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Undirected Graphical Models Exact Inference in UGMs

Last Time: Learning and Inference in DAGs

@ Learning in DAG models:
o Given a graph structure, parameter estimation is modeling p(x; | Zpa(j))-
@ We can use counting, or any method for supervised learning.
o If we don't have the graph structure, common to use greedy “search and score”.

@ Inference in DAG models:
o Inference tasks (decoding/marginalization/conditioning) are easy in trees.
@ Where we have at most one parent.
e In non-trees, dynamic programming can be much more expensive.

o We'll discuss approximations soon.

e We motivated looking at undirected graphical models (UGMs):
e Can make more sense if the variables don't have a natural “ordering”.



Multi-Label Classification

o Consider automated heart wall abnormality detection:

@ Want to model if any of 16 areas of the heart are not moving properly.
e Can potentially improve predictions by modeling correlations.
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Ising Models from Statistical Physics
@ The Ising model for binary x; is defined by

p(x1,22,...,2q) X exp ngwﬂr > wiwjwig |
(i.))EE

where F is the set of edges in an undirected graph.
o Called a log-linear model, because log p(x) is linear plus a constant.

e Consider using z; € {—1,1}:
e If w; > 0 it encourages z; = 1.
o If w;; > 0 it encourages neighbours 7 and j to have the same value.
e E.g., neighbouring pixels in the image receive the same label ( “attractive” model)

o We're modeling dependencies, but haven't assumed an “ordering”.
o We often learn the w; and w;; from data.
o Later, we'll see how these could be output by a neural network.
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Undirected Graphical Models

e Pairwise undirected graphical models (UGMs) assume p(x) has the form
d
p(a) o< | [T i) 1T o))
j=1 (i.j)eE

@ The ¢; and ¢;; functions are called potential functions:

e They can be any non-negative function.

o Ordering doesn't matter: more natural for things like pixels of an image.
@ Ising model is a special case where

di(x;) = exp(ziwy), ¢z‘j(9€i,93j) = eXP(ijwij)-

@ Bonus slides generalize Ising to non-binary case.
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Gaussians as Undirected Graphical Models

@ Multivariate Gaussian can be written as

1 1
p(z) cexp (—=(@—p) IS Yo —p) ) xexp [ -z ez +2T2 1|,
2 2 S~—~—
v

and writing it in summation notation we can see that it's a pairwise UGM:

d d d
p(x) o< exp( *% Z Z ziwi (271 + Z Tiv;
i=1

i=1 j=1

= ﬁ ﬁ exp (—;xixj(x‘l)ij> i[leXp (zv3)

==t ¢i(w:)

@ij(Ti,x5)

o Above we include all edges. You can “remove” edges by setting (X71);; = 0.
e “Gaussian graphical model” (GGM) or “Gaussian Markov random field" (GMRF).
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Label Propagation as a UGM

e Consider modeling the probability of a vector of labels 4 € R using

t G
p(gl,QQ,...,gjt)O(exp _Zzwl]y_y %ZZ g_y

i=1 j=1

@ Decoding in this model is the label propagation problem.

@ This is a pairwise UGM:

¢j(7’) = exp ( Zwm y - ) . (7, 7) = exp <_;wij(yi - yj)2> :



Undirected Graphical Models Exact Inference in UGMs

Conditional Independence in Undirected Graphical Models

@ It's easy to check conditional independence in UGMs:
o A L B|Cif C blocks all paths from any A to any B.

e Example:

© 060 0 o
NN N N S
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Independence in Gaussians

Independence in multivariate Gaussian:
o In Gaussians, marginal independence is determined by covariance:

xiJ_l'j@EijZO,
(we previously saw diagonal ¥ means all z; independent).
o Gaussian conditional independence is determined by precision matrix sparsity.

e Diagonal © gives disconnected graph: all variables are independent.
o Full © gives fully-connected graph: there are no independences.

o Gaussians are pairwise UGMs with ¢;;(z;, ;) = exp (—1z;2;0;5),
o Where ©,; is element (i, j) of X1
e If ©;; # 0 we have an edge in the UGM (direct dependency between z; and x;).

o Related to partial correlation which us —0,;/1/0;;0;;.
@ The “correlation after controlling for other variables”.
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Independence in GGMs

o Consider a Gaussian with the following covariance matrix:

0.0494  —0.0444 —0.0312 0.0034 —0.0010
—0.0444  0.1083 0.0761  —0.0083  0.0025
¥ = |-0.0312 0.0761 0.1872  —0.0204  0.0062
0.0034 —0.0083 —0.0204 0.0528 —0.0159
—0.0010  0.0025 0.0062  —0.0159  0.2636

@ Y;; # 0 so all variables are dependent: 1 [ x2, 1 £ x5, and so on.
e This would show up in graph: you would be able to reach any z; from any x;.
@ The inverse is given by a tri-diagonal matrix:

32.0897 13.1740 0 0 0

13.1740 18.3444 —5.2602 0 0

= 0 —5.2602  7.7173 2.1597 0
0 0 2.1597  20.1232 1.1670
0 0 0 1.1670  3.8644

@ So conditional independence is described by a Markov chain:

p(x1 | x2, 23,24, 75) = p(x1 | 22).
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Graphical Lasso

e Conditional independence in Gaussians is described by sparsity in © = X1
o Setting a O;; to 0 removes an edge from the graph.

@ Recall fitting multivariate Gaussian with L1-regularization,

argmin Tr(S©) — log |©| + \||©]|1,
0>0

which is called the graphical Lasso because it encourages a sparse graph.

@ Graphical Lasso is a convex approach to structure learning for GGMs.

e Exam p|eS: https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models.


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Higher-Order Undirected Graphical Models

@ In UGMs, we can also define potentials on higher-order interactions.
o A three-variable generalization of Ising potentials is:

Gijr(Ti, Tj, T) = WijpTiTjTh.

o If wijr >0 and z; € {0,1}, encourages you to set all three to 1.
o If w;jr >0 and z; € {—1,1}, encourages odd number of positives.

@ In the general case, a UGM just assumes p(x) factorizes over subsets ¢,

p(x1, @, ..., xq) X H de(xe),

ceC

from among a collection of subsets of C.

@ In this case, graph has edge (7, 7) if i and j are together in at least one c.
e Conditional independences are still given by graph separation.
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Factor Graphs

@ Factor graphs are a way to visualize UGMs that distinguishes different orders.
e Use circles for variables, squares to represent dependencies.

e Factor graph of p(x1,x9,x3) x ¢12(x1, 2)P13(1, T3)P23(x2, 3):
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e Factor graph of p(z1,x2,x3) < ¢123(x1, 2, x3):

%

|

jm|

& 6B



Outline

@ Undirected Graphical Models

© Exact Inference in UGMs



Undirected Graphical Models Exact Inference in UGMs

Tractability of UGMs

e Without using o<, a UGM probability would be
() = - ] delae)
pr) = 7 1 c\Tc),

where Z is the constant that makes the probabilites sum up to 1.

Z2=3"% S [[6eze) or Z:/ml/332---/wdﬂqﬁc(xc)dxdd:z:d_l...dxl.

1 T2 rq ceC ceC

@ Whether you can compute Z depends on the choice of the ¢,:
o Gaussian case: O(d?) in general, but O(d) for forests (no loops).
e Continuous non-Gaussian: usually requires numerical integration.
o Discrete case: #P-hard in general, but O(dk?) for forests (no loops).
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Discrete DAGs vs. Discrete UGMs

@ Common inference tasks in graphical models:
@ Compute p(x) for an assignment to the variables .
@ Generate a sample x from the distribution.
© Compute univariate marginals p(z;).
© Compute decoding argmax, p(x).
© Compute univariate conditional p(z; | z;/).

o With discrete x;, all of the above are easy in tree-structured graphs.

o For DAGs, a tree-structured graph has at most one parent.
e For UGMs, a tree-structured graph has no cycles.

e With discrete x;, the above may be harder for general graphs:

o In DAGs the first two are easy, the others are NP-hard.
e In UGMs all of these are NP-hard.
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Moralization: Converting DAGs to UGMs

@ To address the NP-hard problems, DAGs and UGMs use same techniques.
e We'll focus on UGMs, but we can convert DAGs to UGMs:

d d
plar, @2, xa) = [ [ p(@jlzac) = [ ] 65(@i 2pags):
=1 j:lﬁ’_/
:p(l‘j ‘mpa(j))

which is a UGM with Z = 1.
@ Graphically: we drop directions and “marry” parents (moralization).

AN, A A

@ May lose some conditional independences, but doesn't change computational cost.
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Easy Cases: Chains, Trees and Forests

@ The forward-backward algorithm still works for chain-structured UGMs:
o We compute the forward messages M and the backwards messages V.
o With both M and V' we can [conditionally] decode/marginalize/sample.

@ Belief propagation generalizes this to trees:
e Pick an arbitrary node as the “root”, and order the nodes going away from the root.
@ Pass messages starting from the “leaves” going towards the root.
e “Root” is like the last node in a Markov chain.
@ Backtrack from root to leaves to do decoding/sampling.
@ Send messages from the root going to the leaves to compute all marginals.
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https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-


https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Easy Cases: Chains, Trees and Forests

Recall the CK equations in Markov chains:

M(z.) = Zp(xc | xp)Mp(xp)'

For chain-structure UGMs we would have:

Mc(xc) X Z ¢(xp)¢(xp7 xC)Mp(xp)'

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “parent” p that has parents j and k£ would be

Mpe(e) o Z Gi(Tp) Ppe(Tp, Te) Mjp(2p) Mip(p),

Tp

Univariate marginals are proportional to ¢;(z;) times all “incoming” messages.
e The"forward” and “backward” Markov chain messages are a special case.
o Replace ZM with max,, for decoding.
@ “Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs

@ Message passing is also efficient in some non-tree graphs.

@ For example, computing Z in a simple 4-node cycle could be done using:

Z = Z Z Z Z P12(21, 22)P23(T2, T3) P34 (23, T4) P14(71, T4)

T4 T3 T2 X1

=3 paalws,24) Z¢23($27$3 Z@m (21, 22)P14(21, 24)

T4 3

= E E ¢34(23,4) g ¢23(x2, x3) Moy (22, 24)
T4 T3

= E E ¢34(23, T4 M34 x3,x4) E My(z4).
T4 T3

@ Message-passing cost depends on graph structure and the order of the sums.
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Exact Inference in UGMs

@ To see the effect of the order, consider Markov chain inference with bad ordering:

=SONSISTS plan)ples | 21)p(as | w2)p(ea | ws)p(as | 2a)

T5 T4 T3 T2 T

- ZZZZZP (z1)p(z2 | 1)p(z3 | 22)p(24 | 23)p(25 | 24)

T T4 T3 T2

*ZZP% ZZP$4|$3 (w5 | 24) ZP$2|$1 (w3 | x2)

5 T1 T3 T4

Miz(z1,73)

@ So even though we have a chain, we have an M with k2 values instead of k.
o Inference can be exponentially more expensive with the wrong ordering.
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Variable Order and Treewidth

@ So cost of message passing depends on

@ Graph structure.
@ Variable order.

o Cost of message passing is given by O(dk“T1).
e Here, w is the size of the largest message.
o For trees, w = 1 so we get our usual cost of O(dk?).

@ The minimum value of w across orderings for a given graph is called treewidth.
o In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

o Also called “graph dimension” or “w-tree”.

o Intuitively, you can think of low treewidth as being “close to a tree”.
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Treewidth Examples

@ Examples of k-trees:

2~ qree

5= tree

[= Crey
o o
, I :"0 -—-- %‘
O—Q—0—0 o ~—0

!
')
R

@ 2-tree and 3-tree are trees if you use dotted circles to group nodes.
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Treewidth Examples

@ Trees have w = 1, so with the right order inference costs O(dk?).
%

@ A big loop has w = 2, so cost with the right ordering is O(dk?).
{j \o?j
o0

@ The below grid-like structure has w = 3, so cost is O(dk*).

e
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Variable Order and Treewidth

Junction trees generalize belief propagation to general graphs (requires ordering).
Computing w and the optimal ordering is NP-hard.
e But various heuristic ordering methods exist.

An my by mg lattice has w = min{my, ma}.
e So you can do exact inference on “wide chains” with Junction tree.
o But for 28 by 28 MNIST digits it would cost O(784 - 229).

Some links if you want to read about treewidth:

@ https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
@ https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs w = (d — 1) so there is no gain over brute-force enumeration.
e Many graphs have high treewidth so we need approximate inference.


https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
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Summary

Undirected graphical models factorize probability into non-negative potentials.

e Gaussians are a special case.
o Log-linear models (like Ising) are a common choice.
e Simple conditional independence properties.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Message passing can be used for inference in UGMs.

o Belief propagation for trees.
o Cost might be exponential for unfavourable graphs/ordering.

Next time: our first visit to the wild world of approximate inference.
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General Pairwise UGM

@ For general discrete x; a generalization of Ising models is

p(w1,22,...,7q *eXp szzz‘i‘ E Wijasz; |

(i,5)eE

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all z).

@ Interpretation of weights for this UGM:
o If w;1 > w; 2 then we prefer z; =1 to z; = 2.
o Ifw; ;11 > w;jo22 then we prefer (z; =1,2; =1) to (z; = 2,2; = 2).

@ As before, we can use parameter tieing:

o We could use the same w; ,, for all positions 3.
o Ising model corresponds to a particular parameter tieing of the w; j z; «;-
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Decomposable Graphical Models

@ Probabilities whose conditional independences that can be represented as DAGs
and UGMs are called decomposable.

e Includes chains, trees, and fully-connected graphs.

@ These models allow some efficient operations in UGMs by writing them as DAGs:
o Computing p(z).
e Ancestral sampling.
e Fitting parameters independently.
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Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.
e Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:
o Generalization of DAGs that is closed under conditioning.

Structural equation models (SEMs): generalization of DAGs that allows cycles.
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