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Last Time: Approximate Inference

o We've been discussing graphical models for density estimation,
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where are natural and widely-used models for many phenomena.
o These will also be among ingredients of more advanced models we'll see later.

@ But most calculations involving graphical models are typically NP-hard.
e We can convert to DAGs to UGMs, so we'll just study UGMs.

@ We considered approximate inference in discrete UGMs:
@ lIterated conditional mode (ICM) applies coordinate-wise optimization.
@ Gibbs sampling applies coorrdinate-wise sampling.
o A special case of Markov chain Monte Carlo (MCMC).



Markov Chain Monte Carlo
MCMC sampling from a Gaussian:
From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.
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http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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MCMC Implementation Issues

@ Basic idea of Markov Chain Monte Carlo (MCMC) method:

o Design a Markov chain that has 7(x) = p(z).
e Use these samples within a Monte Carlo estimator,

Blg(e)] = - gla).

@ In practice, we often don't take all samples in our Monte Carlo estimate:

e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.
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MCMC Implementation Issues

@ Two common ways that MCMC is applied:
@ Sample from a huge number of Markov chains for a long time, use final states.

o Great for parallelization.
@ No need for thinning, if chains are independently initialized.
o Need to worry about burn in.

@ Sample from one Markov chain for a really long time, use states across time.

@ Less worry about burn in.
o Need to worry about thinning.

@ It can very hard to diagnose if we have reached stationary distribution.

o Recent work showed that this is P-space hard (not polynomial-time even if P=NP).
e Various heuristics exist.
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Block-Structured Approximate Inference

@ Basic approximate inference methods like ICM and Gibb sampling:

o Update one z; at a time.
o Efficient because conditional UGM is 1 node.

@ Better approximate inference methods use block updates:

o Update a block of x; values at once.
o Efficient if conditional UGM allows exact inference.

o If we choose the blocks cleverly, this works substantially better.
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Block-Structured Approximate Inference

o Consider a lattice-structure and the following two blocks ( “red-black ordering”):

@ Given black nodes, conditional UGM on red nodes is a disconnected graph.
o "l can optimally update the red nodes given the black nodes” (and vice versa).
@ You update d/2 nodes at once for cost of this is O(dk), and easy to parallelize.

@ Minimum number of blocks to disconnect the graph is graph colouring.
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Block-Structured Approximate Inference

@ We could also consider general forest-structured blocks:
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@ We can still optimally update the black nodes given the gray nodes in O(dk?).
e This works much better than “one at a time".
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Block-Structured Approximate Inference

@ Or we could define a new tree-structured block on each iteration:
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@ The above block updates around two thirds of the nodes optimally.
(Here we're updating the black nodes.)
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Block Gibbs Sampling in Action

@ Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler

s 5 5 s s
10 10 10 10 10
1 8 8 1 15
» 2 2 » »
2 2 2 = 2
S 2 2 w S
023  t0H 3% dH3  dd0d 020
s 5 5 s s
10 1o 1o 10 10
1 1 15 s 1
S 2 2 S S
2 2 2 2 2
S 2 2 % %
TmH %% %™ 0 HH 0 H®

Samples from Block Gibbs sampler

5 5 5 5
10 10 10 10
15 15 15 15
2 2 2 2
2 2 2 2
3 30 E Y
002 3 02030 10203 10230 020
5 5 5 5
10 10 10 10
15 15 i1 1
2 2 2 2
2 2 2 2
3 a0 a0 a0
O E D

@ With block sampling, the samples are far less correlated.

@ We can also do tree-structured block ICM.
e Harder to get stuck if you get to update entire trees.
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Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

log ¢i;(1,1) 4 log ¢;;(2,2) > log ¢;;(1,2) + log ¢;;(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.
e Can be solved in polynomial time.

This is widely-used computer vision:
o Want neighbouring pixels/super-pixels/regions to be more likely to get same label.
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Graph Cut Example: “GrabCut”

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cv1/2012/grabcut-siggraph04.pdf

© User draws a box around the object they want to segment.
@ Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.

© Construct a pairwise UGM using:

o ¢;(z;) set to GMM probability of pixel ¢ being in class z;.
o ¢;j(x;,x;) set to Ising potential times RBF based on spatial/colour distance.
o Use w;; > 0 so the model is “attractive”.

@ Perform exact decoding in the binary attractive model using graph cuts.


http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Graph Cut Example: “GrabCut”

@ GrabCut with extra user interaction:

No User
Interaction

L

http://cvg.ethz.ch/teaching/cvl1/2012/grabcut-siggraph04.pdf


http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ If we have more than 2 states, we can't use graph cuts.

@ Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ¢ij(cv, ) +log ¢ (B, B) > log ¢ij (e, B) + log ¢4 (B, cv).

o Each step choose an o and 3, optimally “swaps” labels among these nodes.

@ Alpha-expansions are another variation based on a slightly stronger assumption,

log ¢ij(a, ) + log ¢ (B1, B2) > log dij (e, B1) + log ¢y (B2, ).

o Steps choose label «, and consider replacing the label of any node not labeled a.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after «f-swap, labeling after a-expansion, labeling after
a-expansion B-shrink. The optimal labeling of the « pixels is outlined by a white triangle, and is achieved from
the initial labeling by one a-expansion S-shrink move.

@ A somewhat-related MCMC method is the Swendson-Wang algorithm.
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Example: Photomontage

° Photomontage comblnmg dlfferent photos |nto one photo:

LIS g L 0

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

@ Here, z; corresponds to identity of original image at position 1.


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Example: Photomontage
@ Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI . pdf


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Outline

© Parameter Learning in UGMs
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Structured Prediction with Undirected Graphical Models
@ Consider a pairwise UGM,
1 d
p(z) =~ I ¢i(zs) T %ir(z)zr)
Jj=1 (4,k)EE

@ We've been focusing on the case where the potentials ¢ are known.

o We've discussed decoding, marginalization, and sampling.
o We've discussed [block-]coordinate approximate inference.

@ We're now going to discuss learning the potentials ¢ from data.

@ Unfortunately, Z makes this complicated compared to DAGs.
e You can't fit each potential independently.
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Naive Parameterization of UGMs

@ We'll want to make the ¢ depend on a set of parameters w.

@ As before, with n IID training x' we can do MAP estimation,
- A

= in— E 1 i 2wl

w argl[}mn 2 ogp(x' | w) + 2HwH ,

where |'ve assumed an independent Gaussian prior on w.

@ A naive parameterization is to just directly treat potentials as parameters:

0j(s) = wjs,  Gjr(s,8) = Wik s,

so wj s is “potential of node j being in state s".
e And optimize subject to all parameters being non-negative.
e This unfortunately leads to a non-convex optimizaiton.
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Log-Linear Parameterization of UGMs
@ Instead of using non-negative w, we can instead exponentiate w,
¢j(s) = exp(wjs), djr(s,s") = exp(wjp,se)-
@ This gives a log-linear model,

p(z | w) H ¢;(x5) 1T énta )

(4,k)eE
= exp ij by + E Wy kxjze | o
(J,k)EE

and leads to a convex NLL.
o Normally, exponentiating to get non-negativity introduces local minima.
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Parameter Tieing in UGMs
@ So our log-linear parameterization has the form
log j(s) = wjs, log@jk(s,s’) = wjkss,

which can represent any positive pairwise potentials.

@ There exist many common variations on parameter tieing:
o We might want w; ., to be the same for all j (all nodes use same potentials).

@ You can similarly tie the edge parameters across all edges.
e This is similar to homogenous Markov chains.

o In the Ising model we tied across states: w;x 1,1 = Wj k22 and Wj k1,2 = Wj k2,1

e We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.
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Energy Function and Feature Vector Representation

@ Recall that we use p(z) for the unnormalized probability,

p(x)
@ In physics, the value E(x) = —log p(z) is called the energy function.

@ With the log-linear parameterization, the energy function is linear,

: : w] Zj + : : ],k‘,itj,itk ‘

(4,k)eE

@ To account for parameter tieing, we often write
—E(z) =wl F(z), orequivalently p(x) o exp(w! F(z)),

where feature function F' counts number of times we use each parameter.
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Example of Feature Function

e Consider the 2-node 1-edge UGM (1)—(2), where each state has 2 values.
o So we have potentials ¢1(21), ¢a(z2), and ¢12(21,22) and want to have

T _
w F(:L’) = Wig, + W2y + W1 2,2 20

@ With no parameter tieing and = = [2 1], our parameter vector and features are

w11
w1,2
w2,1
w=| 2 , F(z)=
w1,2,1,1
w1,2,1,2
w1,2,2,1
w1,2,2,2 ]

(=2 e eleNoel e
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Example of Feature Function

o If we instead had Ising potentials (just measuring whether 21 = x2) we would have
T
w F(JZ) = W1z + W2z, + W1 2same,

where w1 2 same is the parameter specifying how much we want z; = x.

@ With no parameter tieing and = = [2 1], our parameter vector and features are

w11 0
wi,2 1

w=| w1 |, Flz)=|1],
w2 2 0
W1,2.same 0
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UGM Training Objective Function

@ With log-linear parameterization, NLL for IID training examples is

N logp(e | w) exp(w” F(a'))
) = Zlgp | Zl (2l £D)
=— ZwTF(xi) + ZlogZ(w)
i=1 i=1

= —w! F(X) +nlog Z(w).

where the FI(X) =), F(x") are called the sufficient statistics of the dataset.

o Given sufficient statistics F'(X), we can throw out the examples z°.
(only go through data once)

@ Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But notice that Z depends on w
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Log-Linear UGM Gradient

@ For 1 example =, we showed that NLL with log-linear parameterization is
f(w) = —wT F(z) + log Z(w).
@ The partial derivative with respect to parameter w; has a simple form

ex wT X
Vi, () = i) + 30 P HE D by

= —Fj(x) + Y plz | w)Fj(x)
= —Fj(z) + E[F;(z)].

@ Observe that derivative of log(Z) is expected value of feature.
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Summary

@ Block approximate inference works better than single-variable methods.
e Blocks could be defined by trees or to implement graph cuts.

@ Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant Z.

@ Next time: the work that started the the modern deep learning movement.
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Example: Ising Model of Rain Data

@ E.g., for the rain data we could parameterize our node potentials using

wy No rain

log(¢i(zi)) = {

0 rain

@ Why do we only need 1 parameter?
e Scaling ¢;(1) and ¢(2) by constant doesn't change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

@ The Ising parameterization of edge potentials,

W2 Ty =Ty

log(¢ij(xi, ;) = {0 i = iy
i 7 Tj

@ Applying gradient descent gives MLE of

o= [ossl s o) =1 = [0 el [T 20

preference towards no rain, and adjacent days being the same.
@ Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log(oij(zi, x5)) = [U)? w3] ’

W4 Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
e But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

@ For this dataset, using untied or general edges doesn’t change likelihood much.

‘Samples bas odel Samples from MAF model
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:

Conditional samples from MRF model
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