CPSC 540: Machine Learning

Undirected Graphical Models

Mark Schmidt

University of British Columbia

Winter 2020
Last Time: Learning and Inference in DAGs

- **Learning in DAG models:**
 - Given a graph structure, parameter estimation is modeling $p(x_j \mid x_{pa(j)})$.
 - We can use counting, or any method for supervised learning.
 - If we don’t have the graph structure, common to use greedy “search and score”.

- **Inference in DAG models:**
 - Inference tasks (decoding/marginalization/conditioning) are easy in trees.
 - Where we have at most one parent.
 - In non-trees, dynamic programming can be much more expensive.
 - We’ll discuss approximations soon.

- We motivated looking at undirected graphical models (UGMs):
 - Can make more sense if the variables don’t have a natural “ordering”.
Multi-Label Classification

- Consider automated heart wall abnormality detection:
 - Want to model if any of 16 areas of the heart are not moving properly.
 - Can potentially improve predictions by modeling correlations.
Ising Models from Statistical Physics

- The Ising model for binary x_i is defined by

$$ p(x_1, x_2, \ldots, x_d) \propto \exp \left(\sum_{i=1}^{d} x_i w_i + \sum_{(i,j) \in E} x_i x_j w_{ij} \right), $$

where E is the set of edges in an undirected graph.

- Called a log-linear model, because $\log p(x)$ is linear plus a constant.

- Consider using $x_i \in \{-1, 1\}$:
 - If $w_i > 0$ it encourages $x_i = 1$.
 - If $w_{ij} > 0$ it encourages neighbours i and j to have the same value.
 - E.g., neighbouring pixels in the image receive the same label (“attractive” model)

- We’re modeling dependencies, but haven’t assumed an “ordering”.
 - We often learn the w_i and w_{ij} from data.
 - Later, we’ll see how these could be output by a neural network.
Undirected Graphical Models

- Pairwise undirected graphical models (UGMs) assume $p(x)$ has the form

$$p(x) \propto \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{(i,j) \in E} \phi_{ij}(x_i, x_j) \right).$$

- The ϕ_j and ϕ_{ij} functions are called potential functions:
 - They can be any non-negative function.
 - Ordering doesn’t matter: more natural for things like pixels of an image.

- Ising model is a special case where

$$\phi_i(x_i) = \exp(x_i w_i), \quad \phi_{ij}(x_i, x_j) = \exp(x_i x_j w_{ij}).$$

- Bonus slides generalize Ising to non-binary case.
Gaussians as Undirected Graphical Models

- Multivariate Gaussian can be written as

\[
p(x) \propto \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \propto \exp \left(-\frac{1}{2} x^T \Sigma^{-1} x + \sum_i x_i \mu_i \right),
\]

and writing it in summation notation we can see that it’s a pairwise UGM:

\[
p(x) \propto \exp \left(-\frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d x_i x_j (\Sigma^{-1})_{ij} + \sum_{i=1}^d x_i v_i \right)
\]

\[
= \prod_{i=1}^d \prod_{j=1}^d \exp \left(-\frac{1}{2} x_i x_j (\Sigma^{-1})_{ij} \right) \prod_{i=1}^d \phi_i(x_i)
\]

- Above we include all edges. You can “remove” edges by setting \((\Sigma^{-1})_{ij} = 0\).
- “Gaussian graphical model” (GGM) or “Gaussian Markov random field” (GMRF).
Consider modeling the probability of a vector of labels $\bar{y} \in \mathbb{R}^t$ using

$$p(\bar{y}^1, \bar{y}^2, \ldots, \bar{y}^t) \propto \exp \left(- \sum_{i=1}^{n} \sum_{j=1}^{t} w_{ij} (y^i - \bar{y}^i)^2 - \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{ij} (\bar{y}^i - \bar{y}^j)^2 \right).$$

Decoding in this model is the label propagation problem.

This is a pairwise UGM:

$$\phi_j(\bar{y}^j) = \exp \left(- \sum_{i=1}^{n} w_{ij} (y^i - \bar{y}^j)^2 \right), \quad \phi_{ij}(\bar{y}^i, \bar{y}^j) = \exp \left(- \frac{1}{2} \bar{w}_{ij} (\bar{y}^i - \bar{y}^j)^2 \right).$$
It’s easy to check **conditional independence** in UGMs:

- \(A \perp B \mid C \) if \(C \) blocks all paths from any \(A \) to any \(B \).

Example:

\[A \not\perp C. \]
\[A \not\perp C \mid B. \]
\[A \perp C \mid B, E. \]
\[A, B \not\perp F \mid C \]
\[A, B \perp F \mid C, E. \]
Independence in Gaussians

- Independence in multivariate Gaussian:
 - In Gaussians, marginal independence is determined by covariance:
 \[x_i \perp x_j \iff \Sigma_{ij} = 0, \]
 (we previously saw diagonal \(\Sigma \) means all \(x_i \) independent).

- Gaussian conditional independence is determined by precision matrix sparsity.
 - Diagonal \(\Theta \) gives disconnected graph: all variables are independent.
 - Full \(\Theta \) gives fully-connected graph: there are no independences.

- Gaussians are pairwise UGMs with \(\phi_{ij}(x_i, x_j) = \exp \left(-\frac{1}{2} x_i x_j \Theta_{ij} \right) \),
 - Where \(\Theta_{ij} \) is element \((i, j)\) of \(\Sigma^{-1} \).

- If \(\Theta_{ij} \neq 0 \) we have an edge in the UGM (direct dependency between \(x_i \) and \(x_j \)).
 - Related to partial correlation which us \(-\Theta_{ij} / \sqrt{\Theta_{ii} \Theta_{jj}}\).
 - The “correlation after controlling for other variables”.
Independence in GGMs

- Consider a Gaussian with the following covariance matrix:

\[
\Sigma = \begin{bmatrix}
0.0494 & -0.0444 & -0.0312 & 0.0034 & -0.0010 \\
-0.0444 & 0.1083 & 0.0761 & -0.0083 & 0.0025 \\
-0.0312 & 0.0761 & 0.1872 & -0.0204 & 0.0062 \\
0.0034 & -0.0083 & -0.0204 & 0.0528 & -0.0159 \\
-0.0010 & 0.0025 & 0.0062 & -0.0159 & 0.2636
\end{bmatrix}
\]

- \(\Sigma_{ij} \neq 0\) so all variables are dependent: \(x_1 \not\perp x_2, x_1 \not\perp x_5,\) and so on.

- This would show up in graph: you would be able to reach any \(x_i\) from any \(x_j.\)

- The inverse is given by a tri-diagonal matrix:

\[
\Sigma^{-1} = \begin{bmatrix}
32.0897 & 13.1740 & 0 & 0 & 0 \\
13.1740 & 18.3444 & -5.2602 & 0 & 0 \\
0 & -5.2602 & 7.7173 & 2.1597 & 0 \\
0 & 0 & 2.1597 & 20.1232 & 1.1670 \\
0 & 0 & 0 & 1.1670 & 3.8644
\end{bmatrix}
\]

- So conditional independence is described by a Markov chain:

\[
p(x_1 \mid x_2, x_3, x_4, x_5) = p(x_1 \mid x_2).
\]
Graphical Lasso

- Conditional independence in Gaussians is described by sparsity in $\Theta = \Sigma^{-1}$.
 - Setting a Θ_{ij} to 0 removes an edge from the graph.

- Recall fitting multivariate Gaussian with $L1$-regularization,
 $$\arg\min_{\Theta \succ 0} \text{Tr}(S\Theta) - \log |\Theta| + \lambda\|\Theta\|_1,$$
 which is called the graphical Lasso because it encourages a sparse graph.

- Graphical Lasso is a convex approach to structure learning for GGMs.
Higher-Order Undirected Graphical Models

- In UGMs, we can also define potentials on higher-order interactions.
 - A three-variable generalization of Ising potentials is:
 \[\phi_{ijk}(x_i, x_j, x_k) = w_{ijk}x_ix_jx_k. \]

 - If \(w_{ijk} > 0 \) and \(x_j \in \{0, 1\} \), encourages you to set all three to 1.
 - If \(w_{ijk} > 0 \) and \(x_j \in \{-1, 1\} \), encourages odd number of positives.

- In the general case, a UGM just assumes \(p(x) \) factorizes over subsets \(c \),
 \[p(x_1, x_2, \ldots, x_d) \propto \prod_{c \in C} \phi_c(x_c), \]
 from among a collection of subsets of \(C \).

- In this case, graph has edge \((i, j)\) if \(i \) and \(j \) are together in at least one \(c \).
 - Conditional independences are still given by graph separation.
Factor Graphs

- **Factor graphs** are a way to visualize UGMs that distinguishes different orders.
 - Use circles for variables, squares to represent dependencies.

- Factor graph of \(p(x_1, x_2, x_3) \propto \phi_{12}(x_1, x_2) \phi_{13}(x_1, x_3) \phi_{23}(x_2, x_3) \):

- Factor graph of \(p(x_1, x_2, x_3) \propto \phi_{123}(x_1, x_2, x_3) \):
Outline

1. Undirected Graphical Models
2. Exact Inference in UGMs
Tractability of UGMs

- Without using \propto, a UGM probability would be
 \[p(x) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c), \]
 where Z is the constant that makes the probabilities sum up to 1.

 \[Z = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_d} \prod_{c \in C} \phi_c(x_c) \quad \text{or} \quad Z = \int_{x_1} \int_{x_2} \cdots \int_{x_d} \prod_{c \in C} \phi_c(x_c) \, dx_d \, dx_{d-1} \cdots \, dx_1. \]

- Whether you can compute Z depends on the choice of the ϕ_c:
 - Gaussian case: $O(d^3)$ in general, but $O(d)$ for forests (no loops).
 - Continuous non-Gaussian: usually requires numerical integration.
 - Discrete case: $\#P$-hard in general, but $O(dk^2)$ for forests (no loops).
Discrete DAGs vs. Discrete UGMs

- Common inference tasks in graphical models:
 1. Compute $p(x)$ for an assignment to the variables x.
 2. Generate a sample x from the distribution.
 3. Compute univariate marginals $p(x_j)$.
 4. Compute decoding argmax$_x p(x)$.
 5. Compute univariate conditional $p(x_j | x_{j'})$.

With discrete x_i, all of the above are easy in tree-structured graphs.
- For DAGs, a tree-structured graph has at most one parent.
- For UGMs, a tree-structured graph has no cycles.

With discrete x_i, the above may be harder for general graphs:
- In DAGs the first two are easy, the others are NP-hard.
- In UGMs all of these are NP-hard.
Moralization: Converting DAGs to UGMs

- To address the NP-hard problems, DAGs and UGMs use same techniques.
- We’ll focus on UGMs, but we can convert DAGs to UGMs:

\[
p(x_1, x_2, \ldots, x_d) = \prod_{j=1}^{d} p(x_j | x_{pa(j)}) = \prod_{j=1}^{d} \phi_j(x_j, x_{pa(j)}),
\]

which is a UGM with \(Z = 1 \).
- Graphically: we drop directions and “marry” parents (moralization).

- May lose some conditional independences, but doesn’t change computational cost.
Easy Cases: Chains, Trees and Forests

- The forward-backward algorithm still works for chain-structured UGMs:
 - We compute the forward messages M and the backwards messages V.
 - With both M and V we can [conditionally] decode/marginalize/sample.

- Belief propagation generalizes this to trees:
 - Pick an arbitrary node as the “root”, and order the nodes going away from the root.
 - Pass messages starting from the “leaves” going towards the root.
 - “Root” is like the last node in a Markov chain.
 - Backtrack from root to leaves to do decoding/sampling.
 - Send messages from the root going to the leaves to compute all marginals.

Easy Cases: Chains, Trees and Forests

- Recall the CK equations in Markov chains:

$$M_c(x_c) = \sum_{x_p} p(x_c | x_p) M_p(x_p).$$

- For chain-structure UGMs we would have:

$$M_c(x_c) \propto \sum_{x_p} \phi(x_p) \phi(x_p, x_c) M_p(x_p).$$

- In tree-structured UGMs, parent p in the ordering may have multiple parents.

- Message coming from “parent” p that has parents j and k would be

$$M_{pc}(x_c) \propto \sum_{x_p} \phi_i(x_p) \phi_{pc}(x_p, x_c) M_{jp}(x_p) M_{kp}(x_p),$$

- Univariate marginals are proportional to $\phi_i(x_i)$ times all “incoming” messages.
 - The “forward” and “backward” Markov chain messages are a special case.
 - Replace $\sum x_i$ with $\max x_i$ for decoding.
 - “Sum-product” and “max-product” algorithms.
Exact Inference in UGMs

- Message passing is also efficient in some non-tree graphs.

- For example, computing Z in a simple 4-node cycle could be done using:

$$Z = \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \phi_{34}(x_3, x_4) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) \sum_{x_1} \phi_{12}(x_1, x_2) \phi_{14}(x_1, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) \sum_{x_2} \phi_{23}(x_2, x_3) M_{24}(x_2, x_4)$$

$$= \sum_{x_4} \sum_{x_3} \phi_{34}(x_3, x_4) M_{34}(x_3, x_4) = \sum_{x_4} M_4(x_4).$$

- Message-passing cost depends on graph structure and the order of the sums.
Exact Inference in UGMs

- To see the effect of the order, consider Markov chain inference with bad ordering:

\[
p(x_5) = \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1)p(x_2 | x_1)p(x_3 | x_2)p(x_4 | x_3)p(x_5 | x_4)
\]

\[
= \sum_{x_5} \sum_{x_4} \sum_{x_3} \sum_{x_2} p(x_1)p(x_2 | x_1)p(x_3 | x_2)p(x_4 | x_3)p(x_5 | x_4)
\]

\[
= \sum_{x_5} \sum_{x_1} \sum_{x_3} \sum_{x_4} p(x_1)p(x_4 | x_3)p(x_5 | x_4) \sum_{x_2} p(x_2 | x_1)p(x_3 | x_2)
\]

\[
\sum_{x_2} p(x_2 | x_1)p(x_3 | x_2) = M_{13}(x_1,x_3)
\]

- So even though we have a chain, we have an M with k^2 values instead of k.
- Inference can be exponentially more expensive with the wrong ordering.
Variable Order and Treewidth

- So cost of message passing depends on:
 1. Graph structure.
 2. Variable order.

- Cost of message passing is given by $O(dk^{\omega+1})$.
 - Here, ω is the size of the largest message.
 - For trees, $\omega = 1$ so we get our usual cost of $O(dk^2)$.

- The minimum value of ω across orderings for a given graph is called treewidth.
 - In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.
 - Also called “graph dimension” or “ω-tree”.

- Intuitively, you can think of low treewidth as being “close to a tree”.
Examples of k-trees:

- 1-tree
- 2-tree
- 3-tree

2-tree and 3-tree are trees if you use dotted circles to group nodes.
Treewidth Examples

- Trees have $\omega = 1$, so with the right order inference costs $O(dk^2)$.

- A big loop has $\omega = 2$, so cost with the right ordering is $O(dk^3)$.

- The below grid-like structure has $\omega = 3$, so cost is $O(dk^4)$.
Variable Order and Treewidth

- **Junction trees** generalize belief propagation to general graphs (requires ordering).
- Computing ω and the optimal ordering is NP-hard.
 - But various heuristic ordering methods exist.

- An m_1 by m_2 lattice has $\omega = \min\{m_1, m_2\}$.
 - So you can do exact inference on “wide chains” with Junction tree.
 - But for 28 by 28 MNIST digits it would cost $O(784 \cdot 2^{29})$.
- Some links if you want to read about treewidth:
 - https://www.win.tue.nl/~nikhil/courses/2015/2W008/treewidth-erickson.pdf

- For some graphs $\omega = (d - 1)$ so there is no gain over brute-force enumeration.
 - Many graphs have high treewidth so we need **approximate inference**.
Summary

- **Undirected graphical models** factorize probability into non-negative potentials.
 - Gaussians are a special case.
 - Log-linear models (like Ising) are a common choice.
 - Simple conditional independence properties.

- Moralization of DAGs to do decoding/inference/sampling as a UGM.

- Message passing can be used for inference in UGMs.
 - Belief propagation for trees.
 - Cost might be exponential for unfavourable graphs/ordering.

- Next time: our first visit to the wild world of approximate inference.
General Pairwise UGM

- For general discrete x_i a generalization of Ising models is

$$p(x_1, x_2, \ldots, x_d) = \frac{1}{Z} \exp \left(\sum_{i=1}^{d} w_{i,x_i} + \sum_{(i,j) \in E} w_{i,j,x_i,x_j} \right),$$

which can represent any “positive” pairwise UGM (meaning $p(x) > 0$ for all x).

- Interpretation of weights for this UGM:
 - If $w_{i,1} > w_{i,2}$ then we prefer $x_i = 1$ to $x_i = 2$.
 - If $w_{i,j,1,1} > w_{i,j,2,2}$ then we prefer $(x_i = 1, x_j = 1)$ to $(x_i = 2, x_j = 2)$.

- As before, we can use parameter tying:
 - We could use the same w_{i,x_i} for all positions i.
 - Ising model corresponds to a particular parameter tying of the w_{i,j,x_i,x_j}.
Decomposable Graphical Models

- Probabilities whose conditional independences that can be represented as DAGs and UGMs are called decomposable.
 - Includes chains, trees, and fully-connected graphs.

- These models allow some efficient operations in UGMs by writing them as DAGs:
 - Computing $p(x)$.
 - Ancestral sampling.
 - Fitting parameters independently.
Other Graphical Models

- **Factor graphs**: we use a square between variables that appear in same factor.
 - Can distinguish between a 3-way factor and 3 pairwise factors.

- **Chain-graphs**: DAGs where each block can be a UGM.

- **Ancestral-graph**: Generalization of DAGs that is closed under conditioning.

- **Structural equation models (SEMs)**: generalization of DAGs that allows cycles.