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Iterated Conditional Mode Gibbs Sampling

Admin: Final, Project, Grades, Optimization Course

Plan is to have final exam during the second-last lecture (2.5 hours).
o Exam will be April 6th starting at 3pm (and going past the usual end of class).

Project due date: April 24th (usual late days apply).
o For graduate students who are graduating in May: April 15th (not my fault).

@ Due to the weird final timing, we'll use the following:
o Final exam grade = final project grade = max{final exam grade, final project grade}.

Guest lecture Wednesday: Frank Wood on probabilistic programming (bonus).

@ Unnoficial course on optimization for ML: subset of the range May 13-27.
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Last Lectures: Directed and Undirected Graphical Models

@ We've discussed the most common classes of graphical models:
o DAG models represent probability as ordered product of conditionals,

d
p@) =[] p(x; | 2pai),
j=1
and are also known as “Bayesian networks” and “belief networks".

o UGMs represent probability as product of non-negative potentials ¢,
1 . ‘
p(z) = 7 H be(xe), with Z = Z H Pe(e),
ceC r ceC

and are also known as “Markov random fields” and " Markov networks" .

e We discused inference tasks (for both by converting to UGMs) in discrete ;.
o Cost of message passing is exponential in treewidth of graph.
o Motivates considering approximate inference methods today.



Digression: Closure of UGMs under Conditioning

@ UGMs are closed under conditioning:
o If p(xz) is a UGM, then p(z 4 | x5) can be written as a UGM (for partition A and B).

e Conditioning on x5 and x3 in a chain,

O @ @ ©

gives a UGM defined on x1 and x4 that is disconnected:

O

@ Graphically, we “erase the black nodes and their edges”.

@ Notice that inference in the conditional UGM may be mucher easier.
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Digression: Closure of UGMs under Conditioning

@ Mathematically, a 4-node pairwise UGM with a chain structure assumes
p(x1, 2, 03, 04) X ¢1(21)P2(22)d3(23)Pa(Ta)P12(21, T2) P23 (w2, T3) P34(T3, T4).
e Conditioning on x2 and z3 gives UGM over z1 and x4 (tedious: bonus slide)
1
p(r1, 2y | w2, 3) = — 1 (01) ) (2a),
where new potentials “absorb” the shared potentials with observed nodes:

P1(x1) = d1(x1)bra(w1,22),  Py(a) = Pa(wa)P34(w3, 24).
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Simpler Inference in Conditional UGMs

@ Consider the following graph which could describe bus stops:

e If we condition on the “hubs”, the graph forms a forest (and inference is easy).
e Simpler inference after conditioning is used by many approximate inference methods.



Iterated Conditional Mode Gibbs Sampling

Digression: Local Markov Property and Markov Blanket

e Approximate inference methods often use conditional p(z; | z_;),

k w k ; kv ok ok k k k
; means “z; for all i except z7": @7, @3, ..., 27 1,71, .., Tg.

e where zZ;

@ In UGMs, the conditional simplifies due to conditional independence,

p(xj | 2—5) = p(x; | Tneis)),

this local Markov property means conditional only depends on neighbours.

@ We say that the neighbours of z; are its “Markov binkaet”.
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Digression: Local Markov Property and Markov Blanket

@ Markov blanket is the set nodes that make you independent of all other nodes.

9)

e In UGMs the Markov blanket is the neighbours.

@ Markov blanket in DAGs is all parents, children, and co-parents:

@4’“0

VA
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Iterated Conditional Mode (ICM)

@ The iterated conditional mode (ICM) algorithm for approximate decoding:

e On each iteration k, choose a variable jj.
o Optimize z;, with the other variables held fixed.

@ So ICM is coordinate optimization.

Iterations correspond to finding mode of conditional p(x; | :1:’3])

k+1 — maxp(ac] =c|zF i)

@ 3 main issues:

@ How can we do this if evaluating p(x) is NP-hard?
@ Is coordinate optimization efficient for this problem?
@ Does it find the global optimum?
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[CM in Action

o Start with some initial value: 20 = [2 2 3 1]

@ Select random j like j = 3.

@ Set j to maximize p(z; | x(ij): at=1[2 2 1 1].
@ Select random j like j = 1.

® Set j to maximize p(z; [ z!,): 2> =[3 2 1 1].
@ Select random j like j = 2.

@ Set j to maximize p(x; | xz_j): ?=[3 2 1 1].
°
°

Repeat until you can no longer improve by single-variable changes.
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ICM lIssue 1: Intractable Objective

How can you optimize p(z) coordinate-wise if evaluating it is NP-hard?

Let's define the unnormalized probability p as

plx) = H Pe(zc).

ceC

So the normalized probability is given by

p(z) = ~7m)

@ In UGMs evaluating Z is hard but evaluating p(z) is easy.

@ And for decoding we only need unnormalized probabilities,
argmaxp(x) = argmax p(z) = argmaxp(z),
x x Z X

so we can decode based on p without knowing Z.
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ICM lIssue 2: Efficiency

@ Is coordinate optimization efficient for this problem?

o Consider a pairwise UGM,

d
p(z) = | [ ¢i(=) I ¢y
j=1

(i,j)EE
or
d
log p(x) = Zlog oj(z;) + Z log ¢ij(wi, z;).
J=1 (i,5)€E
@ The variable z; has k values and appears in at most n terms here.

e You can try them all for O(dk).
o If you only have m nodes in Markov blanket, reduced to O(mk).
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Pseudo-Code for ICM

o Consider a pairwise UGM:

d
ﬁ(xlvaa"'al‘d) = <H¢Z(l‘1)> H gsz(xlvxj) )
i=1

(i,4)EE

e Each ICM update would:
© Set M;(xz; = s) to product of terms in p(z) involving x;, with x; set to s.
@ Set x; to the largest value of M;(z;).
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[CM in Action

Consider using a UGM for binary image denoising;:

We have
@ Unary potentials ¢; for each position.
o Pairwise potentials ¢;; for neighbours on grid.
o Parameters are trained as CRF (later).
Goal is to produce a noise-free binary image (show video).
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ICM Issue 3: Non-Convexity

@ Does it find the global optimum?

@ Decoding is usually non-convex, so doesn't find global optimum.

@ There exist many globalization methods that can improve its performance:

o Restarting with random initializations.
e Global optimization methods:

e Simulated annealing, genetic algorithms, ant colony optimization, etc.



Outline

@ Iterated Conditional Mode

© Gibbs Sampling
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Coordinate Sampling

@ What about approximate sampling?
@ In DAGs, ancestral sampling conditions on sampled values of parents,
zj ~ p(x; | Tpa(j))-
@ In ICM, we approximately decode a UGM by iteratively maximizing an z;,,
vy maxp(; | 7).
@ We can approximately sample from a UGM by iteratively sampling an x;,,
xj ~ p(a; | x—j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

@ Gibbs sampling starts with some x and then repeats:

© Choose a variable j uniformly at random.
© Update x; by sampling it from its conditional,

zj ~ play [ o).
@ Analogy: sampling version of coordinate optimization:

e Transformed d-dimensional sampling into 1-dimensional sampling.

@ Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling in Action

o Start with some initial value: 20 = [2 2 3 1]
@ Select random j like j = 3.

o Sample variable j: 2! = [2 2 1 1].

@ Select random j like j = 1.

o Sample variable j: 22 =[3 2 1 1].

@ Select random j like j = 2.

e Sample variable j: 2% = [3 2 1 1].

°

°

Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling

@ For discrete x; the conditionals needed for Gibbs sampling have a simple form,

plrj=cay) _ _ plag=cry) P =cay)
p(z—;) Dowyme P =dxg) Y, _ap(r=c x )

plzj=clz_j) =

where we use unnormalized p since Z is the same in numerator/denominator.
o Note that this expression is easy to evaluate: just summing over values of z;.

@ And in UGMs it further simplifies to only depend on the Markov blanket,

p(zj | x—5) = p(z; | Tme()),

since the other terms cancel in the numerator/denominator.
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Gibbs Sampling in Action: UGMs

e Each ICM update would:
@ Set M;(x; = s) to product of terms in p(x) involving x;, with z; set to s.
@ Sample x; proportional to M;(z;).

(show videos)



Gibbs samples after every 100d iterations:

Gibbs Sampling in Action: UGMs

Samples from Gibbs sampler

5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
5 5 5 5
10 10 10 10
15 15 15 15
20 20 20 20
25 25 25 25
30 30 30 30
10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

Gibbs Sampling
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:

Gibbs Estimates of Marginals of Noisy X Gibbs Decoding of Noisy X

20-

25-

30-
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Gibbs Sampling in Action: Multivariate Gaussian
@ Gibbs sampling works for general distributions.
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

4
2
0
XN .
1
Samples
_4'. s o 15t 50 Samples
o X(t=0)
s . . . . .
-4 2 0 2 4 5

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

o Video: https://wuw.youtube.com/watch?v=AEwY6QXWoUg


https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain

@ Why would Gibbs sampling work?
o Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

@ The “Gibbs sampling Markov chain” for sampling from a 4-variable binary UGM:
o The states are the possible configurations of the four variables:
@ s=[0000],s=[0001],s=[0010], etc.
e The initial probability ¢ is set to 1 for the initial state, and 0 for the others:
o Ifyoustartat s=[1101], then g(z' =[1101]) =1 and g(z* =[0000]) = 0.
o The transition probabilities ¢ are based on variable we choose and UGM:
o If we are at s =[1 1 0 1] and choose coordinate randomly we have:

g™ =10011] |2 =[1101]) =0 (Gibbs only updates on variable)
p(xe =0]z1 =123 =0,24 =1).

1
d
from UGM

uniform

g™ =[1001] 2" =[1101]) =

@ Not homogeneous if cycling, but homogeneous if add “last variable” to state.
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Gibbs Sampling as a Markov Chain

e Why would Gibbs sampling work?
o Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

@ Previously we discussed stationary distribution of Markov chain:

n(s) =) qla’ =s|a"! = s)n(s),

Sl

with transition probabilities ¢ (of the Gibbs sampling Markov chain).

@ A sufficient condition for Gibbs Markov chain to have unique stationary:

p(xj | z—;) >0 forall j.
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Markov Chain Monte Carlo (MCMC)

@ Stationary distribution 7 of Gibbs sampling is the target distribution:

so for large k a sample 2" will be distributed according to p(x).

@ Allows Gibbs sampling to be used in Markov Chain Monte Carlo (MCMC):
o Design a Markov chain that has 7(x) = p(z).
o Use these samples within a Monte Carlo estimator,

Elg(e)] ~ - gla).

@ Law of large numbers can be generalized to show this converges as n — co.

e “Ergodic theroem".
e But convergence is slower since we're generating dependent samples.



Summary

Conditioning in UGMs leads to a smaller/simpler UGM.

Iterated conditional mode is coordinate descent for decoding UGMs.
e Fast but doesn't obtain global optimum in general.

Gibbs sampling is coordinate-wise sampling.
e Special case of Markov chain Monte Carlo (MCMC) method.

Next time: reproducing the Spaceballs beaming experiment.

Gibbs Sampling
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Conditioning in UGMs

e Conditioning on x2 and z3 in 4-node chain-UGM gives
p(T1, T, T3, 74)
p(z2,73)
_ 01(z1) d2(22) ¢3(23) pu(a) dr (21, 22) P2 (72, T3) ha(x3, 74)
oy, zP1 () b2 (w2) b3 (23) b () 1 (2, 72) o (w2, 23) d3(3, 1)
_ d1(z1) d2(z2) da(x3) b1 (z4) 1 (21, 2) o (T2, T3) P3 (23, T4)
a 792(x2) ba(23) o (w2, 23) 2oy o1 P1(a)) () (2, w2) iy (3, )
_ du@)dulza) (21, 2) da (w3, 74)
Xy, 01(2) da() fu (2], 72) fa (w3, )
__ (=) d(z4)
PIEEACATACA

plz1, v4|z2, 23) =




	Iterated Conditional Mode
	Gibbs Sampling

