CPSC 540: Machine Learning Undirected Graphical Models

Mark Schmidt

University of British Columbia

Winter 2020

Last Time: Learning and Inference in DAGs

• Learning in DAG models:

- Given a graph structure, parameter estimation is modeling $p(x_j | x_{pa(j)})$.
 - We can use counting, or any method for supervised learning.
- If we don't have the graph structure, common to use greedy "search and score".
- Inference in DAG models:
 - Inference tasks (decoding/marginalization/conditioning) are easy in trees.
 - Where we have at most one parent.
 - In non-trees, dynamic programming can be much more expensive.
 - We'll discuss approximations soon.
- We motivated looking at undirected graphical models (UGMs):
 - Can make more sense if the variables don't have a natural "ordering".

Multi-Label Classification

• Consider automated heart wall abnormality detection:

- Want to model if any of 16 areas of the heart are not moving properly.
 - Can potentially improve predictions by modeling correlations.

Ising Models from Statistical Physics

• The Ising model for binary x_i is defined by

$$p(x_1, x_2, \dots, x_d) \propto \exp\left(\sum_{i=1}^d x_i w_i + \sum_{(i,j)\in E} x_i x_j w_{ij}\right),$$

where E is the set of edges in an undirected graph.

• Called a log-linear model, because $\log p(x)$ is linear plus a constant.

- Consider using $x_i \in \{-1, 1\}$:
 - If $w_i > 0$ it encourages $x_i = 1$.
 - If $w_{ij} > 0$ it encourages neighbours i and j to have the same value.
 - E.g., neighbouring pixels in the image receive the same label ("attractive" model)
- We're modeling dependencies, but haven't assumed an "ordering".
 - We often learn the w_i and w_{ij} from data.
 - Later, we'll see how these could be output by a neural network.

Undirected Graphical Models

• Pairwise undirected graphical models (UGMs) assume p(x) has the form

$$p(x) \propto \left(\prod_{j=1}^{d} \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right).$$

- The ϕ_j and ϕ_{ij} functions are called potential functions:
 - They can be any non-negative function.
 - Ordering doesn't matter: more natural for things like pixels of an image.
- Ising model is a special case where

$$\phi_i(x_i) = \exp(x_i w_i), \quad \phi_{ij}(x_i, x_j) = \exp(x_i x_j w_{ij}).$$

• Bonus slides generalize Ising to non-binary case.

Gaussians as Undirected Graphical Models

• Multivariate Gaussian can be written as

$$p(x) \propto \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \propto \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \underbrace{\Sigma^{-1}\mu}_{v}\right),$$

and writing it in summation notation we can see that it's a pairwise UGM:

$$p(x) \propto \exp\left(\left(-\frac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}x_{i}x_{j}(\Sigma^{-1})_{ij} + \sum_{i=1}^{d}x_{i}v_{i}\right)\right)$$
$$= \left(\prod_{i=1}^{d}\prod_{j=1}^{d}\underbrace{\exp\left(-\frac{1}{2}x_{i}x_{j}(\Sigma^{-1})_{ij}\right)}_{\phi_{ij}(x_{i},x_{j})}\right) \left(\prod_{i=1}^{d}\underbrace{\exp\left(x_{i}v_{i}\right)}_{\phi_{i}(x_{i})}\right)$$

Above we include all edges. You can "remove" edges by setting (Σ⁻¹)_{ij} = 0.
"Gaussian graphical model" (GGM) or "Gaussian Markov random field" (GMRF).

Label Propagation as a UGM

ullet Consider modeling the probability of a vector of labels $\bar{y}\in\mathbb{R}^t$ using

$$p(\bar{y}^1, \bar{y}^2, \dots, \bar{y}^t) \propto \exp\left(-\sum_{i=1}^n \sum_{j=1}^t w_{ij}(y^i - \bar{y}^i)^2 - \frac{1}{2} \sum_{i=1}^t \sum_{j=1}^t \bar{w}_{ij}(\bar{y}^i - \bar{y}^j)^2\right).$$

- Decoding in this model is the label propagation problem.
- This is a pairwise UGM:

$$\phi_j(\bar{y}^j) = \exp\left(-\sum_{i=1}^n w_{ij}(y^i - \bar{y}^j)^2\right), \quad \phi_{ij}(\bar{y}^i, \bar{y}^j) = \exp\left(-\frac{1}{2}\bar{w}_{ij}(\bar{y}^i - \bar{y}^j)^2\right).$$

Conditional Independence in Undirected Graphical Models

- It's easy to check conditional independence in UGMs:
 - $A \perp B \mid C$ if C blocks all paths from any A to any B.
- Example:

- $A \not\perp C$.
- $A \not\perp C \mid B$.
- $A \perp C \mid B, E$.
- $A, B \not\perp F \mid C$
- $A, B \perp F \mid C, E$.

Independence in Gaussians

- Independence in multivariate Gaussian:
 - In Gaussians, marginal independence is determined by covariance:

 $x_i \perp x_j \Leftrightarrow \Sigma_{ij} = 0,$

(we previously saw diagonal Σ means all x_i independent).

- Gaussian conditional independence is determined by precision matrix sparsity.
 - Diagonal Θ gives disconnected graph: all variables are independent.
 - Full Θ gives fully-connected graph: there are no independences.
- Gaussians are pairwise UGMs with φ_{ij}(x_i, x_j) = exp (-¹/₂x_ix_jΘ_{ij}),
 Where Θ_{ii} is element (i, j) of Σ⁻¹.
- If $\Theta_{ij} \neq 0$ we have an edge in the UGM (direct dependency between x_i and x_j).
 - Related to partial correlation which us $-\Theta_{ij}/\sqrt{\Theta_{ii}\Theta_{jj}}$.
 - The "correlation after controlling for other variables".

Independence in GGMs

• Consider a Gaussian with the following covariance matrix:

	F 0.0494	-0.0444	-0.0312	0.0034	-0.0010
	-0.0444	0.1083	0.0761	-0.0083	0.0025
$\Sigma =$	-0.0312	0.0761	0.1872	-0.0204	0.0062
	0.0034	-0.0083	-0.0204	0.0528	-0.0159
	-0.0010	0.0025	0.0062	-0.0159	0.2636

- $\Sigma_{ij} \neq 0$ so all variables are dependent: $x_1 \not\perp x_2$, $x_1 \not\perp x_5$, and so on.
 - This would show up in graph: you would be able to reach any x_i from any x_j .
- The inverse is given by a tri-diagonal matrix:

	F32.0897	13.1740	0	0	U 0
	13.1740	18.3444	-5.2602	0	0
$\Sigma^{-1} =$	0	-5.2602	7.7173	2.1597	0
	0	0	2.1597	20.1232	1.1670
	LO	0	0	1.1670	3.8644

• So conditional independence is described by a Markov chain:

$$p(x_1 \mid x_2, x_3, x_4, x_5) = p(x_1 \mid x_2).$$

Graphical Lasso

- Conditional independence in Gaussians is described by sparsity in $\Theta = \Sigma^{-1}$.
 - Setting a Θ_{ij} to 0 removes an edge from the graph.
- Recall fitting multivariate Gaussian with L1-regularization,

$$\underset{\Theta \succ 0}{\operatorname{argmin}} \operatorname{Tr}(S\Theta) - \log |\Theta| + \lambda \|\Theta\|_1,$$

which is called the graphical Lasso because it encourages a sparse graph.

- Graphical Lasso is a convex approach to structure learning for GGMs.
 - Examples: https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models.

Higher-Order Undirected Graphical Models

• In UGMs, we can also define potentials on higher-order interactions.

• A three-variable generalization of Ising potentials is:

$$\phi_{ijk}(x_i, x_j, x_k) = w_{ijk} x_i x_j x_k.$$

- If $w_{ijk} > 0$ and $x_j \in \{0, 1\}$, encourages you to set all three to 1.
- If $w_{ijk} > 0$ and $x_j \in \{-1, 1\}$, encourages odd number of positives.
- In the general case, a UGM just assumes p(x) factorizes over subsets c,

$$p(x_1, x_2, \ldots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

from among a collection of subsets of \mathcal{C} .

- In this case, graph has edge (i, j) if i and j are together in at least one c.
 - Conditional independences are still given by graph separation.

Factor Graphs

• Factor graphs are a way to visualize UGMs that distinguishes different orders.

- Use circles for variables, squares to represent dependencies.
- Factor graph of $p(x_1, x_2, x_3) \propto \phi_{12}(x_1, x_2)\phi_{13}(x_1, x_3)\phi_{23}(x_2, x_3)$:

• Factor graph of $p(x_1, x_2, x_3) \propto \phi_{123}(x_1, x_2, x_3)$:

Undirected Graphical Models

Exact Inference in UGMs

Outline

Undirected Graphical Models

2 Exact Inference in UGMs

Tractability of UGMs

• Without using \propto , a UGM probability would be

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant that makes the probabilites sum up to 1.

$$Z = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_d} \prod_{c \in \mathcal{C}} \phi_c(x_c) \quad \text{or} \quad Z = \int_{x_1} \int_{x_2} \cdots \int_{x_d} \prod_{c \in \mathcal{C}} \phi_c(x_c) dx_d dx_{d-1} \dots dx_1.$$

• Whether you can compute Z depends on the choice of the ϕ_c :

- Gaussian case: $O(d^3)$ in general, but O(d) for forests (no loops).
- Continuous non-Gaussian: usually requires numerical integration.
- Discrete case: #P-hard in general, but $O(dk^2)$ for forests (no loops).

Discrete DAGs vs. Discrete UGMs

- Common inference tasks in graphical models:
 - O Compute p(x) for an assignment to the variables x.
 - **2** Generate a sample x from the distribution.
 - **③** Compute univariate marginals $p(x_j)$.
 - Compute decoding $\operatorname{argmax}_{x} p(x)$.
 - **6** Compute univariate conditional $p(x_j | x_{j'})$.
- With discrete x_i , all of the above are easy in tree-structured graphs.
 - For DAGs, a tree-structured graph has at most one parent.
 - For UGMs, a tree-structured graph has no cycles.
- With discrete x_i , the above may be harder for general graphs:
 - In DAGs the first two are easy, the others are NP-hard.
 - In UGMs all of these are NP-hard.

Moralization: Converting DAGs to UGMs

• To address the NP-hard problems, DAGs and UGMs use same techniques.

• We'll focus on UGMs, but we can convert DAGs to UGMs:

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}) = \prod_{j=1}^d \underbrace{\phi_j(x_j, x_{\mathsf{pa}(j)})}_{=p(x_j \mid x_{\mathsf{pa}(j)})},$$

which is a UGM with Z = 1.

• Graphically: we drop directions and "marry" parents (moralization).

• May lose some conditional independences, but doesn't change computational cost.

Easy Cases: Chains, Trees and Forests

- The forward-backward algorithm still works for chain-structured UGMs:
 - ${\ensuremath{\, \bullet }}$ We compute the forward messages M and the backwards messages V.
 - With both M and V we can [conditionally] decode/marginalize/sample.
- Belief propagation generalizes this to trees:
 - Pick an arbitrary node as the "root", and order the nodes going away from the root.
 - Pass messages starting from the "leaves" going towards the root.
 - "Root" is like the last node in a Markov chain.
 - Backtrack from root to leaves to do decoding/sampling.
 - Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Easy Cases: Chains, Trees and Forests

• Recall the CK equations in Markov chains:

$$M_c(x_c) = \sum_{x_p} p(x_c \mid x_p) M_p(x_p).$$

• For chain-structure UGMs we would have:

$$M_c(x_c) \propto \sum_{x_p} \phi(x_p) \phi(x_p, x_c) M_p(x_p).$$

- In tree-structured UGMs, parent p in the ordering may have multiple parents.
- \bullet Message coming from "parent" p that has parents j and k would be

$$M_{pc}(x_c) \propto \sum_{x_p} \phi_i(x_p) \phi_{pc}(x_p, x_c) M_{jp}(x_p) M_{kp}(x_p),$$

- Univariate marginals are proportional to $\phi_i(x_i)$ times all "incoming" messages.
 - The "forward" and "backward" Markov chain messages are a special case.
 - Replace \sum_{x_i} with \max_{x_i} for decoding.
 - "Sum-product" and "max-product" algorithms.

Exact Inference in UGMs

• Message passing is also efficient in some non-tree graphs.

• For example, computing Z in a simple 4-node cycle could be done using:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) M_{24}(x_2, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) M_{34}(x_3, x_4) = \sum_{x_4} M_4(x_4).$$

• Message-passing cost depends on graph structure and the order of the sums.

Exact Inference in UGMs

• To see the effect of the order, consider Markov chain inference with bad ordering:

$$p(x_5) = \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} \sum_{x_4} \sum_{x_3} \sum_{x_2} p(x_1) p(x_2 \mid x_1) p(x_3 \mid x_2) p(x_4 \mid x_3) p(x_5 \mid x_4)$$

$$= \sum_{x_5} \sum_{x_1} p(x_1) \sum_{x_3} \sum_{x_4} p(x_4 \mid x_3) p(x_5 \mid x_4) \underbrace{\sum_{x_2} p(x_2 \mid x_1) p(x_3 \mid x_2)}_{M_{13}(x_1, x_3)}$$

So even though we have a chain, we have an M with k² values instead of k.
Inference can be exponentially more expensive with the wrong ordering.

Variable Order and Treewidth

- So cost of message passing depends on
 - Graph structure.
 - ② Variable order.
- Cost of message passing is given by $O(dk^{\omega+1})$.
 - Here, ω is the size of the largest message.
 - For trees, $\omega = 1$ so we get our usual cost of $O(dk^2)$.
- The minimum value of ω across orderings for a given graph is called treewidth.
 - In terms of graph: "minimum size of largest clique, minus 1, over all triangulations".
 - Also called "graph dimension" or " ω -tree".
 - Intuitively, you can think of low treewidth as being "close to a tree".

Treewidth Examples

• Examples of k-trees:

• 2-tree and 3-tree are trees if you use dotted circles to group nodes.

Treewidth Examples

• Trees have $\omega = 1$, so with the right order inference costs $O(dk^2)$.

• A big loop has $\omega = 2$, so cost with the right ordering is $O(dk^3)$.

• The below grid-like structure has $\omega = 3$, so cost is $O(dk^4)$.

Variable Order and Treewidth

- Junction trees generalize belief propagation to general graphs (requires ordering).
- $\bullet\,$ Computing ω and the optimal ordering is NP-hard.
 - But various heuristic ordering methods exist.
- An m_1 by m_2 lattice has $\omega = \min\{m_1, m_2\}$.
 - So you can do exact inference on "wide chains" with Junction tree.
 - But for 28 by 28 MNIST digits it would cost $O(784 \cdot 2^{29})$.
- Some links if you want to read about treewidth:
 - https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf
 - https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
- For some graphs $\omega = (d-1)$ so there is no gain over brute-force enumeration.
 - Many graphs have high treewidth so we need approximate inference.

Summary

- Undirected graphical models factorize probability into non-negative potentials.
 - Gaussians are a special case.
 - Log-linear models (like Ising) are a common choice.
 - Simple conditional independence properties.
- Moralization of DAGs to do decoding/inference/sampling as a UGM.
- Message passing can be used for inference in UGMs.
 - Belief propagation for trees.
 - Cost might be exponential for unfavourable graphs/ordering.
- Next time: our first visit to the wild world of approximate inference.

General Pairwise UGM

• For general discrete x_i a generalization of Ising models is

$$p(x_1, x_2, \dots, x_d) = \frac{1}{Z} \exp\left(\sum_{i=1}^d w_{i,x_i} + \sum_{(i,j)\in E} w_{i,j,x_i,x_j}\right),$$

which can represent any "positive" pairwise UGM (meaning p(x) > 0 for all x).

- Interpretation of weights for this UGM:
 - If $w_{i,1} > w_{i,2}$ then we prefer $x_i = 1$ to $x_i = 2$.
 - If $w_{i,j,1,1} > w_{i,j,2,2}$ then we prefer $(x_i = 1, x_j = 1)$ to $(x_i = 2, x_j = 2)$.
- As before, we can use parameter tieing:
 - We could use the same w_{i,x_i} for all positions *i*.
 - Ising model corresponds to a particular parameter tieing of the w_{i,j,x_i,x_j} .

Decomposable Graphical Models

- Probabilities whose conditional independences that can be represented as DAGs *and* UGMs are called decomposable.
 - Includes chains, trees, and fully-connected graphs.
- These models allow some efficient operations in UGMs by writing them as DAGs:
 - Computing p(x).
 - Ancestral sampling.
 - Fitting parameters independently.

Other Graphical Models

- Factor graphs: we use a square between variables that appear in same factor.
 - Can distinguish between a 3-way factor and 3 pairwise factors.
- Chain-graphs: DAGs where each block can be a UGM.
- Ancestral-graph:
 - Generalization of DAGs that is closed under conditioning.
- Structural equation models (SEMs): generalization of DAGs that allows cycles.