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Conditional Independence D-Separation

Last Time: Directed Acyclic Graphical (DAG) Models

@ DAG models use a factorization of the joint distribution,

d
p(x1,®2,...,2q) = Hp(ij\iUpa(j))»
j=1
where pa(j) are the “parents” of node j.

@ This assumes a Markov property (generalizing Markov property in chains),

p(xjlerj—1) = pla;]Tpags)

@ We visualize the assumptions made by the model as a graph:
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Graph Structure Examples

@ Instead of factorizing by variables 7, could factor into blocks b:
p(l‘) = Hp(-fb | xpa(b))v
b

and have the nodes be blocks.
e Usually assuming full connectivity within the block.

@ With mixture of Gaussian and full covariances we have

p(z,z) = p(z)p(z | 2).
@ The corresponding graph structure is:
@

e Gaussian generative classifiers (GDA) have the same structure.
o But using class lable y instead of cluster z.



Graph Structure Examples

With probabilistic PCA we have

The corresponding graph structure is:

&6 @
Vi

The data x comes from a set of independent parents (latent factors).
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Graph Structure Examples

We can consider less-structured examples,

J
e gt

The corresponding factorization is:

p(S,V, R, W, G, D) =p(S)p(V)p(R | V)p(W | S, R)p(G | V)p(D | G).
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Graph Structure Examples

We can consider genetic phylogeny (family trees):

Rper



Example: Vehicle Insurance

@ Want to predict bottom three “cost” variables, given observed and unobserved
values:

https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes


https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

Con
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Example: Radar and Aircraft Control

@ Modeling multiple planes and radar signals:

https://pr-owl.org/basics/bn.php


https://pr-owl.org/basics/bn.php
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Example: Water Resource Management

@ Dependencies in environmental monitor and susatainability issues:

https://www.jstor.org/stable/26268156


https://www.jstor.org/stable/26268156
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Review of Independence
@ Let A and B are random variables taking values a € A and b € B.

o We say that A and B are independent if we have

p(a,b) = p(a)p(b),

for all a and b.
@ To denote independence of x; and x; we use the notation
x; Lxj.

@ In a product of Bernoullis, we assume x; L z; for all 4 and j.
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Review of Independence

@ For independent a and b we have

_ pla,b) _ p(a)p(b)

pla|b = = p(a).

S RO R

@ This gives us a more intuitive definition: A and B are independent if
pla | b) = pla)

for all @ and b # 0.
o In words: knowing b tells us nothing about a (and vice versa).
@ This will tend to simplify calculations involving a.

o Useful fact: a L b iff p(a,b) = f(a)g(b) for some functions f and g.
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Conditional Independence

We say that A is conditionally independent of B given C' if
pla,b|c) =pla|c)p(b|c),

for all a, b, and ¢ # 0.
Equivalently, we have

pla|b,c)=pla]c).
“If you know C, then also knowing B would tell you nothing about A"".
e In mixture of Bernoullis, given cluster there is no dependence between variables.

We often write this as

ALB|C.

@ In a mixture of Bernoullis, we assume z; L x; | z for all 4 and j.
o This simplifies calculations involving z; and x;, provided that we know z.
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Extra Conditional Independences in Markov Chains

e In Markov chains, the Markov assumption is ; L @y, z9,..., 22 | 2j_1,

p(rj | zj—1,xj—2,..., 1) = pzj | xj-1).

@ But note that this also implies the additional conditional independence that

p(xj | wj—2,mj-3,...,m1) = p(x; | j-2).
@ We can use this property to easily compute p(z; | j_2,2j-3,...,21):

p(zj | zj_2,2j-3,...21) = p(z; | xj_2)

= > pzj,zj_1 | wj_2)
o1
= > pzjlzj_1,2j_2)p(zj_1 | x;_2)
w1
= > pzj | zj_1)plxj_1 | zj-2).
—_——  — ————

i1
tran prob tran prob
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Extra Conditional Independences in Markov Chains

@ Proof that z; is independent of {z1,z2,...,2;_3} given z;_s:

(T, Tij_2,Ti_3,...,T]1
p(rj | zj 2,25 3,...,21) = (@), 2j-2,2j-3, 1 21) (def’n cond. prob.)
p(zj—2,%j-3,...,%1)
EI].71 p(xj, Tj—1,Tj—2,...,21)
= (marg. and chain rule)
p(wj_2 | zj_3, 254, .., 21)P(Tj—3 | Tj_a,®j_5,...,@1) - p(w1)
ij_1 plzj | zj—1,2j-2)p(zj—1 | zj—2)...p(z2 | z1)p(z1)

= (chain rule and Markov)
p(xj_o | zj_3)p(xj_3 | xj_q) - p(z1)

p(z1)p(zz | z1) - p(zj—2 | Zj—3>21j71 plzj |zj_1,zj_2)p(xj_1 | xj_2)
= (take terms outsid
p(zj_2 | zj_3)p(zj—3 | zj_a) - p(z1)

= Z p(zj | ;1,25 _2)p(zj_1 | xj_2) (cancel outin numerator/denominator)
i1

= Z p(zj,x;_1 | x;_2) (product rule)

p(x; | ©;_2) (marg rule).

o Similar steps could be used to show x; L ;4o | 11,
and a variety of other conditional independences like z1 L x19 | z5.
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DAGs and Conditional Independence

Conditional independences can substantiall simplify inference.

But it's tedious to formally show that the above are true.
o See the last slide, and the EM notes.

In DAGs we make the conditional independence assumption that

p(xj | zj—1,xj—2,...,21) = p(x; | Tpa(J))-

@ Is there an easy way to find out what other independences are ture?
e If so, we could quickly find out which calculations are easy to do in a given DAG.
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D-Separation: From Graphs to Conditional Independence

All conditional independences implied by a DAG can be read from the graph.

In particular: variables A and B are conditionally independent given C if:

o "“D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B."

In the special case of product of independent models our graph is:

® @ 6B W

@ Here there are no paths to block, which implies the variables are independent.

Checking paths in a graph tends to be faster than tedious calculations.
e We can start connecting properties of graphs to computational complexity.
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D-Separation as Genetic Inheritance

@ The rules of d-separation are intuitive in a simple model of gene inheritance:
e Each person has single number, which we'll call a “gene”.
o If you have no parents, your gene is a random number.
o If you have parents, your gene is a sum of your parents plus noise.

@ For example, think of something like this:

GD~Nioy) @fv/\/m

”"/V()‘*’Q,D

@ Graph corresponds to the factorization p(z1,x2, x3) = p(z1)p(x2)p(z3 | 1, 22).
o In this model, does p(x1,x2) = p(x1)p(x2)? (Are 1 and x5 independent ?)
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D-Separation as Genetic Inheritance

@ Genes of people are independent if knowing one says nothing about the other.

@ Your gene is dependent on your parents:
o If | know you your parent’s gene, | know something about yours.

@ Your gene is independent of your (unrelated) friends:
o If know you your friend's gene, it doesn't tell me anything about you.

@ Genes of people can be conditionally independent given a third person:

e Knowing your grandparent's gene tells you something about your gene.
e But grandparent’s gene isn't useful if you know parent's gene.
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D-Separation Case 0 (No Paths and Direct Links)

Are genes in person z independent of the genes in person y?

e No path: = and y are not related (independent),

OO

We have x | y: there are no paths to be blocked.
@ Direct link: x is the parent of y,

O—C0O

We have z [ y: knowing z tells you about y (direct paths aren’t blockable).
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D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

@ No path: If z and y are independent,

O ONNO

We have x L y: adding z doesn’t make a path.

@ Direct link: z is the parent of y,

O—0 O

We have = [ y | z: adding z doesn't block path.
o We use black or shaded nodes to denote values we condition on (in this case z).
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D-Separation Case 1: Chain

@ Case 1: x is the grandparent of y.
o If z is the mother we have:

We have x [ y: knowing x would give information about y because of z
o But if z is observed:

In this case L y | 2: knowing z “breaks” dependence between x and y.
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D-Separation Case 1: Chain

@ Consider weird case where parents z; and zo share parent x:
o If 21 and 25 are observed we have:

We have x L y | z1, 2z2: knowing both parents breaks dependency.
e But if only z; is observed:

We have x [ y | z1: dependence still “flows” through zs.
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D-Separation Case 2: Common Parent

@ Case 2: x and y are sibilings.
e If z is a common unobserved parent:

©

We have x [/ y: knowing x would give information about y.
o But if 2z is observed:

©

In this case = L y | z: knowing z “breaks” dependence between x and y.
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D-Separation Case 2: Common Parent

o Case 2: x and y are sibilings.
e If z; and z; are common observed parents:

We have & L y | 21, 2z2: knowing 21 and zy breaks dependence between x and y.
e But if we only observe zs:

Then we have = Y y | 2z2: dependence still “flows” through z;.
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D-Separation Case 3: Common Child

@ Case 3: x and y share a child z:
o If we observe z then we have:

We have x [ y | z: if we know z, then knowing x gives us information about y.
e But if z is not observed:

We have x L y: if you don't observe z then x and y are independent.
@ Different from Case 1 and Case 2: not observing the child blocks path.
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D-Separation Case 3: Common Child

@ Case 3: x and y share a child z1:
o If there exists an unobserved grandchild z2:

O

We have x | y: the path is still blocked by not knowing z; or z5.

o But if 29 is observed:

We have x [ y | z2: grandchild creates dependence even with unobserved parent.

@ Case 3 needs to consider descendants of child.
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D-Separation Summary

@ We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are "blocked” because at least one of the following holds:
@ P includes a “chain” with an observed middle node (e.g., Markov chain):

O@—O

@ P includes a “fork” with an observed parent node (e.g., mixture of Bernoulli):

O—@-0O

© P includes a “v-structure” or “collider” (e.g., probabilistic PCA):

O QO

where “child” and all its descendants are unobserved.
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Alarm Example

Eqrﬂq\nml\’! m

o Case 1:

e Earthquake [ Call.
o Earthquake L Call | Alarm.

o Case 2:

e Alarm L Stuff Missing.
o Alarm L Stuff Missing | Burglary.
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Alarm Example

Earﬂq\nml\’! m

o Case 3:

o Earthquake L Burglary.

o Earthquake [ Burglary | Alarm.

e “Explaining away": knowing one parent can make the other less/more likely.

@ Multiple Cases:

o Call £ Stuff Missing.

o Earthquake L Stuff Missing.

o Earthquake [t Stuff Missing | Call.
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Discussion of D-Separation
@ D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given £) == A 1 B | E.

@ However, there might be extra conditional independences in the distribution:

o These would depend on specific choices of the p(xz; | zpa(j))-
e Or some orderings of the chain rule may reveal different independences.
e So lack of d-separation does not imply dependence.

o Instead of restricting to {1,2,...,j — 1}, consider general parent choices.
e x5 could be a parent of z;.

@ As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).

(all DAGs have a “topological order” of variables where parents are before children)
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Non-Uniqueness of Graph and Equivalent Graphs

@ Note that some graphs imply same conditional independences:
o Equivalent graphs: same v-structures and other (undirected) edges are the same.
o Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

O—O—0 O—O—0
O—O—0 O—O—0
o' O O—O0—0

©
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Discussion of D-Separation

@ So the graph is not necessarily unique and is not the whole story.

@ But, we can already do a lot with d-separation:
e Implies every independence/conditional-independence we've used in 340/540.

@ Here we start blurring distinction between data/parameters/hyper-parameters...



Conditional Independence D-Separation

Tilde Notation as a DAG

@ When we write ‘ '
yz ~ N(wal, 1)’

this can be interpretd as a DAG model:

0,

@ “The variables on the right of ~ are the parents of the variables on the left".
e In this case, w only depends on X since we know y.

@ Note that we're now including both data and parameters in the graph.
e This allows us to see and reason about their relationships.
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[ID Assumption as a DAG

@ During week 1, our first independence assumption was the 1ID assumption:

@ Training/test examples come independently from data-generating process D.

e But D is unobserved, so knowing about some z' tells us about the others.
e This why the |ID assumptions lets us learn.

o We'll use this understanding later to relax the [ID assumption.
e Bonus: using this to ask “when does semi-supervised learning make sense?"
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Summary

Joint distribution of models we've discussed can be written as DAG models.

Conditional independence of A and B given C:
e Knowing B tells us nothing about A if we already know C'.

D-separation allows us to test conditional independences based on graph.

Next time: trying to discover the graph structure from data.
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Conditional Independence in Star Graphs

o Consider the following star graph:

@,
510

o "5 aliens get together and make a baby alien”.
e Unconditionally, the 5 aliens are independent.
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Conditional Independence in Star Graphs

o Consider the following star graph:

@,
510

o "5 aliens get together and make a baby alien”.
o Conditioned on the baby, the 5 aliens are dependent.
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Conditional Independence in Star Graphs

o Consider the following star graph:

@

O

@ “An organism produces 5 clones”.
e Unconditionally, the 5 clones are dependent.
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Conditional Independence in Star Graphs

o Consider the following star graph:

@

O

@ “An organism produces 5 clones”.
e Conditioned on the original, the 5 clones are independent.
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Beware of the “Causal’ DAG

@ It can helpful to use the language of causality when reasoning about DAGs.
e You'll find that they give the correct causal interpretation based on our intuition.

@ However, keep in mind that the arrows are not necessarily causal.
e "A causes B" has the same graph as “B causes A".

@ There is work on causal DAGs which add semantics to deal with “interventions”.

e But these require extra assumptions: fitting a DAG to observational data doesn't
imply anything about causality.



(]
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Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
e No!

Consider choosing unlabeled features Z uniformly at random.
e Unlabeled examples collected in this way will not help.
e By construction, distribution of Z* says nothing about 7".

Example where SSL is not possible:
e Try to detect food allergy by trying random combinations of food:
@ The actual random process isn't important, as long as it isn't affected by labels.
e You can sample an infinite number of ' values, but they says nothing about labels.
Example where SSL is possible:
e Trying to classify images as “cat” vs. “dog.:
@ Unlabeled data would need to be images of cats or dogs (not random images).
o Unlabeled data contains information about what images of cats and dogs look like.
o For example, there could be clusters or manifolds in the unlabeled images.
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Does Semi-Supervised Learning Make Sense?

@ Let's assume our semi-supervised Iearning model is represented by this DAG:

\/(&)\,
]

)
\/@

@ Assume we observe {X,y, X} and are interested in test labels ¢:
e There is a dependency between y and y because of path through w.
o Parameter w is tied between training and test distributions.
o There is a dependency between X and ¢ because of path through w (given y).
o But note that there is also a second path through D and X.
o There is a dependency between X and § because of path through D and X.
o Unlabeled data helps because it tells us about data-generating distribution D.
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Does Semi-Supervised Learning Make Sense?

o Now consider generating X independent of D:

og\“
2

@ Assume we observe {X,y, X} and are interested in test labels §:

o Knowing X and y are useful for the same reasons as before.
e But knowing X is not useful:

o Without knowing 3, X is d-separated from 7 (no dependence).
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