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Iterated Conditional Mode Gibbs Sampling

Admin: Final, Project, Grades, Optimization Course

Plan is to have final exam during the second-last lecture (2.5 hours).

Exam will be April 6th starting at 3pm (and going past the usual end of class).

Project due date: April 24th (usual late days apply).

For graduate students who are graduating in May: April 15th (not my fault).

Due to the weird final timing, we’ll use the following:

Final exam grade = final project grade = max{final exam grade, final project grade}.

Guest lecture Wednesday: Frank Wood on probabilistic programming (bonus).

Unnoficial course on optimization for ML: subset of the range May 13-27.
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Last Lectures: Directed and Undirected Graphical Models
We’ve discussed the most common classes of graphical models:

DAG models represent probability as ordered product of conditionals,

p(x) =

d∏
j=1

p(xj | xpa(j)),

and are also known as “Bayesian networks” and “belief networks”.

UGMs represent probability as product of non-negative potentials φc,

p(x) =
1

Z

∏
c∈C

φc(xc), with Z =
∑
x

∏
c∈C

φc(xc),

and are also known as “Markov random fields” and ”Markov networks”.

We discused inference tasks (for both by converting to UGMs) in discrete xj .
Cost of message passing is exponential in treewidth of graph.
Motivates considering approximate inference methods today.
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Digression: Closure of UGMs under Conditioning

UGMs are closed under conditioning:

If p(x) is a UGM, then p(xA | xB) can be written as a UGM (for partition A and B).

Conditioning on x2 and x3 in a chain,

gives a UGM defined on x1 and x4 that is disconnected:

Graphically, we “erase the black nodes and their edges”.

Notice that inference in the conditional UGM may be mucher easier.
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Digression: Closure of UGMs under Conditioning

Mathematically, a 4-node pairwise UGM with a chain structure assumes

p(x1, x2, x3, x4) ∝ φ1(x1)φ2(x2)φ3(x3)φ4(x4)φ12(x1, x2)φ23(x2, x3)φ34(x3, x4).

Conditioning on x2 and x3 gives UGM over x1 and x4 (tedious: bonus slide)

p(x1, x4 | x2, x3) =
1

Z ′
φ′1(x1)φ

′
4(x4),

where new potentials “absorb” the shared potentials with observed nodes:

φ′1(x1) = φ1(x1)φ12(x1, x2), φ′4(x4) = φ4(x4)φ34(x3, x4).
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Simpler Inference in Conditional UGMs
Consider the following graph which could describe bus stops:

If we condition on the “hubs”, the graph forms a forest (and inference is easy).
Simpler inference after conditioning is used by many approximate inference methods.
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Digression: Local Markov Property and Markov Blanket

Approximate inference methods often use conditional p(xj | x−j),

where xk−j means “xki for all i except xkj ”: xk1 , x
k
2 , . . . , x

k
j−1, x

k
j+1, . . . , x

k
d.

In UGMs, the conditional simplifies due to conditional independence,

p(xj | x−j) = p(xj | xnei(j)),

this local Markov property means conditional only depends on neighbours.

We say that the neighbours of xj are its “Markov blnkaet”.
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Digression: Local Markov Property and Markov Blanket
Markov blanket is the set nodes that make you independent of all other nodes.

In UGMs the Markov blanket is the neighbours.

Markov blanket in DAGs is all parents, children, and co-parents:
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Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

On each iteration k, choose a variable jk.
Optimize xjk with the other variables held fixed.

So ICM is coordinate optimization.

Iterations correspond to finding mode of conditional p(xj | xk−j),

xk+1
j ← max

c
p(xj = c | xk−j),

3 main issues:
1 How can we do this if evaluating p(x) is NP-hard?
2 Is coordinate optimization efficient for this problem?
3 Does it find the global optimum?
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ICM in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Set j to maximize p(xj | x0−j): x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Set j to maximize p(xj | x1−j): x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Set j to maximize p(xj | x2−j): x3 =
[
3 2 1 1

]
.

. . .

Repeat until you can no longer improve by single-variable changes.
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ICM Issue 1: Intractable Objective
How can you optimize p(x) coordinate-wise if evaluating it is NP-hard?

Let’s define the unnormalized probability p̃ as

p̃(x) =
∏
c∈C

φc(xc).

So the normalized probability is given by

p(x) =
p̃(x)

Z
.

In UGMs evaluating Z is hard but evaluating p̃(x) is easy.

And for decoding we only need unnormalized probabilities,

argmax
x

p(x) ≡ argmax
x

p̃(x)

Z
≡ argmax

x
p̃(x),

so we can decode based on p̃ without knowing Z.
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ICM Issue 2: Efficiency

Is coordinate optimization efficient for this problem?

Consider a pairwise UGM,

p̃(x) =

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

or

log p̃(x) =

d∑
j=1

log φj(xj) +
∑

(i,j)∈E

log φij(xi, xj).

The variable xj has k values and appears in at most n terms here.

You can try them all for O(dk).
If you only have m nodes in Markov blanket, reduced to O(mk).
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Pseudo-Code for ICM

Consider a pairwise UGM:

p̃(x1, x2, . . . , xd) =

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

Each ICM update would:
1 Set Mi(xi = s) to product of terms in p̃(x) involving xi, with xi set to s.
2 Set xi to the largest value of Mi(xi).
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ICM in Action
Consider using a UGM for binary image denoising:

We have

Unary potentials φj for each position.
Pairwise potentials φij for neighbours on grid.
Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).
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ICM Issue 3: Non-Convexity

Does it find the global optimum?

Decoding is usually non-convex, so doesn’t find global optimum.

There exist many globalization methods that can improve its performance:

Restarting with random initializations.
Global optimization methods:

Simulated annealing, genetic algorithms, ant colony optimization, etc.
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Outline

1 Iterated Conditional Mode

2 Gibbs Sampling
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Coordinate Sampling

What about approximate sampling?

In DAGs, ancestral sampling conditions on sampled values of parents,

xj ∼ p(xj | xpa(j)).

In ICM, we approximately decode a UGM by iteratively maximizing an xjt ,

xj ← max
xj

p(xj | x−j).

We can approximately sample from a UGM by iteratively sampling an xjt ,

xj ∼ p(xj | x−j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

Gibbs sampling starts with some x and then repeats:
1 Choose a variable j uniformly at random.
2 Update xj by sampling it from its conditional,

xj ∼ p(xj | x−j).

Analogy: sampling version of coordinate optimization:

Transformed d-dimensional sampling into 1-dimensional sampling.

Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling in Action

Start with some initial value: x0 =
[
2 2 3 1

]
.

Select random j like j = 3.

Sample variable j: x1 =
[
2 2 1 1

]
.

Select random j like j = 1.

Sample variable j: x2 =
[
3 2 1 1

]
.

Select random j like j = 2.

Sample variable j: x3 =
[
3 2 1 1

]
.

. . .

Use the samples to form a Monte Carlo estimator.
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Gibbs Sampling

For discrete xj the conditionals needed for Gibbs sampling have a simple form,

p(xj = c | x−j) =
p(xj = c, x−j)

p(x−j)
=

p(xj = c, x−j)∑
xj=c′ p(xj = c′, x−j)

=
p̃(xj = c, x−j)∑

xj=c′ p̃(xj = c′, x−j)
,

where we use unnormalized p̃ since Z is the same in numerator/denominator.

Note that this expression is easy to evaluate: just summing over values of xj .

And in UGMs it further simplifies to only depend on the Markov blanket,

p(xj | x−j) = p(xj | xMB(j)),

since the other terms cancel in the numerator/denominator.
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Gibbs Sampling in Action: UGMs

Each ICM update would:
1 Set Mi(xi = s) to product of terms in p̃(x) involving xi, with xi set to s.
2 Sample xi proportional to Mi(xi).

(show videos)
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Gibbs Sampling in Action: UGMs
Gibbs samples after every 100d iterations:
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:
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Gibbs Sampling in Action: Multivariate Gaussian
Gibbs sampling works for general distributions.

E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

Video: https://www.youtube.com/watch?v=AEwY6QXWoUg

https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain
Why would Gibbs sampling work?

Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

The “Gibbs sampling Markov chain” for sampling from a 4-variable binary UGM:
The states are the possible configurations of the four variables:

s = [0 0 0 0], s = [0 0 0 1], s = [0 0 1 0], etc.

The initial probability q is set to 1 for the initial state, and 0 for the others:

If you start at s = [1 1 0 1], then q(x1 = [1 1 0 1]) = 1 and q(x1 = [0 0 0 0]) = 0.

The transition probabilities q are based on variable we choose and UGM:

If we are at s = [1 1 0 1] and choose coordinate randomly we have:

q(xt+1 = [0 0 1 1] | xt = [1 1 0 1]) = 0 (Gibbs only updates on variable)

q(xt+1 = [1 0 0 1] | xt = [1 1 0 1]) =
1

d︸︷︷︸
uniform

p(x2 = 0 | x1 = 1, x3 = 0, x4 = 1)︸ ︷︷ ︸
from UGM

.

Not homogeneous if cycling, but homogeneous if add “last variable” to state.



Iterated Conditional Mode Gibbs Sampling

Gibbs Sampling as a Markov Chain

Why would Gibbs sampling work?

Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

Previously we discussed stationary distribution of Markov chain:

π(s) =
∑
s′

q(xt = s | xt−1 = s′)π(s′),

with transition probabilities q (of the Gibbs sampling Markov chain).

A sufficient condition for Gibbs Markov chain to have unique stationary:

p(xj | x−j) > 0 for all j.
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Markov Chain Monte Carlo (MCMC)

Stationary distribution π of Gibbs sampling is the target distribution:

π(x) = p(x),

so for large k a sample xk will be distributed according to p(x).

Allows Gibbs sampling to be used in Markov Chain Monte Carlo (MCMC):

Design a Markov chain that has π(x) = p(x).
Use these samples within a Monte Carlo estimator,

E[g(x)] ≈ 1

n

n∑
t=1

g(xi).

Law of large numbers can be generalized to show this converges as n→∞.

“Ergodic theroem”.
But convergence is slower since we’re generating dependent samples.
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Summary

Conditioning in UGMs leads to a smaller/simpler UGM.

Iterated conditional mode is coordinate descent for decoding UGMs.

Fast but doesn’t obtain global optimum in general.

Gibbs sampling is coordinate-wise sampling.

Special case of Markov chain Monte Carlo (MCMC) method.

Next time: reproducing the Spaceballs beaming experiment.
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Conditioning in UGMs

Conditioning on x2 and x3 in 4-node chain-UGM gives
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