CPSC 540: Machine Learning Approximate Inference

Mark Schmidt

University of British Columbia

Winter 2020

Admin: Final, Project, Grades, Optimization Course

• Plan is to have final exam during the second-last lecture (2.5 hours).

- Exam will be April 6th starting at 3pm (and going past the usual end of class).
- Project due date: April 24th (usual late days apply).
 - For graduate students who are graduating in May: April 15th (not my fault).
- Due to the weird final timing, we'll use the following:
 - Final exam grade = final project grade = max{final exam grade, final project grade}.
- Guest lecture Wednesday: Frank Wood on probabilistic programming (bonus).
- Unnoficial course on optimization for ML: subset of the range May 13-27.

Last Lectures: Directed and Undirected Graphical Models

- We've discussed the most common classes of graphical models:
 - DAG models represent probability as ordered product of conditionals,

$$p(x) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

and are also known as "Bayesian networks" and "belief networks".

• UGMs represent probability as product of non-negative potentials ϕ_c ,

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c), \quad \text{with} \quad Z = \sum_x \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

and are also known as "Markov random fields" and "Markov networks".

- We discused inference tasks (for both by converting to UGMs) in discrete x_j .
 - Cost of message passing is exponential in treewidth of graph.
 - Motivates considering approximate inference methods today.

Digression: Closure of UGMs under Conditioning

- UGMs are closed under conditioning:
 - If p(x) is a UGM, then $p(x_A \mid x_B)$ can be written as a UGM (for partition A and B).
- Conditioning on x_2 and x_3 in a chain,

- Graphically, we "erase the black nodes and their edges".
- Notice that inference in the conditional UGM may be mucher easier.

Digression: Closure of UGMs under Conditioning

• Mathematically, a 4-node pairwise UGM with a chain structure assumes

 $p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_{12}(x_1, x_2)\phi_{23}(x_2, x_3)\phi_{34}(x_3, x_4).$

• Conditioning on x_2 and x_3 gives UGM over x_1 and x_4 (tedious: bonus slide)

$$p(x_1, x_4 \mid x_2, x_3) = \frac{1}{Z'} \phi'_1(x_1) \phi'_4(x_4),$$

where new potentials "absorb" the shared potentials with observed nodes:

$$\phi_1'(x_1) = \phi_1(x_1)\phi_{12}(x_1, x_2), \quad \phi_4'(x_4) = \phi_4(x_4)\phi_{34}(x_3, x_4).$$

Simpler Inference in Conditional UGMs

• Consider the following graph which could describe bus stops:

If we condition on the "hubs", the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.

Digression: Local Markov Property and Markov Blanket

- Approximate inference methods often use conditional p(x_j | x_{-j}),
 where x^k_{-j} means "x^k_i for all i except x^k_j": x^k₁, x^k₂, ..., x^k_{j-1}, x^k_{j+1}, ..., x^k_d.
- In UGMs, the conditional simplifies due to conditional independence,

$$p(x_j \mid x_{-j}) = p(x_j \mid x_{\mathsf{nei}(j)}),$$

this local Markov property means conditional only depends on neighbours.

• We say that the neighbours of x_j are its "Markov blnkaet".

Digression: Local Markov Property and Markov Blanket

• Markov blanket is the set nodes that make you independent of all other nodes.

- In UGMs the Markov blanket is the neighbours.
- Markov blanket in DAGs is all parents, children, and co-parents:

Iterated Conditional Mode (ICM)

- The iterated conditional mode (ICM) algorithm for approximate decoding:
 - On each iteration k, choose a variable j_k .
 - Optimize x_{j_k} with the other variables held fixed.
- So ICM is coordinate optimization.
- Iterations correspond to finding mode of conditional $p(x_j \mid x_{-j}^k)$,

$$x_j^{k+1} \leftarrow \max_c p(x_j = c \mid x_{-j}^k),$$

- 3 main issues:
 - **1** How can we do this if evaluating p(x) is NP-hard?
 - Is coordinate optimization efficient for this problem?
 - Ooes it find the global optimum?

ICM in Action

- Start with some initial value: $x^0 = \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$.
- Select random j like j = 3.
- Set j to maximize $p(x_j \mid x_{-j}^0)$: $x^1 = \begin{bmatrix} 2 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 1.
- Set j to maximize $p(x_j \mid x_{-j}^1)$: $x^2 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 2.
- Set j to maximize $p(x_j \mid x_{-j}^2)$: $x^3 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- . . .
- Repeat until you can no longer improve by single-variable changes.

ICM Issue 1: Intractable Objective

- How can you optimize p(x) coordinate-wise if evaluating it is NP-hard?
- Let's define the unnormalized probability \tilde{p} as

$$\tilde{p}(x) = \prod_{c \in \mathcal{C}} \phi_c(x_c).$$

• So the normalized probability is given by

$$p(x) = \frac{\tilde{p}(x)}{Z}$$

- In UGMs evaluating Z is hard but evaluating $\tilde{p}(x)$ is easy.
- And for decoding we only need unnormalized probabilities,

$$\mathop{\mathrm{argmax}}_x p(x) \equiv \mathop{\mathrm{argmax}}_x \frac{\tilde{p}(x)}{Z} \equiv \mathop{\mathrm{argmax}}_x \tilde{p}(x),$$

so we can decode based on \tilde{p} without knowing Z.

Iterated Conditional Mode

ICM Issue 2: Efficiency

• Is coordinate optimization efficient for this problem?

• Consider a pairwise UGM,

$$\tilde{p}(x) = \left(\prod_{j=1}^{d} \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right).$$

or

$$\log \tilde{p}(x) = \sum_{j=1}^d \log \phi_j(x_j) + \sum_{(i,j)\in E} \log \phi_{ij}(x_i, x_j).$$

- The variable x_j has k values and appears in at most n terms here.
 - You can try them all for O(dk).
 - If you only have m nodes in Markov blanket, reduced to O(mk).

Pseudo-Code for ICM

• Consider a pairwise UGM:

$$\tilde{p}(x_1, x_2, \dots, x_d) = \left(\prod_{i=1}^d \phi_i(x_i)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right),\,$$

- Each ICM update would:
 - Set $M_i(x_i = s)$ to product of terms in $\tilde{p}(x)$ involving x_i , with x_i set to s.
 - 2 Set x_i to the largest value of $M_i(x_i)$.

ICM in Action

Consider using a UGM for binary image denoising:

We have

- Unary potentials ϕ_j for each position.
- Pairwise potentials ϕ_{ij} for neighbours on grid.
- Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).

ICM Issue 3: Non-Convexity

- Does it find the global optimum?
- Decoding is usually non-convex, so doesn't find global optimum.
- There exist many globalization methods that can improve its performance:
 - Restarting with random initializations.
 - Global optimization methods:
 - Simulated annealing, genetic algorithms, ant colony optimization, etc.

Outline

2 Gibbs Sampling

Iterated Conditional Mode

Coordinate Sampling

- What about approximate sampling?
- In DAGs, ancestral sampling conditions on sampled values of parents,

 $x_j \sim p(x_j \mid x_{\mathsf{pa}(j)}).$

• In ICM, we approximately decode a UGM by iteratively maximizing an x_{j_t} ,

$$x_j \leftarrow \max_{x_j} p(x_j \mid x_{-j}).$$

• We can approximately sample from a UGM by iteratively sampling an x_{j_t} ,

$$x_j \sim p(x_j \mid x_{-j}),$$

and this coordinate-wise sampling algorithm is called Gibbs sampling.

Gibbs Sampling

- Gibbs sampling starts with some x and then repeats:
 - **(**) Choose a variable j uniformly at random.
 - 2 Update x_j by sampling it from its conditional,

 $x_j \sim p(x_j \mid x_{-j}).$

- Analogy: sampling version of coordinate optimization:
 - Transformed *d*-dimensional sampling into 1-dimensional sampling.
- Gibbs sampling is probably the most common multi-dimensional sampler.

Gibbs Sampling in Action

- Start with some initial value: $x^0 = \begin{bmatrix} 2 & 2 & 3 & 1 \end{bmatrix}$.
- Select random j like j = 3.
- Sample variable $j: x^1 = \begin{bmatrix} 2 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 1.
- Sample variable $j: x^2 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.
- Select random j like j = 2.
- Sample variable $j: x^3 = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$.

• . . .

• Use the samples to form a Monte Carlo estimator.

Gibbs Sampling

• For discrete x_j the conditionals needed for Gibbs sampling have a simple form,

$$p(x_j = c \mid x_{-j}) = \frac{p(x_j = c, x_{-j})}{p(x_{-j})} = \frac{p(x_j = c, x_{-j})}{\sum_{x_j = c'} p(x_j = c', x_{-j})} = \frac{\tilde{p}(x_j = c, x_{-j})}{\sum_{x_j = c'} \tilde{p}(x_j = c', x_{-j})}$$

where we use unnormalized \tilde{p} since Z is the same in numerator/denominator.

- Note that this expression is easy to evaluate: just summing over values of x_j .
- And in UGMs it further simplifies to only depend on the Markov blanket,

$$p(x_j \mid x_{-j}) = p(x_j \mid x_{\mathsf{MB}(j)}),$$

since the other terms cancel in the numerator/denominator.

Gibbs Sampling in Action: UGMs

- Each ICM update would:
 - **(**) Set $M_i(x_i = s)$ to product of terms in $\tilde{p}(x)$ involving x_i , with x_i set to s.
 - **2** Sample x_i proportional to $M_i(x_i)$.

(show videos)

Gibbs Sampling in Action: UGMs

Gibbs samples after every 100d iterations:

Samples from Gibbs sampler

Gibbs Sampling

Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:

Gibbs Sampling in Action: Multivariate Gaussian

- Gibbs sampling works for general distributions.
 - E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

• Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

Gibbs Sampling as a Markov Chain

- Why would Gibbs sampling work?
 - Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.
- The "Gibbs sampling Markov chain" for sampling from a 4-variable binary UGM:
 - The states are the possible configurations of the four variables:

• $s = [0 \ 0 \ 0 \ 0], s = [0 \ 0 \ 0 \ 1], s = [0 \ 0 \ 1 \ 0],$ etc.

- The initial probability q is set to 1 for the initial state, and 0 for the others:
 - If you start at $s = [1 \ 1 \ 0 \ 1]$, then $q(x^1 = [1 \ 1 \ 0 \ 1]) = 1$ and $q(x^1 = [0 \ 0 \ 0 \ 0]) = 0$.
- The transition probabilities q are based on variable we choose and UGM:
 - If we are at $s = [1 \ 1 \ 0 \ 1]$ and choose coordinate randomly we have:

$$\begin{aligned} q(x^{t+1} &= [0 \ 0 \ 1 \ 1] \mid x^t = [1 \ 1 \ 0 \ 1]) = 0 \quad \text{(Gibbs only updates on variable)} \\ q(x^{t+1} &= [1 \ 0 \ 0 \ 1] \mid x^t = [1 \ 1 \ 0 \ 1]) = \underbrace{\frac{1}{d}}_{\text{uniform}} \underbrace{p(x_2 = 0 \mid x_1 = 1, x_3 = 0, x_4 = 1)}_{\text{from UGM}}. \end{aligned}$$

• Not homogeneous if cycling, but homogeneous if add "last variable" to state.

Gibbs Sampling as a Markov Chain

- Why would Gibbs sampling work?
 - Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.
- Previously we discussed stationary distribution of Markov chain:

$$\pi(s) = \sum_{s'} q(x^t = s \mid x^{t-1} = s') \pi(s'),$$

with transition probabilities q (of the Gibbs sampling Markov chain).

• A sufficient condition for Gibbs Markov chain to have unique stationary:

$$p(x_j \mid x_{-j}) > 0$$
 for all j .

Markov Chain Monte Carlo (MCMC)

 \bullet Stationary distribution π of Gibbs sampling is the target distribution:

$$\pi(x) = p(x),$$

so for large k a sample x^k will be distributed according to p(x).

- Allows Gibbs sampling to be used in Markov Chain Monte Carlo (MCMC):
 - Design a Markov chain that has $\pi(x) = p(x)$.
 - Use these samples within a Monte Carlo estimator,

$$\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{t=1}^{n} g(x^{i}).$$

- Law of large numbers can be generalized to show this converges as $n \to \infty$.
 - "Ergodic theroem".
 - But convergence is slower since we're generating dependent samples.

Summary

- Conditioning in UGMs leads to a smaller/simpler UGM.
- Iterated conditional mode is coordinate descent for decoding UGMs.
 Fast but doesn't obtain global optimum in general.
- Gibbs sampling is coordinate-wise sampling.
 - Special case of Markov chain Monte Carlo (MCMC) method.
- Next time: reproducing the Spaceballs beaming experiment.

Conditioning in UGMs

• Conditioning on x_2 and x_3 in 4-node chain-UGM gives

$$p(x_1, x_4 | x_2, x_3) = \frac{p(x_1, x_2, x_3, x_4)}{p(x_2, x_3)}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \frac{1}{Z}\phi_1(x_1')\phi_2(x_2)\phi_3(x_3)\phi_4(x_4')\phi_1(x_1', x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4')}$$

$$= \frac{\frac{1}{Z}\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_4)}{\frac{1}{Z}\phi_2(x_2)\phi_3(x_3)\phi_2(x_2, x_3)\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)\phi_1(x_1, x_2)\phi_3(x_3, x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')\phi_1(x_1', x_2)\phi_3(x_3, x_4')}$$

$$= \frac{\phi_1(x_1)\phi_4(x_4)}{\sum_{x_1', x_4'} \phi_1(x_1')\phi_4(x_4')}$$