CPSC 540: Machine Learning More DAGs

Mark Schmidt

University of British Columbia

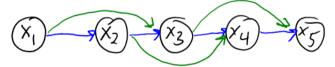
Winter 2020

Last Time: Directed Acyclic Graphical (DAG) Models

• DAG models use a factorization of the joint distribution,

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j \mid x_{\mathsf{pa}(j)}),$$

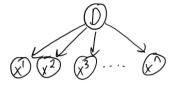
• We visualize the assumptions made by the model as a graph:



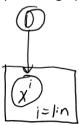
- D-separation can be used to "read" conditional independence from graph.
 - Can be derived by considering DAG as "inheritance of genes".

Plate Notation

• Graphical representation of the IID assumption:

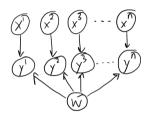


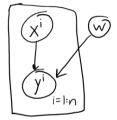
• It's common to represent repeated parts of graphs using plate notation:



Tilde Notation as a DAG

ullet If the x^i are IID then we can represent regression as





or

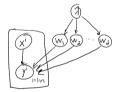
- From d-separation on this graph we have $p(y \mid X, w) = \prod_{i=1}^{n} p(y^i \mid x^i, w)$.
- \bullet We often omit the data-generating distribution D.
 - But if you want to learn then you should remember that it's there.
- Note that plate reflects parameter tieing: that we use same w for all i.

Tilde Notation as a DAG

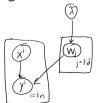
• When we do MAP estimation under the assumptions

$$y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$$

we can interpret it as the DAG model:



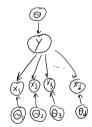
• Or introducing a second plate using:



Other Models in DAG/Plate Notation

• For naive Bayes we have

$$y^i \sim \mathsf{Cat}(\theta), \quad x^i \mid y^i = c \sim Cat(\theta_c).$$



Or in plate notation as

Outline

- Learning and Inference in DAGs
- 2 Undirected Graphical Models

Parameter Learning in General DAG Models

• The log-likelihood in DAG models is separable in the conditionals,

$$\log p(x \mid \Theta) = \log \prod_{j=1}^{d} p(x_j \mid x_{\mathsf{pa}(j)}, \Theta_j)$$
$$= \sum_{j=1}^{d} \log p(x_j \mid x_{\mathsf{pa}(j)}, \Theta_j)$$

- If each $p(x_j \mid x_{pa(j)})$ has its own parameters Θ_j , we can fit them independently.
 - We've done this before: naive Bayes, Gaussian discriminant analysis, mixtures, etc.
- Sometimes you want to have tied parameters $(\Theta_i = \Theta_{i'})$
 - Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
 - Still easy, but need to fit $p(x_j \mid x_{pa(j)}, \Theta_j)$ and $p(x_{j'} \mid x_{pa(j')}, \Theta_j)$ together.

Tabular Parameterization in DAG Models

- To specify distribution, we need to decide on the form of $p(x_j \mid x_{pa(j)}, \Theta_j)$.
- For discrete data a default choice is the tabular parameterization:

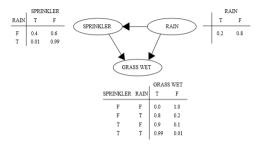
$$p(x_j \mid x_{\mathsf{pa}(j)}, \Theta_j) = \theta_{x_j, x_{\mathsf{pa}(j)}} \quad \text{(one parameter per child/parent combo)},$$
 as we did for Markov chains (but now with multiple parents).

• Intuitive: just need conditional probabilities of children given parents like

$$p(\text{``wet grass''} = 1 \mid \text{``sprinkler''} = 1, \text{``rain''} = 0),$$

and MLE is just counting.

Tabular Parameterization Example



https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

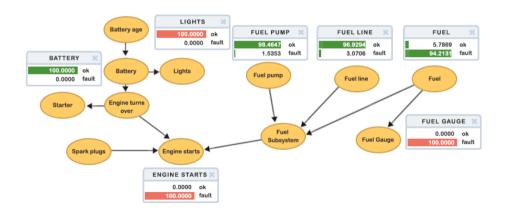
$$p(R=1) = 0.2.$$

$$p(G = 1 \mid S = 0, R = 1) = 0.8.$$

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

Tabular Parameterization Example

Some companies sell software to help companies reason using tabular DAGs:



Fitting DAGs using Supervised Learning

- But tabular parameterization requires too many parameters:
 - With binary states and k parents, need 2^{k+1} parameters.
- One solution is letting users specify a "parsimonious" parameterization:
 - Typically have a linear number of parameters.
 - For example, the "noisy-or" model: $p(x_j \mid x_{\mathsf{pa}(j)}) = 1 \prod_{k \in \mathsf{pa}(j)} q_k$.
 - "Estimate probability that each symptom leads to disease on its own".
- But if we have data, we can use supervised learning.
 - Write fitting $p(x_i \mid x_{pa(i)})$ as our usual $p(y \mid x)$ problem.
 - Predicting one column of X given the values of some other columns.

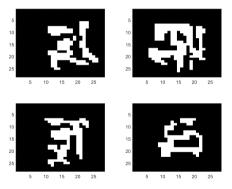
Fitting DAGs using Supervised Learning

- For j = 1 : d:

 - ② Solve a supervised learning problem using $\{\bar{X}, \bar{y}\}$.
 - Gives you a model of $p(x_j \mid x_{pa(j)})$.
- ullet Use the d regression/classification models as the density estimator.
- We've turned unsupervised learning into supervised learning.
- We can use our usual tricks:
 - Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
 - With least squares it's called a Gaussian belief network.
 - With logistic regression it's called a sigmoid belief networks.
 - Don't need Markov assumptions to tractably fit these models.

MNIST Digits with Tabular DAG Model

• Recall our latest MNIST model using a tabular DAG:

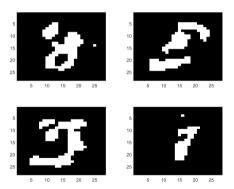


• This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:

(DAG with logistic regression for each variable)



where we use all previous pixels as parents (from 0 to 783 parents).

• Models long-range dependencies but has a linear assumption.

DAGs: Big Picture

- Setting the parameters of a DAG model:
 - Get the graph from an expert, or learn the graph (later).
 - Given the conditional probabilities from an expert, or learn them from data.
 - Counting or supervised learning, and EM if you have hidden/missing values.
- Inference in DAG models:
 - Can use Monte Carlo approximations with ancestral sampling:
 - Sample x_1 from $p(x_1)$, x_2 from $p(x_2 \mid x_{\mathsf{pa}(2)})$, x_3 from $p(x_3 \mid x_{\mathsf{pa}(3)})$,...
 - Can use dynamic programming for exact inference with discrete x_i .
 - Also works if all $p(x_i \mid x_{pa(i)})$ are Gaussian.

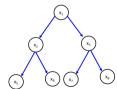
Inference in Forest DAGs

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

which works if each node has at most one parent.

- Such graphs are called trees (connected), or forests (disconnected).
 - Also called "singly-connected".



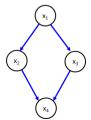
- Forests allow efficient dynamic programming methods as in Markov chains.
 - In particular, decoding and univariate marginals/conditionals in $O(dk^2)$.
 - Message passing applied to tree-structured graphs is called belief propagation.

Inference in General DAGs

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s \mid x_{\mathsf{pa}(j)})}_{\mathsf{given}} p(x_{\mathsf{pa}(j)}).$$

- What goes wrong if nodes have multiple parents?
 - The expression $p(x_{pa(j)})$ is a joint distribution depending on multiple variables.
- Consider the non-tree graph:



Inference in General DAGs

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 \mid x_2, x_3) p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)$$

$$= \sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) \underbrace{\sum_{x_1} p(x_3 \mid x_1) p(x_2 \mid x_1) p(x_1)}_{M_{23}(x_2, x_3)}$$

• Dependencies between $\{x_1, x_2, x_3\}$ mean our message depends on two variables.

$$p(x_4) = \sum_{x_3} \sum_{x_2} p(x_4 \mid x_2, x_3) M_{23}(x_2, x_3)$$
$$= \sum_{x_3} M_{34}(x_3, x_4),$$

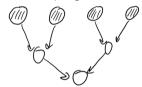
Inference in General DAGs

- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 > x_4$, then the cost is $O(dk^4)$.

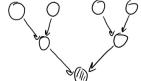
 (the same cost as enumerating all possible assignments)
- Unfortunately, cost is not as simple as counting number of parents.
 - Even if each node has 2 parents, we may need huge messages.
 - Decoding is NP-hard and computing marginals is #P-hard in general.
 - We'll see later that maximum message size is "treewidth" of a particular graph.
- On the other hand, ancestral sampling is easy:
 - We can obtain Monte Carlo estimates of solutions to these NP-hard problems.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.
- For example, easy if we condition on the first variables in the order:
 - Just fix these and run ancestral sampling.



- Hard to condition on the last variables in the order:
 - Conditioning on descendent makes ancestors dependent.

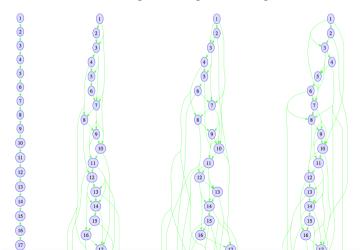


DAG Structure Learning

- Structure learning is the problem of choosing the graph.
 - Input is data X.
 - Output is a graph G.
- The "easy" case is when we're given the ordering of the variables.
 - So the parents of j must be chosen from $\{1, 2, \dots, j-1\}$.
- Given the ordering, structure learning reduces to feature selection:
 - Select features $\{x_1, x_2, \dots, x_{j-1}\}$ that best predict "label" x_j .
 - ullet We can use any feature selection method to solve these d problems.

Example: Structure Learning in Rain Data Given Ordering

- Structure learning in rain data using L1-regularized logistic regression.
 - For different λ values, assuming chronological ordering.

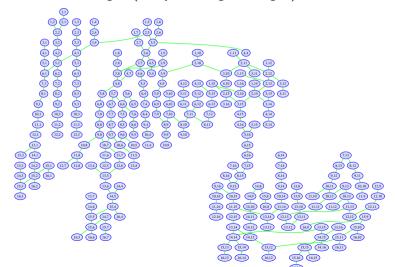


DAG Structure Learning without an Ordering

- Without an ordering, a common approach is "search and score"
 - Define a score for a particular graph structure (like BIC or other L0-regularizers).
 - Search through the space of possible DAGs.
 - "DAG-Search": at each step greedily add, remove, or reverse an edge.
- May have equivalent graphs with the same score (don't trust edge direction).
 - Do not interpret causally a graph learned from data.
- Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
 - For symmetric scores, can be found by minimum spanning tree ("Chow-Liu").
 - For asymetric scores, can be found by minimum spanning arborescence.

Structure Learning on USPS Digits

An optimal tree on USPS digits (16 by 16 images of digits).



20 Newsgroups Data

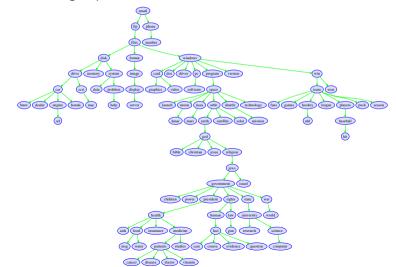
• Data containing presence of 100 words from newsgroups posts:

car	drive	files	hockey	mac	league	рс	win
0	0	1	0	1	0	1	0
0	0	0	1	0	1	0	1
1	1	0	0	0	0	0	0
0	1	1	0	1	0	0	0
0	0	1	0	0	0	1	1

• Structure learning should give some relationship between word occurrences.

Structure Learning on News Words

Optimal tree on newsgroups data:



Outline

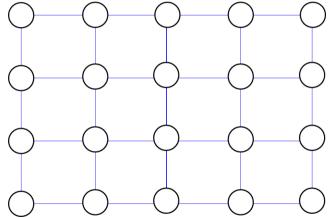
- Learning and Inference in DAGs
- Undirected Graphical Models

Directed vs. Undirected Models

- In some applications we have a natural ordering of the x_i .
 - In the "rain" data, the past affects the future.
- In some applications we don't have a natural order.
 - E.g., pixels in an image.
- In these settings we often use undirected graphical models (UGMs).
 - Also known as Markov random fields (MRFs) and originally from statistical physics.

Directed vs. Undirected Models

• Undirected graphical models are based on undirected graphs:



- They are a classic way to model dependencies in images:
 - Can capture dependencies between neighbours without imposing an ordering.

Multi-Label Classification

Consider multi-label classification:

sky/plant life/tree

water/animals/sea

animals/dog/indoor

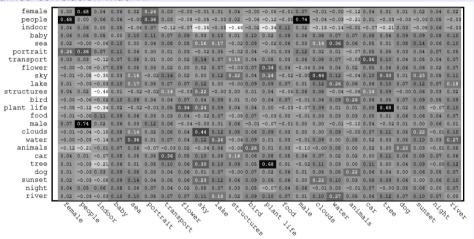
indoor/flower/plant life

http://proceedings.mlr.press/v37/chenb15.pdf

- Flickr dataset: each image can have multiple labels (out of 38 possibilities).
- Use neural networks to generate "factors" in an undirected model.
 - Decoding undirected model makes predictions accounting for label correlations.
 - We'll discuss how neural networks and density models fit together later.

Multi-Label Classification

Learned correlation matrix:



Summary

- Plate Notation lets us compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_j \mid x_{pa(j)})$ independently.
 - Tabular parameterization, or treat as supervised learning.
- Inference in DAGs:
 - Ancestral sampling and Monte Carlo methods work as before.
 - Message-passing message sizes depend on graph structure.
- Structure learning is the problem of learning the graph structure.
 - Hard in general, but easy for trees and L1-regularization gives fast heuristic.
- Next time: undirected models

Other Models in DAG/Plate Notation

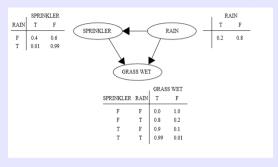
ullet In a full Gaussian model for a single x we have

$$x^i \sim \mathcal{N}(\mu, \Sigma).$$

For mixture of Gaussians we have

$$z^i \sim \mathsf{Cat}(\theta), \quad x^i \mid z^i = c \sim \mathcal{N}(\mu_c, \Sigma_c).$$

Tabular Parameterization Example



https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

$$p(G = 1 \mid R = 1) = p(G = 1, S = 0 \mid R = 1) + p(G = 1, S = 1 \mid R = 1) \qquad \left(p(a \mid c) = \sum_{b} p(a, b \mid c)\right)$$

$$= p(G = 1 \mid S = 0, R = 1)p(S = 0 \mid R = 1) + p(G = 1 \mid S = 1, R = 1)p(S = 1 \mid R = 1)$$

$$= 0.8(0.99) + 0.99(0.01) = 0.81.$$

Dynamic Bayesian Networks

- Dynamic Bayesian networks are a generalization of Markov chains and DAGs:
 - At each time, we have a set of variables x^t .
 - The initial x^0 comes from an "initial" DAG.
 - Given x^{t-1} , we generate x^t from a "transition" DAG.

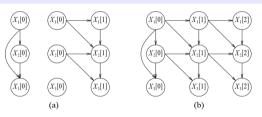


Figure 1: (a) A prior network and transition network defining a DPN for the attributes X_1 , X_2 , X_3 . (b) The corresponding "unrolled" network.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

- Can be used to model multiple variables over time.
 - Unconditional sampling is easy but inference may be hard.

DAG Structure Learning without an Ordering

- Another common structure learning approach is "constraint-based":
 - Based on performing a sequence of conditional independence tests.
 - Prune edge between x_i and x_j if you find variables S making them independent,

$$x_i \perp x_j \mid x_S$$
.

- Challenge is considering exponential number of sets x_S (heuristic: "PC algorithm").
- Assumes "faithfulness" (all independences are reflected in graph).
 - Otherwise it's weird (a duplicated feature would be disconnected from everything.)