CPSC 540: Machine Learning
Log-Linear Models

Mark Schmidt

University of British Columbia

Winter 2020
Last Time: Approximate Inference

- We’ve been discussing **graphical models** for density estimation,

\[
p(x_1, x_2, \ldots, x_d) = \prod_{j=1}^{d} p(x_j \mid x_{\text{pa}(j)}), \quad p(x_1, x_2, \ldots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),
\]

where are natural and widely-used models for many phenomena.

- These will also be among **ingredients of more advanced models** we’ll see later.

- But most calculations involving graphical models are typically **NP-hard**.

 - We can **convert to DAGs to UGMs**, so we’ll just study UGMs.

- We considered **approximate inference** in discrete UGMs:
 - **Iterated conditional mode** (ICM) applies coordinate-wise optimization.
 - **Gibbs sampling** applies coordinate-wise sampling.

 - A special case of **Markov chain Monte Carlo** (MCMC).
Markov Chain Monte Carlo

MCMC sampling from a Gaussian:

From top left to bottom right: histograms of 1000 independent Markov chains with a normal distribution as target distribution.
MCMC Implementation Issues

- Basic idea of **Markov Chain Monte Carlo (MCMC)** method:
 - Design a Markov chain that has $\pi(x) = p(x)$.
 - Use these samples within a Monte Carlo estimator,

\[
\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{t=1}^{n} g(x^t).
\]

- In practice, we often don’t take all samples in our Monte Carlo estimate:
 - **Burn in**: throw away the initial samples when we haven’t converged to stationary.
 - **Thinning**: only keep every k samples, since they will be highly correlated.
MCMC Implementation Issues

- Two common ways that MCMC is applied:
 1. Sample from a **huge number of Markov chains** for a long time, use **final states**.
 - Great for parallelization.
 - No need for thinning, if chains are independently initialized.
 - Need to worry about burn in.
 2. Sample from **one Markov chain** for a really long time, use **states across time**.
 - Less worry about burn in.
 - Need to worry about thinning.

- It can **very hard** to diagnose if we have reached stationary distribution.
 - Recent work showed that this is P-space hard (not polynomial-time even if P=NP).
 - Various heuristics exist.
Basic approximate inference methods like ICM and Gibb sampling:
- Update one x_j at a time.
- Efficient because conditional UGM is 1 node.

Better approximate inference methods use **block updates**:
- Update a block of x_j values at once.
- Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.
Block-Structured Approximate Inference

- Consider a lattice-structure and the following two blocks ("red-black ordering"): Given black nodes, conditional UGM on red nodes is a disconnected graph.
 - "I can optimally update the red nodes given the black nodes" (and vice versa).
 - You update $d/2$ nodes at once for cost of this is $O(dk)$, and easy to parallelize.

- Minimum number of blocks to disconnect the graph is graph colouring.
We could also consider general *forest-structured blocks*:

We can still optimally update the black nodes given the gray nodes in $O(dk^2)$. This works much better than “one at a time”.
Block-Structured Approximate Inference

- Or we could define a new tree-structured block on each iteration:

- The above block updates around two thirds of the nodes optimally. (Here we’re updating the black nodes.)
Block Gibbs Sampling in Action

- **Gibbs vs. tree-structured block-Gibbs samples:**

With block sampling, the samples are far less correlated.

- **We can also do tree-structured block ICM.**
 - Harder to get stuck if you get to update entire trees.
Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

\[
\log \phi_{ij}(1, 1) + \log \phi_{ij}(2, 2) \geq \log \phi_{ij}(1, 2) + \log \phi_{ij}(2, 1).
\]

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

- Can be solved in polynomial time.

This is widely-used computer vision:

- Want neighbouring pixels/super-pixels/regions to be more likely to get same label.
Graph Cut Example: “GrabCut”

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

1. User draws a box around the object they want to segment.
2. Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3. Construct a pairwise UGM using:
 - $\phi_i(x_i)$ set to GMM probability of pixel i being in class x_i.
 - $\phi_{ij}(x_i, x_j)$ set to Ising potential times RBF based on spatial/colour distance.
 - Use $w_{ij} > 0$ so the model is “attractive”.
4. Perform exact decoding in the binary attractive model using graph cuts.
Graph Cut Example: “GrabCut”

- GrabCut with extra user interaction:

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

- If we have more than 2 states, we can’t use graph cuts.

- **Alpha-beta swaps** are an approximate decoding method for “pairwise attractive”,
 \[\log \phi_{ij}(\alpha, \alpha) + \log \phi_{ij}(\beta, \beta) \geq \log \phi_{ij}(\alpha, \beta) + \log \phi_{ij}(\beta, \alpha). \]

 Each step choose an \(\alpha \) and \(\beta \), optimally “swaps” labels among these nodes.

- **Alpha-expansions** are another variation based on a slightly stronger assumption,
 \[\log \phi_{ij}(\alpha, \alpha) + \log \phi_{ij}(\beta_1, \beta_2) \geq \log \phi_{ij}(\alpha, \beta_1) + \log \phi_{ij}(\beta_2, \alpha). \]

 Steps choose label \(\alpha \), and consider replacing the label of any node not labeled \(\alpha \).
These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is the Swendson-Wang algorithm.
Example: Photomontage

- Photomontage: combining different photos into one photo:

- Here, x_i corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
Example: Photomontage

- Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
Outline

1. Block Approximate Inference
2. Parameter Learning in UGMs
Structured Prediction with Undirected Graphical Models

Consider a pairwise UGM,

\[
p(x) = \frac{1}{Z} \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{(j,k) \in E} \phi_{jk}(x_j, x_k) \right).
\]

We've been focusing on the case where the potentials \(\phi \) are known.
- We've discussed decoding, marginalization, and sampling.
- We've discussed [block-]coordinate approximate inference.

We're now going to discuss learning the potentials \(\phi \) from data.

Unfortunately, \(Z \) makes this complicated compared to DAGs.
- You can't fit each potential independently.
Naive Parameterization of UGMs

- We’ll want to make the ϕ depend on a set of parameters w.
- As before, with n IID training x^i we can do MAP estimation,

$$w = \arg\min_w -\sum_{i=1}^{n} \log p(x^i | w) + \frac{\lambda}{2} \|w\|^2,$$

where I’ve assumed an independent Gaussian prior on w.
- A naive parameterization is to just directly treat potentials as parameters:

$$\phi_j(s) = w_{j,s}, \quad \phi_{jk}(s, s') = w_{j,k,s,s'},$$

so $w_{j,s}$ is “potential of node j being in state s”.
- And optimize subject to all parameters being non-negative.
- This unfortunately leads to a non-convex optimization.
Log-Linear Parameterization of UGMs

- Instead of using non-negative w, we can instead exponentiate w,

$$
\phi_j(s) = \exp(w_{j,s}), \quad \phi_{jk}(s, s') = \exp(w_{j,k,s,s'}).
$$

- This gives a log-linear model,

$$
p(x \mid w) \propto \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{(j,k) \in E} \phi_{jk}(x_j, x_k) \right)
= \exp \left(\sum_{j=1}^{d} w_{j,x_j} + \sum_{(j,k) \in E} w_{j,k,x_j,x_k} \right),
$$

and leads to a convex NLL.

- Normally, exponentiating to get non-negativity introduces local minima.
Parameter Tieing in UGMs

- So our log-linear parameterization has the form

\[
\log \phi_j(s) = w_{j,s}, \quad \log \phi_{jk}(s, s') = w_{j,k,s,s'},
\]

which can represent any positive pairwise potentials.

- There exist many common variations on parameter tieing:
 - We might want \(w_{j,x_j} \) to be the same for all \(j \) (all nodes use same potentials).
 - You can similarly tie the edge parameters across all edges.
 - This is similar to homogenous Markov chains.

- In the Ising model we tied across states: \(w_{j,k,1,1} = w_{j,k,2,2} \) and \(w_{j,k,1,2} = w_{j,k,2,1} \).

- We could also have special potentials for the boundaries.
 - Many language models are homogeneous, except for start/end of sentences.
Energy Function and Feature Vector Representation

- Recall that we use $\tilde{p}(x)$ for the unnormalized probability,

$$p(x) = \frac{\tilde{p}(x)}{Z}.$$

- In physics, the value $E(x) = -\log \tilde{p}(x)$ is called the energy function.

- With the log-linear parameterization, the energy function is linear,

$$-E(X) = \sum_j w_{j,x_j} + \sum_{(j,k) \in E} w_{j,k,x_j,x_k}.$$

- To account for parameter tying, we often write

$$-E(x) = w^T F(x), \quad \text{or equivalently} \quad p(x) \propto \exp(w^T F(x)),$$

where feature function F counts number of times we use each parameter.
Example of Feature Function

- Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.
 - So we have potentials $\phi_1(x_1)$, $\phi_2(x_2)$, and $\phi_{12}(x_1, x_2)$ and want to have
 $$w^T F(x) = w_{1,x_1} + w_{2,x_2} + w_{1,2,x_1,x_2}.$$
- With no parameter tieing and $x = [2 \ 1]$, our parameter vector and features are

\[
w = \begin{bmatrix} w_{1,1} \\
 w_{1,2} \\
 w_{2,1} \\
 w_{2,2} \\
 w_{1,2,1,1} \\
 w_{1,2,1,2} \\
 w_{1,2,2,1} \\
 w_{1,2,2,2} \end{bmatrix}, \quad F(x) = \begin{bmatrix} 0 \\
 1 \\
 1 \\
 0 \\
 0 \\
 0 \\
 1 \\
 0 \end{bmatrix},
\]
Example of Feature Function

- If we instead had Ising potentials (just measuring whether $x_1 = x_2$) we would have

$$w^T F(x) = w_{1,x_1} + w_{2,x_2} + w_{1,2,\text{same}},$$

where $w_{1,2,\text{same}}$ is the parameter specifying how much we want $x_1 = x_2$.

- With no parameter tying and $x = [2, 1]$, our parameter vector and features are

$$w = \begin{bmatrix} w_{1,1} \\ w_{1,2} \\ w_{2,1} \\ w_{2,2} \\ w_{1,2,\text{same}} \end{bmatrix}, \quad F(x) = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$$
UGM Training Objective Function

- With log-linear parameterization, NLL for IID training examples is

\[f(w) = -\sum_{i=1}^{n} \log p(x^i \mid w) = -\sum_{i=1}^{n} \log \left(\frac{\exp(w^T F(x^i))}{Z(w)} \right) \]

\[= -\sum_{i=1}^{n} w^T F(x^i) + \sum_{i=1}^{n} \log Z(w) \]

\[= -w^T F(X) + n \log Z(w). \]

where the \(F(X) = \sum_i F(x^i) \) are called the sufficient statistics of the dataset.

- Given sufficient statistics \(F(X) \), we can throw out the examples \(x^i \).
 (only go through data once)

- Function \(f(w) \) is convex (it’s linear plus a big log-sum-exp function).
 - But notice that \(Z \) depends on \(w \).
For 1 example x, we showed that NLL with log-linear parameterization is

$$f(w) = -w^T F(x) + \log Z(w).$$

The partial derivative with respect to parameter w_j has a simple form

$$\nabla_{w_j} f(w) = -F_j(x) + \sum_x \frac{\exp(w^T F(x))}{Z(w)} F_j(x)$$

$$= -F_j(x) + \sum_x p(x | w) F_j(x)$$

$$= -F_j(x) + \mathbb{E}[F_j(x)].$$

Observe that derivative of $\log(Z)$ is expected value of feature.
Summary

- **Block approximate inference** works better than single-variable methods.
 - Blocks could be defined by trees or to implement graph cuts.

- **Log-linear** parameterization can be used to learn UGMs:
 - Maximum likelihood is convex, but requires normalizing constant Z.

- Next time: the work that started the modern deep learning movement.
Example: Ising Model of Rain Data

- E.g., for the rain data we could parameterize our node potentials using

\[
\log(\phi_i(x_i)) = \begin{cases}
 w_1 & \text{no rain} \\
 0 & \text{rain}
\end{cases}.
\]

- Why do we only need 1 parameter?
 - Scaling $\phi_i(1)$ and $\phi(2)$ by constant doesn’t change distribution.

- In general, we only need $(k - 1)$ parameters for a k-state variable.
 - But if we’re using regularization we may want to use k anyways (symmetry).
Example: Ising Model of Rain Data

- The **Ising parameterization** of edge potentials,

\[
\log(\phi_{ij}(x_i, x_j)) = \begin{cases}
 w_2 & x_i = x_j \\
 0 & x_i \neq x_j
\end{cases}.
\]

- Applying gradient descent gives MLE of

\[
w = \begin{bmatrix} 0.16 \\
0.85 \end{bmatrix}, \quad \phi_i = \begin{bmatrix} \exp(w_1) \\
\exp(0) \end{bmatrix} = \begin{bmatrix} 1.17 \\
1 \end{bmatrix}, \quad \phi_{ij} = \begin{bmatrix} \exp(w_2) & \exp(0) \\
\exp(0) & \exp(w_2) \end{bmatrix} = \begin{bmatrix} 2.34 & 1 \\
1 & 2.34 \end{bmatrix},
\]

preference towards no rain, and adjacent days being the same.

- Average NLL of 16.8 vs. 19.0 for independent model.
Full Model of Rain Data

- We could alternately use fully expressive edge potentials

\[
\log(\phi_{ij}(x_i, x_j)) = \begin{bmatrix} w_2 & w_3 \\ w_4 & w_5 \end{bmatrix},
\]

but these don’t improve the likelihood much.

- We could fix one of these at 0 due to the normalization.
 - But we often don’t do this when using regularization.

- We could also have special potentials for the boundaries.
 - Many language models are homogeneous, except for start/end of sentences.
Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:
- For this dataset, using untied or general edges doesn’t change likelihood much.
Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day: