
CPSC 540: Machine Learning

Fundamentals of Learning

Winter 2020

Admin

• Registration forms:

– I will sign them at the end of class (need to submit prereq form first).

• Website/Piazza:

– http://www.cs.ubc.ca/~schmidtm/Courses/540-W20

– https://piazza.com/ubc.ca/winterterm22019/cpsc540

• Tutorials: start Monday after class (no need to formally register).

• Office hours: start today after class.

• Assignment 1 due Friday of next week.

– 2/3 of assignment posted.

– Rest of assignment and submission instructions coming soon.

Supervised Learning Notation

• We are given training data where we know labels:

• But the goal is to do well on any possible testing data:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

0.3 0 1.2 0.3 0.10 0.01

Sick?

1

1

0

1

1

X = y =

Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1

0 0.7 0 1 0 0

3 1 0 0.5 0 0

Sick?

?

?

?

෨𝑋= ෥𝑦 =

“Test Set” vs. “Test Error”

• Formally, the “test error” is the expected error of our model:

– Here I’m using absolute error between predictions and true labels.
• But you could use squared error or other losses.

– The expectation is taken over distribution of test examples.
• Think of this as the “error with infinite data”.

– We assume that our training examples are drawn IID from this distribution.
• Otherwise, “training” might not help to reduce “test error”.

• Unfortunately, we cannot compute the test error.
– We don’t have access to the distribution over all test examples.

“Test Set” vs. “Test Error”

• We often approximate “test error” with the error on a “test set”:

– Here, we are using ‘t’ examples drawn IID from the test distribution.

• Note that “test set error” is not the “test error”.
– The goal is have a low “test error”, not “test set error”.

• The “golden rule” of machine learning:
– A “test set” cannot influence the “training” in any way.

– Otherwise, “test set error” is not an unbiased “test error” approximation.

– We run the risk of “overfitting” to the “test set”.

Typical Supervised Learning Steps (Are Bad?)

• Given data {X,y}, a typical set of supervised learning steps:

– Data splitting:
• Split {X,y} into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.

• We’re going to use the validation set error as an approximation of test error.

– Tune hyper-parameters (number of hidden units, λ, polynomial degree,etc.):
• For each candidate value “λ” of the hyper-parameters:

– Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters “λ”.

– Evaluate the model on the validation set {Xvalid,yvalid}.

– Choose the model with the best performance on the validation set.
• And maybe re-train using hyper-parameter “λ” on the full dataset.

• Can this overfit, even though we used a validation set?

– Yes, we’ve violated the golden rule. But maybe it’s not too bad…

Validation Error, Test Error, and Approximation Error

• 340 discusses the “Fundamental Trade-Off of Machine Learning”.

– Simple identity relating training set error to test error.

• We have a similar identity for the validation error.

– If Etest is the test error and Evalid is the error on the validation set, then:

• If Eapprox is small, then Evalid is a good approximation of Etest.

– We can’t measure Etest, so how do we know if Eapprox is small?

Bounding Eapprox

• Let’s consider a simple case:

– Labels yi are binary, and we try 1 hyper-parameter setting.

– IID assumption on validation set implies Evalid is unbiased: E[Evalid] = Etest.

• We can bound probability Eapprox is greater than ε.

– Assumptions: data is IID (so Evalid is unbiased) and loss is in [0,1].

– By using Hoeffding’s inequality:

– Probability that Evalid is far from Etest goes down exponentially with ‘t’.

• This is great: the bigger your validation set, the better approximation you get.

https://en.wikipedia.org/wiki/Hoeffding's_inequality

Bounding Eapprox

• Let’s consider a slightly less-simple case:

– Labels are binary, and we tried ‘k’ hyper-parameter values.

– In this case it’s unbiased for each ‘k’: E[Evalid(λ)] = Etest.

– So for each validation error Evalid(λ) we have:

– But our final validation error is Evalid = min{Evalid(λ}}, which is biased.

• We can’t apply Hoeffding because we chose best among ‘k’ values.

• Fix: bound on probability that all |Etest – Evalid(λ)| values are ≤ ε.

– We show it holds for all values of λ, so it must hold for the best value.

Bounding Eapprox

• The “union bound” for any events {A1, A2, …, Ak} is that:

• Combining with Hoeffding we can get:

Bounding Eapprox

• So if we choose best Evalid(λ) among ‘k’ λ values, we have:

• So optimizing over ‘k’ models is ok if we have a large ‘t’.

– But if ‘k’ is too large or ‘t’ is too small the validation error isn’t useful.

• Examples:

– If k=10 and t=1000, probability that |Eapprox| > .05 is less than 0.14.

– If k=10 and t=10000, probability that |Eapprox| > .05 is less than 10-20.

– If k=10 and t=1000, probability that |Eapprox| > .01 is less than 2.7 (useless).

– If k=100 and t=100000, probability that |Eapprox| > .01 is less than 10-6.

Bounding Eapprox

• Validation error vs. test error for fixed ‘t’.

– Evalid goes down as we increase ‘k’, but Eapprox can go up.

• Overfitting of validation set.

Discussion
• Bound is usually very loose, but data is probably not fully IID.

– Similar bounds are possible for cross-validation.

• Similar arguments apply for the Eapprox of the training error.
– Value ‘k’ is the number of hyper-parameters you are optimizing over (even if don’t try them all).
– So ‘k’ is usually huge: you try out k=O(nd) decision stumps.

• What if we train by gradient descent?
– We’re optimizing on continuous space, so k=∞ and the bound is useless.
– In this case, VC-dimension is one way to replace ‘k’ (doesn’t need union bound).

• “Simpler” models like decision stumps and linear models will have lower VC-dimension.

• Learning theory keywords if you want to go deeper into this topic:
– Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC

learning, VC dimension, Rademacher complexity.
– A gentle place to start is the Learning from Data book.

https://work.caltech.edu/telecourse.html

(pause)

Generalization Error

• An alternative measure of performance is the generalization error:

– Average error over the set of xi values that are not seen in the training set.

– “How well we expect to do for a completely unseen feature vector”.

• Test error vs. generalization error when labels are deterministic:

“Best” and the “Good” Machine Learning Models

• Question 1: what is the “best” machine learning model?

– The model that gets lower generalization error than all other models.

• Question 2: which models always do better than random guessing?

– Models with lower generalization error than “predict 0” for all problems.

• No free lunch theorem:

– There is no “best” model achieving the best generalization error for every
problem.

– If model A generalizes better to new data than model B on one dataset,
there is another dataset where model B works better.

No Free Lunch Theorem

• Let’s show the “no free lunch” theorem in a simple setting:
– The xi and yi are binary, and yi being a deterministic function of xi.

• With ‘d’ features, each “learning problem” is a map from {0,1}d -> {0,1}.
– Assigning a binary label to each of the 2d feature combinations.

• Let’s pick one of these ‘y’ vectors (“maps” or “learning problems”) and:
– Generate a set training set of ‘n’ IID samples.

– Fit model A (convolutional neural network) and model B (naïve Bayes).

Feature 1 Feature 2 Feature 3

0 0 0

0 0 1

0 1 0

… … …

y (map 1) y (map 2) y (map 3) …

0 1 0 …

0 0 1 …

0 0 0 …

… … … …

No Free Lunch Theorem

• Define the “unseen” examples as the (2d – n) not seen in training.
– Assuming no repetitions of xi values, and n < 2d.

– Generalization error is the average error on these “unseen” examples.

• Suppose that model A got 1% error and model B got 60% error.
– We want to show model B beats model A on another “learning problem”.

• Among our set of “learning problems” find the one where:
– The labels yi agree on all training examples.

– The labels yi disagree on all “unseen” examples.

• On this other “learning problem”:
– Model A gets 99% error and model B gets 40% error.

No Free Lunch Theorem

• Further, across all “learning problems” with these ‘n’ examples:

– Average generalization error of every model is 50% on unseen examples.

• It’s right on each unseen example in exactly half the learning problems.

– With ‘k’ classes, the average error is (k-1)/k (random guessing).

• This is kind of depressing:

– For general problems, no “machine learning” is better than “predict 0”.

(pause)

Limit of No Free Lunch Theorem

• Fortunately, the world is structured:
– Some “learning problems” are more likely than others.

• For example, it’s usually the case that “similar” xi have similar yi.

– Datasets with properties like this are more likely.

– Otherwise, you probably have no hope of learning.

• Models with the right “similarity” assumptions can beat “predict 0”.

• With assumptions like this, you can consider consistency:
– As ‘n’ grows, model A converges to the optimal test error.

Refined Fundamental Trade-Off

• Let Ebest be the irreducible error (lowest possible error for any model).

– For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to further decompose Etest:

• This is similar to the bias-variance trade-off (bonus slide):

– Eapprox measures how sensitive we are to training data (like “variance”).

– Emodel measures if our model is complicated enough to fit data (like “bias”).

– Ebest measures how low can any model make test error (“irreducible” error).

Refined Fundamental Trade-Off

• Let Ebest be the irreducible error (lowest possible error for any model).
– For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to further decompose Etest:

• This is similar to the bias-variance trade-off (bonus slide):
– You need to trade between having low Eapprox and having low Emodel.

– Powerful models have low Emodel but can have high Eapprox.

– Ebest does not depend on what model you choose.

Consistency and Universal Consistency

• A model is consistent for a particular learning problem if:

– Etest converges to Ebest as ‘n’ goes to infinity, for that particular problem.

• A model is universally consistent for a class of learning problems if:

– Etest converges to Ebest as ‘n’ goes to infinity, for all problems in the class.

• Typically, the class would consist of:

– A continuity assumption on the labels yi as a function of xi.

• E.g., if xi is close to xj then they are likely to receive the same label.

– A boundedness assumption of the set of xi.

K-Nearest Neighbours (KNN)

• Classical consistency results focus on k-nearest neighbours (KNN).

• To classify an object ෤𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to ෤𝑥i.

2. Classify using the most common label of “nearest” examples.

Egg Milk Fish

0 0.7 0

0.4 0.6 0

0 0 0

0.3 0.5 1.2

0.4 0 1.2

Sick?

1

1

0

1

1

Egg Milk Fish

0.3 0.6 0.8

Sick?

?

Consistency of KNN

• Let’s show universal consistency of KNN in a simplified setting.
– The xi and yi are binary, and yi being a deterministic function of xi.

• Deterministic yi implies that Ebest is 0.

• Consider KNN with k=1:
– After we observe an xi, KNN makes right test prediction for that vector.

– As ‘n’ goes to ∞, each feature vectors with non-zero probability is observed.

– We have Etest = 0 once we’ve seen all feature vectors with non-zero probability.

• Notes:
– No free lunch isn’t relevant as ‘n’ goes to ∞ here: we eventually see everything.

• There are 2d possible feature vectors, so might need a huge number of training examples.

– It’s more complicated if labels aren’t deterministic and features are continuous.

Consistency of KNN

• KNN consistency properties (under reasonable assumptions):
– As ‘n’ goes to ∞, Etest ≤ 2Ebest.

• For fixed ‘k’ and binary labels.

• Stone’s Theorem: KNN is “universally consistent”.
– If ‘k’ converges to ∞ as ‘n’ converges to ∞,

but k/n converges to 0, Etest converges to Ebest.
• For example, k = O(log n).

• First algorithm shown to have this property.

• Consistency says nothing about finite ‘n’.
– See "Dont Trust Asymptotics”.

https://www.naftaliharris.com/blog/asymptotics/

Consistency of Non-Parametric Models

• Universal consistency can be been shown for a variety of models:
– Linear models with polynomial basis.

– Linear models with Gaussian RBFs.

– Neural networks with one hidden layer and standard activations.
• Sigmoid, tanh, ReLU, etc.

• It’s non-parametric versions that are consistent:
– Size of model is a function of ‘n’.

– Examples:
• KNN needs to store all ‘n’ training examples.

• Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).

• Number of hidden units must grow with ‘n’ (not true for fixed neural network).

Parametric vs. Non-Parametric Models

Parametric vs. Non-Parametric Models

Summary

• Test error vs. test set error
– What we care about is the test error.

• Overfitting hyper-parameters on a validation set:
– Depends on how many hyper-parameters you try and number of validation examples.

• No free lunch theorem:
– There is no “best” or even “good” machine learning models across all problems.

• Universal consistency:
– Some non-parametric models can solve any continuous learning problem.

• Post-lecture bonus slides: bias-variance decomposition.

• Next time:
– More about convexity than you ever wanted to know.

Bias-Variance Decomposition

• You may have seen “bias-variance decomposition” in other classes:
– Assumes ෤𝑦i = ത𝑦i + ε, where ε has mean 0 and variance σ2.

– Assumes we have a “learner” that can take ‘n’ training examples and use these to
make predictions ො𝑦i.

• Expected squared test error in this setting is

– Where expectations are taken over possible training sets of ‘n’ examples.

– Bias is expected error due to having wrong model.

– Variance is expected error due to sensitivity to the training set.

– Noise (irreducible error) is the best can hope for given the noise (Ebest).

Bias-Variance vs. Fundamental Trade-Off

• Both decompositions serve the same purpose:

– Trying to evaluate how different factors affect test error.

• They both lead to the same 3 conclusions:

1. Simple models can have high Etrain/bias, low Eapprox/variance.

2. Complex models can have low Etrain/bias, high Eapprox/variance.

3. As you increase ‘n’, Eapprox/variance goes down (for fixed complexity).

Bias-Variance vs. Fundamental Trade-Off

• So why focus on fundamental trade-off and not bias-variance?

– Simplest viewpoint that gives these 3 conclusions.

– No assumptions like being restricted to squared error.

– You can measure Etrain but not Eapprox (1 known and 1 unknown).

• If Etrain is low and you expect Eapprox to be low, then you are happy.
– E.g., you fit a very simple model or you used a huge independent validation set.

– You can’t measure bias, variance, or noise (3 unknowns).

• If Etrain is low, bias-variance decomposition doesn’t say anything about test error.
– You only have your training set, not distribution over possible datasets.

– Doesn’t say if high Etest is due to bias or variance or noise.

Learning Theory

• Bias-variance decomposition is a bit weird:

– Considers expectation over possible training sets.

• Bias-variance says nothing about your training set.

– This is different than Hoeffding bounds:

• Bound the test error based on your actual training set and training/validation error.

