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Undirected Graphical Models Exact Inference in UGMs

Last Time: Learning and Inference in DAGs

Learning in DAG models:
Given a graph structure, parameter estimation is modeling p(xj | xpa(j)).

We can use counting, or any method for supervised learning.

If we don’t have the graph structure, common to use greedy “search and score”.

Inference in DAG models:
Inference tasks (decoding/marginalization/conditioning) are easy in trees.

Where we have at most one parent.

In non-trees, dynamic programming can be much more expensive.

We’ll discuss approximations soon.

We motivated looking at undirected graphical models (UGMs):

Can make more sense if the variables don’t have a natural “ordering”.
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Multi-Label Classification
Consider automated heart wall abnormality detection:

Want to model if any of 16 areas of the heart are not moving properly.
Can potentially improve predictions by modeling correlations.
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Ising Models from Statistical Physics

The Ising model for binary xi is defined by

p(x1, x2, . . . , xd) ∝ exp

 d∑
i=1

xiwi +
∑

(i,j)∈E

xixjwij

 ,

where E is the set of edges in an undirected graph.
Called a log-linear model, because log p(x) is linear plus a constant.

Consider using xi ∈ {−1, 1}:
If wi > 0 it encourages xi = 1.
If wij > 0 it encourages neighbours i and j to have the same value.

E.g., neighbouring pixels in the image receive the same label (“attractive” model)

We’re modeling dependencies, but haven’t assumed an “ordering”.
We often learn the wi and wij from data.
Later, we’ll see how these could be output by a neural network.
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Undirected Graphical Models

Pairwise undirected graphical models (UGMs) assume p(x) has the form

p(x) ∝

 d∏
j=1

φj(xj)

 ∏
(i,j)∈E

φij(xi, xj)

 .

The φj and φij functions are called potential functions:

They can be any non-negative function.
Ordering doesn’t matter: more natural for things like pixels of an image.

Ising model is a special case where

φi(xi) = exp(xiwi), φij(xi, xj) = exp(xixjwij).

Bonus slides generalize Ising to non-binary case.
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Gaussians as Undirected Graphical Models
Multivariate Gaussian can be written as

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
∝ exp

−1

2
xTΣ−1x+ xT Σ−1µ︸ ︷︷ ︸

v

 ,

and writing it in summation notation we can see that it’s a pairwise UGM:

p(x) ∝ exp(

−1

2

d∑
i=1

d∑
j=1

xixj(Σ
−1)ij +

d∑
i=1

xivi



=


d∏
i=1

d∏
j=1

exp

(
−1

2
xixj(Σ

−1)ij

)
︸ ︷︷ ︸

φij(xi,xj)


 d∏
i=1

exp (xivi)︸ ︷︷ ︸
φi(xi)


Above we include all edges. You can “remove” edges by setting (Σ−1)ij = 0.

“Gaussian graphical model” (GGM) or “Gaussian Markov random field” (GMRF).
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Label Propagation as a UGM

Consider modeling the probability of a vector of labels ȳ ∈ Rt using

p(ȳ1, ȳ2, . . . , ȳt) ∝ exp

− n∑
i=1

t∑
j=1

wij(y
i − ȳi)2 − 1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2

 .

Decoding in this model is the label propagation problem.

This is a pairwise UGM:

φj(ȳ
j) = exp

(
−

n∑
i=1

wij(y
i − ȳj)2

)
, φij(ȳ

i, ȳj) = exp

(
−1

2
w̄ij(ȳ

i − ȳj)2

)
.
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Conditional Independence in Undirected Graphical Models

It’s easy to check conditional independence in UGMs:

A ⊥ B | C if C blocks all paths from any A to any B.

Example:

A 6⊥ C.
A 6⊥ C | B.
A ⊥ C | B,E.
A,B 6⊥ F | C
A,B ⊥ F | C,E.
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Independence in Gaussians
Independence in multivariate Gaussian:

In Gaussians, marginal independence is determined by covariance:

xi ⊥ xj ⇔ Σij = 0,

(we previously saw diagonal Σ means all xi independent).

Gaussian conditional independence is determined by precision matrix sparsity.
Diagonal Θ gives disconnected graph: all variables are independent.
Full Θ gives fully-connected graph: there are no independences.

Gaussians are pairwise UGMs with φij(xi, xj) = exp
(
−1

2xixjΘij

)
,

Where Θij is element (i, j) of Σ−1.

If Θij 6= 0 we have an edge in the UGM (direct dependency between xi and xj).
Related to partial correlation which us −Θij/

√
ΘiiΘjj .

The “correlation after controlling for other variables”.
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Independence in GGMs
Consider a Gaussian with the following covariance matrix:

Σ =


0.0494 −0.0444 −0.0312 0.0034 −0.0010
−0.0444 0.1083 0.0761 −0.0083 0.0025
−0.0312 0.0761 0.1872 −0.0204 0.0062
0.0034 −0.0083 −0.0204 0.0528 −0.0159
−0.0010 0.0025 0.0062 −0.0159 0.2636


Σij 6= 0 so all variables are dependent: x1 6⊥ x2, x1 6⊥ x5, and so on.

This would show up in graph: you would be able to reach any xi from any xj .
The inverse is given by a tri-diagonal matrix:

Σ−1 =


32.0897 13.1740 0 0 0
13.1740 18.3444 −5.2602 0 0

0 −5.2602 7.7173 2.1597 0
0 0 2.1597 20.1232 1.1670
0 0 0 1.1670 3.8644


So conditional independence is described by a Markov chain:

p(x1 | x2, x3, x4, x5) = p(x1 | x2).
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Graphical Lasso

Conditional independence in Gaussians is described by sparsity in Θ = Σ−1.

Setting a Θij to 0 removes an edge from the graph.

Recall fitting multivariate Gaussian with L1-regularization,

argmin
Θ�0

Tr(SΘ)− log |Θ|+ λ‖Θ‖1,

which is called the graphical Lasso because it encourages a sparse graph.

Graphical Lasso is a convex approach to structure learning for GGMs.

Examples: https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models.

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Higher-Order Undirected Graphical Models

In UGMs, we can also define potentials on higher-order interactions.
A three-variable generalization of Ising potentials is:

φijk(xi, xj , xk) = wijkxixjxk.

If wijk > 0 and xj ∈ {0, 1}, encourages you to set all three to 1.
If wijk > 0 and xj ∈ {−1, 1}, encourages odd number of positives.

In the general case, a UGM just assumes p(x) factorizes over subsets c,

p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

from among a collection of subsets of C.

In this case, graph has edge (i, j) if i and j are together in at least one c.
Conditional independences are still given by graph separation.
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Factor Graphs
Factor graphs are a way to visualize UGMs that distinguishes different orders.

Use circles for variables, squares to represent dependencies.

Factor graph of p(x1, x2, x3) ∝ φ12(x1, x2)φ13(x1, x3)φ23(x2, x3):

Factor graph of p(x1, x2, x3) ∝ φ123(x1, x2, x3):
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Outline

1 Undirected Graphical Models

2 Exact Inference in UGMs
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Tractability of UGMs

Without using ∝, a UGM probability would be

p(x) =
1

Z

∏
c∈C

φc(xc),

where Z is the constant that makes the probabilites sum up to 1.

Z =
∑
x1

∑
x2

· · ·
∑
xd

∏
c∈C

φc(xc) or Z =

∫
x1

∫
x2

· · ·
∫
xd

∏
c∈C

φc(xc)dxddxd−1 . . . dx1.

Whether you can compute Z depends on the choice of the φc:

Gaussian case: O(d3) in general, but O(d) for forests (no loops).
Continuous non-Gaussian: usually requires numerical integration.
Discrete case: #P-hard in general, but O(dk2) for forests (no loops).
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Discrete DAGs vs. Discrete UGMs

Common inference tasks in graphical models:
1 Compute p(x) for an assignment to the variables x.
2 Generate a sample x from the distribution.
3 Compute univariate marginals p(xj).
4 Compute decoding argmaxx p(x).
5 Compute univariate conditional p(xj | xj′).

With discrete xi, all of the above are easy in tree-structured graphs.

For DAGs, a tree-structured graph has at most one parent.
For UGMs, a tree-structured graph has no cycles.

With discrete xi, the above may be harder for general graphs:

In DAGs the first two are easy, the others are NP-hard.
In UGMs all of these are NP-hard.
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Moralization: Converting DAGs to UGMs
To address the NP-hard problems, DAGs and UGMs use same techniques.
We’ll focus on UGMs, but we can convert DAGs to UGMs:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)) =

d∏
j=1

φj(xj , xpa(j))︸ ︷︷ ︸
=p(xj | xpa(j))

,

which is a UGM with Z = 1.
Graphically: we drop directions and “marry” parents (moralization).

May lose some conditional independences, but doesn’t change computational cost.
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Easy Cases: Chains, Trees and Forests
The forward-backward algorithm still works for chain-structured UGMs:

We compute the forward messages M and the backwards messages V .
With both M and V we can [conditionally] decode/marginalize/sample.

Belief propagation generalizes this to trees:
Pick an arbitrary node as the “root”, and order the nodes going away from the root.

Pass messages starting from the “leaves” going towards the root.
“Root” is like the last node in a Markov chain.

Backtrack from root to leaves to do decoding/sampling.
Send messages from the root going to the leaves to compute all marginals.

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Easy Cases: Chains, Trees and Forests
Recall the CK equations in Markov chains:

Mc(xc) =
∑
xp

p(xc | xp)Mp(xp).

For chain-structure UGMs we would have:

Mc(xc) ∝
∑
xp

φ(xp)φ(xp, xc)Mp(xp).

In tree-structured UGMs, parent p in the ordering may have multiple parents.
Message coming from “parent” p that has parents j and k would be

Mpc(xc) ∝
∑
xp

φi(xp)φpc(xp, xc)Mjp(xp)Mkp(xp),

Univariate marginals are proportional to φi(xi) times all “incoming” messages.
The“forward” and “backward” Markov chain messages are a special case.
Replace

∑
xi

with maxxi for decoding.
“Sum-product” and “max-product” algorithms.
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Exact Inference in UGMs

Message passing is also efficient in some non-tree graphs.

For example, computing Z in a simple 4-node cycle could be done using:

Z =
∑
x4

∑
x3

∑
x2

∑
x1

φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)
∑
x1

φ12(x1, x2)φ14(x1, x4)

=
∑
x4

∑
x3

φ34(x3, x4)
∑
x2

φ23(x2, x3)M24(x2, x4)

=
∑
x4

∑
x3

φ34(x3, x4)M34(x3, x4) =
∑
x4

M4(x4).

Message-passing cost depends on graph structure and the order of the sums.
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Exact Inference in UGMs

To see the effect of the order, consider Markov chain inference with bad ordering:

p(x5) =
∑
x5

∑
x4

∑
x3

∑
x2

∑
x1

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

∑
x4

∑
x3

∑
x2

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)p(x5 | x4)

=
∑
x5

∑
x1

p(x1)
∑
x3

∑
x4

p(x4 | x3)p(x5 | x4)
∑
x2

p(x2 | x1)p(x3 | x2)︸ ︷︷ ︸
M13(x1,x3)

So even though we have a chain, we have an M with k2 values instead of k.

Inference can be exponentially more expensive with the wrong ordering.
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Variable Order and Treewidth

So cost of message passing depends on
1 Graph structure.
2 Variable order.

Cost of message passing is given by O(dkω+1).

Here, ω is the size of the largest message.
For trees, ω = 1 so we get our usual cost of O(dk2).

The minimum value of ω across orderings for a given graph is called treewidth.
In terms of graph: “minimum size of largest clique, minus 1, over all triangulations”.

Also called “graph dimension” or “ω-tree”.

Intuitively, you can think of low treewidth as being “close to a tree”.
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Treewidth Examples

Examples of k-trees:

2-tree and 3-tree are trees if you use dotted circles to group nodes.
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Treewidth Examples

Trees have ω = 1, so with the right order inference costs O(dk2).

A big loop has ω = 2, so cost with the right ordering is O(dk3).

The below grid-like structure has ω = 3, so cost is O(dk4).
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Variable Order and Treewidth

Junction trees generalize belief propagation to general graphs (requires ordering).

Computing ω and the optimal ordering is NP-hard.

But various heuristic ordering methods exist.

An m1 by m2 lattice has ω = min{m1,m2}.
So you can do exact inference on “wide chains” with Junction tree.
But for 28 by 28 MNIST digits it would cost O(784 · 229).

Some links if you want to read about treewidth:
https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf

https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf

For some graphs ω = (d− 1) so there is no gain over brute-force enumeration.

Many graphs have high treewidth so we need approximate inference.

https://www.win.tue.nl/~nikhil/courses/2015/2WO08/treewidth-erickson.pdf
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Gerrod_Voigt_final_paper.pdf
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Summary

Undirected graphical models factorize probability into non-negative potentials.

Gaussians are a special case.
Log-linear models (like Ising) are a common choice.
Simple conditional independence properties.

Moralization of DAGs to do decoding/inference/sampling as a UGM.

Message passing can be used for inference in UGMs.

Belief propagation for trees.
Cost might be exponential for unfavourable graphs/ordering.

Next time: our first visit to the wild world of approximate inference.
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General Pairwise UGM

For general discrete xi a generalization of Ising models is

p(x1, x2, . . . , xd) =
1

Z
exp

 d∑
i=1

wi,xi +
∑

(i,j)∈E

wi,j,xi,xj

 ,

which can represent any “positive” pairwise UGM (meaning p(x) > 0 for all x).

Interpretation of weights for this UGM:

If wi,1 > wi,2 then we prefer xi = 1 to xi = 2.
If wi,j,1,1 > wi,j,2,2 then we prefer (xi = 1, xj = 1) to (xi = 2, xj = 2).

As before, we can use parameter tieing:

We could use the same wi,xi
for all positions i.

Ising model corresponds to a particular parameter tieing of the wi,j,xi,xj
.
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Decomposable Graphical Models

Probabilities whose conditional independences that can be represented as DAGs
and UGMs are called decomposable.

Includes chains, trees, and fully-connected graphs.

These models allow some efficient operations in UGMs by writing them as DAGs:

Computing p(x).
Ancestral sampling.
Fitting parameters independently.
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Other Graphical Models

Factor graphs: we use a square between variables that appear in same factor.

Can distinguish between a 3-way factor and 3 pairwise factors.

Chain-graphs: DAGs where each block can be a UGM.

Ancestral-graph:

Generalization of DAGs that is closed under conditioning.

Structural equation models (SEMs): generalization of DAGs that allows cycles.
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