—/-;«s is less
> - Tl‘eﬂ Suw of
* Combining with Hoeffding we can get: reus.

P(| ch,f - ‘"‘;"ZEWN(M%

& > < r(Gxasfs o A where IEG_#-EW,;J(”] > f)
é % F(' 6¢o,+ - qum(p’ >£)
S% Qex,,(-lg%)
- ’(26)(,0("282‘()

Bounding E

approx

* So if we choose best E, ;4 among k" A values, we have:
()(' E(,e)'l' - Ew'\{(’,\)‘ 7 6 f(‘)f' any //\> é K 2 Cx'o("2 Ezt)

* So optimizing over ‘k’ models is ok if we have a large ‘t’.
— But if 'k’ is too large or ‘t’ is too small the validation error isn’t useful.

 Examples:
— If k=10 and t=1000, probability that |E, .,
— If k=10 and t=10000, probability that |E
— If k=10 and t=1000, probability that |E, .,
— If k=100 and t=100000, probability that |E

| >.05 is less than 0.14.

approx| > 05 is less than 10-°.
| >.01is less than 2.7 (useless).
| >.01 is less than 10°.

approx

Bounding E

approx

e Validation error vs. test error for fixed ‘t’.

— E,.iq 80€s down as we increase ‘k’, but E

e Overfitting of validation set.

can go up.

approx

test error

Lo
| V.

A error

Discussion

Bound is usually very loose, but data is probably not fully IID.
— Similar bounds are possible for cross-validation.

Similar arguments apply for the E_ ., of the training error.
— Value ‘k’ is the number of hyper-parameters you are optimizing over (even if don’t try them all).
— So ‘k’ is usually huge: you try out k=O(nd) decision stumps.

What if we train by gradient descent?
— We're optimizing on continuous space, so k=e= and the bound is useless.

— In this case, VC-dimension is one way to replace ‘k’ (doesn’t need union bound).
* “Simpler” models like decision stumps and linear models will have lower VC-dimension.

Learning theory keywords if you want to go deeper into this topic:

— Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC
learning, VC dimension, Rademacher complexity.

— A gentle place to start is the Learning from Data book.

https://work.caltech.edu/telecourse.html

(pause)

Generalization Error

* An alternative measure of performance is the generalization error:
— Average error over the set of x' values that are not seen in the training set.
— “How well we expect to do for a completely unseen feature vector”.

* Test error vs. generalization error when labels are deterministic:

tm [L\ "MI] é‘)""’""""’:iM | '9:”7'

1 BT
Laét”) Gre v‘efff M/W)'/(((/
Number of
L\A"' we Sﬁ” "0],\(_’ » th‘o)] O\fo“q(/(_ evigr
GXrecJ[GnWm over (chh JlS’l\r'Ag\;non in ’ivfd,'hiw;c-f Over YhSee n

X' \/al‘u()‘k

“Best” and the “Good” Machine Learning Models

* Question 1: what is the “best” machine learning model?
— The model that gets lower generalization error than all other models.

* Question 2: which models always do better than random guessing?
— Models with lower generalization error than “predict 0” for all problem:s.

e No free lunch theorem:

— There is no “best” model achieving the best generalization error for every
problem.

— If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

No Free Lunch Theorem

e Let’s show the “no free lunch” theorem in a simple setting:
— The x' and y' are binary, and y' being a deterministic function of x'.

« With ‘d’ features, each “learning problem” is a map from {0,1}4 -> {0,1}.
— Assigning a binary label to each of the 29 feature combinations.

Feawre resture2 ——Jreawres [yimapd) |yimap2) lym3) |
0 0 0 0 1 0

0 0 1 0 0 1

0 1 0 0 0 0

* Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
— Generate a set training set of ‘n’ [ID samples.
— Fit model A (convolutional neural network) and model B (naive Bayes).

No Free Lunch Theorem

Define the “unseen” examples as the (29— n) not seen in training.

— Assuming no repetitions of x' values, and n < 29,
— Generalization error is the average error on these “unseen” examples.

Suppose that model A got 1% error and model B got 60% error.

— We want to show model B beats model A on another “learning problem”.

Among our set of “learning problems” find the one where:
— The labels y' agree on all training examples.
— The labels y' disagree on all “unseen” examples.

On this other “learning problem”:
— Model A gets 99% error and model B gets 40% error.

4

No Free Lunch Theorem

* Further, across all “learning problems” with these ‘n” examples:

— Average generalization error of every model is 50% on unseen examples.

* It’s right on each unseen example in exactly half the learning problems.

— With ‘k’ classes, the average error is (k-1)/k (random guessing).

* This is kind of depressing:
— For general problems, no “machine learning” is better than “predict 0”.

(pause)

Limit of No Free Lunch Theorem

Fortunately, the world is structured:
— Some “learning problems” are more likely than others.

For example, it’s usually the case that “similar” x' have similar y'.

— Datasets with properties like this are more likely.
— Otherwise, you probably have no hope of learning.

Models with the right “similarity” assumptions can beat “predict 0”.

With assumptions like this, you can consider consistency:
— As ‘n’ grows, model A converges to the optimal test error.

Refined Fundamental Trade-Off

* Let E, . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_:

étf)‘t - <Et(s'f - Ef(‘m”) * (6 rainNn - 54’37’) + E&')T
w\/ _ ~ - L’V\/

éarrra\(EMwl{’

/ \\|

’ .
Nolyp

 This is similar to the bias-variance trade-off (bonus slide):
— E,oprox Measures how sensitive we are to training data (like “variance”).

E. ..qe) Measures if our model is complicated enough to fit data (like “bias”).

E,.. measures how low can any model make test error (“irreducible” error).

Refined Fundamental Trade-Off

* Let E_ . be theirreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, ., to further decompose E,_.;:

étf)‘f - <E{/$T - Ef/‘m“) + (E rGIN — E/.ves'/) * Eée)f
w\/ _ > -~

~N"

éarrra\(EMwl{I

/ A\

’ .
Nolyp

 This is similar to the bias-variance trade-off (bonus slide):

— You need to trade between having low E_, ., and having low E

— Powerful models have low E_ 4. but can have high E
E,.... does not depend on what model you choose.

model*

approx*

Consistency and Universal Consistency

A model is consistent for a particular learning problem if:
— E,.. converges to E, ., as ‘n’ goes to infinity, for that particular problem.

A model is universally consistent for a class of learning problems if:

— E,.; CcOnverges to E, ., as ‘n’ goes to infinity, for all problems in the class.

e Typically, the class would consist of:

— A continuity assumption on the labels y' as a function of x.

* E.g., if x'is close to X then they are likely to receive the same label.

— A boundedness assumption of the set of x'.

K-Nearest Neighbours (KNN)

* Classical consistency results focus on k-nearest neighbours (KNN).
* To classify an object X :

1. Findthe ‘k’ training examples x. that are “nearest” to X..
2. Classify using the most common label of “nearest” examples.

ag | il Fish Fag | ik Fish
07 o E——) 1 03 06 05 H——) ?
S~ <
X, 4
o ——
x N e e
neoresl neighbours abel is
)7] ek

Consistency of KNN

* Let’s show universal consistency of KNN in a simplified setting.

— The x' and y' are binary, and y' being a deterministic function of x'.
* Deterministic y' implies that E, ., is O.

e Consider KNN with k=1:

— After we observe an x', KNN makes right test prediction for that vector.
— As ‘n’ goes to oo, each feature vectors with non-zero probability is observed.

— We have E, ., = 0 once we’ve seen all feature vectors with non-zero probability.

* Notes:

— No free lunch isn’t relevant as ‘n’ goes to o= here: we eventually see everything.
* There are 29 possible feature vectors, so might need a huge number of training examples.

— It’s more complicated if labels aren’t deterministic and features are continuous.

Consistency of KNN

 KNN consistency properties (under reasonable assumptions):

— As‘n’goestoeo, E_ < 2E, ..
* For fixed ‘k” and binary labels.

e Stone’s Theorem: KNN is “universally consistent”.

— If ‘k” converges to = as ‘n’ converges to oo,
but k/n converges to 0, E,., converges to E .

* For example, k = O(log n).
* First algorithm shown to have this property.

* Consistency says nothing about finite ‘n’.
— See "Dont Trust Asymptotics”.

https://www.naftaliharris.com/blog/asymptotics/

Consistency of Non-Parametric Models

* Universal consistency can be been shown for a variety of models:
— Linear models with polynomial basis.
— Linear models with Gaussian RBFs.

— Neural networks with one hidden layer and standard activations.
e Sigmoid, tanh, RelLU, etc.

* |t's non-parametric versions that are consistent:
— Size of model is a function of ‘n’.

— Examples:
 KNN needs to store all ‘n’ training examples.
* Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
 Number of hidden units must grow with ‘n’ (not true for fixed neural network).

Parametric vs. Non-Parametric Models

)((“'f)(
Q/\/C)/—u

paraM{+r i }’V\olf/

i T

nmml)?/ Q'F “0’”"'{/«5 l\\

Parametric vs. Non-Parametric Models

Summary

Test error vs. test set error

— What we care about is the test error.

Overfitting hyper-parameters on a validation set:

— Depends on how many hyper-parameters you try and number of validation examples.
No free lunch theorem:

— There is no “best” or even “good” machine learning models across all problems.
Universal consistency:

— Some non-parametric models can solve any continuous learning problem.

: bias-variance decomposition.

Next time:
— More about convexity than you ever wanted to know.

Bias-Variance Decomposition

* You may have seen “bias-variance decomposition” in other classes:

— Assumes y. = . + €, where € has mean 0 and variance o?.
— Assumes we have a “learner” that can take ‘n’ training examples and use these to
make predictions ..

* Expected squared test error in this setting is

ﬂ(y ;] ELCG~700"+ (6L JEGY)+ o

)
*e Sf SqumJ e/ror / 1;(45 wahte Vlo\Se

— Where expectations are taken over possible training sets of ‘n” examples.
— Bias is expected error due to having wrong model.

— Variance is expected error due to sensitivity to the training set.

— Noise (irreducible error) is the best can hope for given the noise (E, .,).

Bias-Variance vs. Fundamental Trade-Off

 Both decompositions serve the same purpose:
— Trying to evaluate how different factors affect test error.

* They both lead to the same 3 conclusions:

1. Simple models can have high E, .. /bias, low Eapprox/variance.
/bias, high E_ .,

/variance goes down (for fixed complexity).

train

2. Complex models can have low E /variance.

train

2 (.7
3. Asyouincrease 'n, E, .,

Bias-Variance vs. Fundamental Trade-Off

* So why focus on fundamental trade-off and not bias-variance?
— Simplest viewpoint that gives these 3 conclusions.
— No assumptions like being restricted to squared error.

— You can measure E ;. butnot E, ., (1 known and 1 unknown).

* If E,.;,islow andyou expect E to be low, then you are happy.

— E.g., you fit a very simple model or you used a huge independent validation set.

approx

— You can’t measure bias, variance, or noise (3 unknowns).

* IfE.__. islow, bias-variance decomposition doesn’t say anything about test error.

— You only have your training set, not distribution over possible datasets.

train

— Doesn’t say if high E. . is due to bias or variance or noise.

test

Learning Theory

* Bias-variance decomposition is a bit weird:

— Considers expectation over possible training sets.

* Bias-variance says nothing about your training set.
— This is different than Hoeffding bounds:

* Bound the test error based on your actual training set and training/validation error.

