CPSC 540: Machine Learning Directed Acyclic Graphical Models

Mark Schmidt

University of British Columbia

Winter 2020

Last Time: Directed Acyclic Graphical (DAG) Models

DAG models use a factorization of the joint distribution,

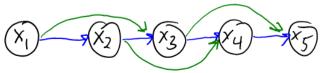
$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}),$$

where pa(j) are the "parents" of node j.

• This assumes a Markov property (generalizing Markov property in chains),

$$p(x_j|x_{1:j-1}) = p(x_j|x_{pa(j)}),$$

• We visualize the assumptions made by the model as a graph:



• Instead of factorizing by variables j, could factor into blocks b:

$$p(x) = \prod_b p(x_b \mid x_{\mathsf{pa}(b)}),$$

and have the nodes be blocks.

- Usually assuming full connectivity within the block.
- With mixture of Gaussian and full covariances we have

$$p(z,x) = p(z)p(x \mid z).$$

• The corresponding graph structure is:

- Gaussian generative classifiers (GDA) have the same structure.
 - But using class lable y instead of cluster z.

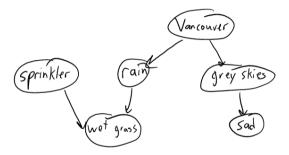
With probabilistic PCA we have

$$p(z,x) = p(x \mid z) \prod_{c=1}^{k} p(z_c).$$

The corresponding graph structure is:

The data x comes from a set of independent parents (latent factors).

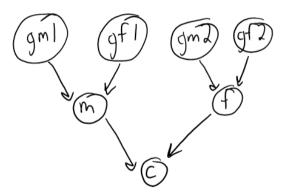
We can consider less-structured examples,



The corresponding factorization is:

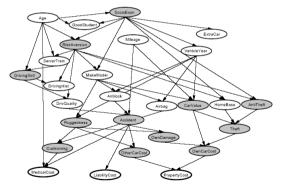
$$p(S, V, R, W, G, D) = p(S)p(V)p(R \mid V)p(W \mid S, R)p(G \mid V)p(D \mid G).$$

We can consider genetic phylogeny (family trees):



Example: Vehicle Insurance

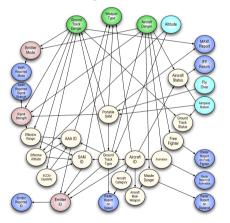
• Want to predict bottom three "cost" variables, given observed and unobserved values:



https://www.cs.princeton.edu/courses/archive/fall10/cos402/assignments/bayes

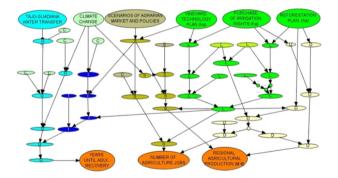
Example: Radar and Aircraft Control

• Modeling multiple planes and radar signals:



Example: Water Resource Management

• Dependencies in environmental monitor and susatainability issues:



Outline

- Conditional Independence
- 2 D-Separation

Review of Independence

- Let A and B are random variables taking values $a \in \mathcal{A}$ and $b \in \mathcal{B}$.
- ullet We say that A and B are independent if we have

$$p(a,b) = p(a)p(b),$$

for all a and b.

• To denote independence of x_i and x_j we use the notation

$$x_i \perp x_j$$
.

• In a product of Bernoullis, we assume $x_i \perp x_j$ for all i and j.

Review of Independence

ullet For independent a and b we have

$$p(a \mid b) = \frac{p(a,b)}{p(b)} = \frac{p(a)p(b)}{p(b)} = p(a).$$

ullet This gives us a more intuitive definition: A and B are independent if

$$p(a \mid b) = p(a)$$

for all a and $b \neq 0$.

- In words: knowing b tells us nothing about a (and vice versa).
 - This will tend to simplify calculations involving a.
- Useful fact: $a \perp b$ iff p(a,b) = f(a)g(b) for some functions f and g.

Conditional Independence

ullet We say that A is conditionally independent of B given C if

$$p(a, b \mid c) = p(a \mid c)p(b \mid c),$$

for all a, b, and $c \neq 0$.

Equivalently, we have

$$p(a \mid b, c) = p(a \mid c).$$

- "If you know C, then also knowing B would tell you nothing about A"'.
 - In mixture of Bernoullis, given cluster there is no dependence between variables.
- We often write this as

$$A \perp B \mid C$$
.

- In a mixture of Bernoullis, we assume $x_i \perp x_j \mid z$ for all i and j.
 - This simplifies calculations involving x_i and x_i , provided that we know z.

Extra Conditional Independences in Markov Chains

• In Markov chains, the Markov assumption is $x_j \perp x_1, x_2, \dots, x_{j-2} \mid x_{j-1}$,

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{j-1}).$$

But note that this also implies the additional conditional independence that

$$p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) = p(x_j \mid x_{j-2}).$$

• We can use this property to easily compute $p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1)$:

$$\begin{split} p(x_j \mid x_{j-2}, x_{j-3}, \dots x_1) &= p(x_j \mid x_{j-2}) \\ &= \sum_{x_{j-1}} p(x_j, x_{j-1} \mid x_{j-2}) \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \\ &= \sum_{x_{j-1}} \underbrace{p(x_j \mid x_{j-1})}_{\text{tran prob}} \underbrace{p(x_{j-1} \mid x_{j-2})}_{\text{tran prob}}. \end{split}$$

Extra Conditional Independences in Markov Chains

• Proof that x_j is independent of $\{x_1, x_2, \dots, x_{j-3}\}$ given x_{j-2} :

$$\begin{split} p(x_j \mid x_{j-2}, x_{j-3}, \dots, x_1) &= \frac{p(x_j, x_{j-2}, x_{j-3}, \dots, x_1)}{p(x_{j-2}, x_{j-3}, \dots, x_1)} \quad \text{(def'n cond. prob.)} \\ &= \frac{\sum_{x_{j-1}} p(x_j, x_{j-1}, x_{j-2}, \dots, x_1)}{p(x_{j-2} \mid x_{j-3}, x_{j-4}, \dots, x_1) p(x_{j-3} \mid x_{j-4}, x_{j-5}, \dots, x_1) \dots p(x_1)} \quad \text{(marg. and chain rule)} \\ &= \frac{\sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \dots p(x_2 \mid x_1) p(x_1)}{p(x_{j-2} \mid x_{j-3}) p(x_{j-3} \mid x_{j-4}) \dots p(x_1)} \quad \text{(chain rule and Markov)} \\ &= \frac{p(x_1) p(x_2 \mid x_1) \dots p(x_{j-2} \mid x_{j-3}) \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2})}{p(x_{j-2} \mid x_{j-3}) p(x_{j-3} \mid x_{j-4}) \dots p(x_1)} \quad \text{(take terms outside the problem} \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1}, x_{j-2}) p(x_{j-1} \mid x_{j-2}) \quad \text{(cancel out in numerator/denominator)} \\ &= \sum_{x_{j-1}} p(x_j \mid x_{j-1} \mid x_{j-2}) \quad \text{(product rule)} \\ &= p(x_j \mid x_{j-2}) \quad \text{(marg rule)}. \end{split}$$

• Similar steps could be used to show $x_j \perp x_{j+2} \mid x_{j+1}$, and a variety of other conditional independences like $x_1 \perp x_{10} \mid x_5$.

DAGs and Conditional Independence

- Conditional independences can substantiall simplify inference.
- But it's tedious to formally show that the above are true.
 - See the last slide, and the EM notes.
- In DAGs we make the conditional independence assumption that

$$p(x_j \mid x_{j-1}, x_{j-2}, \dots, x_1) = p(x_j \mid x_{pa}(j)).$$

- Is there an easy way to find out what other independences are ture?
 - If so, we could quickly find out which calculations are easy to do in a given DAG.

Outline

- Conditional Independence
- 2 D-Separation

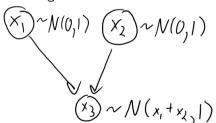
D-Separation: From Graphs to Conditional Independence

- All conditional independences implied by a DAG can be read from the graph.
- In particular: variables A and B are conditionally independent given C if:
 - "D-separation blocks all undirected paths in the graph from any variable in A to any variable in B."
- In the special case of product of independent models our graph is:

- Here there are no paths to block, which implies the variables are independent.
- Checking paths in a graph tends to be faster than tedious calculations.
 - We can start connecting properties of graphs to computational complexity.

D-Separation as Genetic Inheritance

- The rules of d-separation are intuitive in a simple model of gene inheritance:
 - Each person has single number, which we'll call a "gene".
 - If you have no parents, your gene is a random number.
 - If you have parents, your gene is a sum of your parents plus noise.
- For example, think of something like this:



- Graph corresponds to the factorization $p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2)$.
 - In this model, does $p(x_1, x_2) = p(x_1)p(x_2)$? (Are x_1 and x_2 independent?)

Conditional Independence D-Separation

D-Separation as Genetic Inheritance

- Genes of people are independent if knowing one says nothing about the other.
- Your gene is dependent on your parents:
 - If I know you your parent's gene, I know something about yours.
- Your gene is independent of your (unrelated) friends:
 - If know you your friend's gene, it doesn't tell me anything about you.
- Genes of people can be conditionally independent given a third person:
 - Knowing your grandparent's gene tells you something about your gene.
 - But grandparent's gene isn't useful if you know parent's gene.

D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

• No path: x and y are not related (independent),

We have $x \perp y$: there are no paths to be blocked.

• Direct link: x is the parent of y,

We have $x \not\perp y$: knowing x tells you about y (direct paths aren't blockable).

D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

No path: If x and y are independent,

We have $x \perp y$: adding z doesn't make a path.

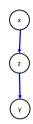
Direct link: x is the parent of y,

We have $x \not\perp y \mid z$: adding z doesn't block path.

• We use **black or shaded** nodes to denote values we condition on (in this case z).

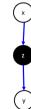
D-Separation Case 1: Chain

- ullet Case 1: x is the grandparent of y.
 - If z is the mother we have:



We have $x \not\perp y$: knowing x would give information about y because of z

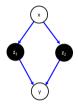
• But if z is observed:



In this case $x \perp y \mid z$: knowing z "breaks" dependence between x and y.

D-Separation Case 1: Chain

- Consider weird case where parents z_1 and z_2 share parent x:
 - ullet If z_1 and z_2 are observed we have:



We have $x \perp y \mid z_1, z_2$: knowing both parents breaks dependency.

• But if only z_1 is observed:

We have $x \not\perp y \mid z_1$: dependence still "flows" through z_2 .

D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
 - If z is a common unobserved parent:

We have $x \not\perp y$: knowing x would give information about y.

• But if z is observed:

In this case $x \perp y \mid z$: knowing z "breaks" dependence between x and y.

D-Separation Case 2: Common Parent

- Case 2: x and y are sibilings.
 - If z_1 and z_2 are common observed parents:

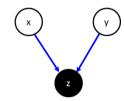
We have $x \perp y \mid z_1, z_2$: knowing z_1 and z_2 breaks dependence between x and y.

• But if we only observe z_2 :

Then we have $x \not\perp y \mid z_2$: dependence still "flows" through z_1 .

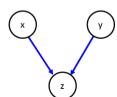
D-Separation Case 3: Common Child

- Case 3: x and y share a child z:
 - If we observe z then we have:



We have $x \not\perp y \mid z$: if we know z, then knowing x gives us information about y.

• But if z is not observed:



We have $x \perp y$: if you don't observe z then x and y are independent.

• Different from Case 1 and Case 2: not observing the child blocks path.

D-Separation Case 3: Common Child

- Case 3: x and y share a child z_1 :
 - If there exists an unobserved grandchild z_2 :

We have $x \perp y$: the path is still blocked by not knowing z_1 or z_2 .

• But if z_2 is observed:

We have $x \not\perp y \mid z_2$: grandchild creates dependence even with unobserved parent.

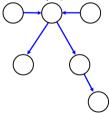
• Case 3 needs to consider descendants of child.

D-Separation Summary

- We say that A and B are d-separated (conditionally independent) if all paths P from A to B are "blocked" because at least one of the following holds:
 - lacktriangledown P includes a "chain" with an observed middle node (e.g., Markov chain):

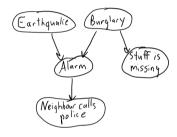
 \bigcirc P includes a "fork" with an observed parent node (e.g., mixture of Bernoulli):

1 P includes a "v-structure" or "collider" (e.g., probabilistic PCA):



where "child" and all its descendants are unobserved.

Alarm Example

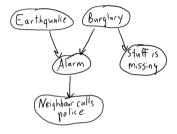


- Case 1:
 - Earthquake

 ∠ Call.
 - ullet Earthquake \perp Call | Alarm.
- Case 2:

 - Alarm ⊥ Stuff Missing | Burglary.

Alarm Example



- Case 3:
 - ullet Earthquake ot Burglary.
 - - "Explaining away": knowing one parent can make the other less/more likely.
- Multiple Cases:

 - Earthquake ⊥ Stuff Missing.
 - Earthquake ∡ Stuff Missing | Call.

Discussion of D-Separation

• D-separation lets you say if conditional independence is implied by assumptions:

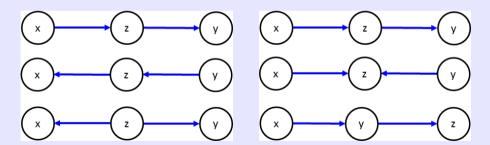
 $(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$

- However, there might be extra conditional independences in the distribution:
 - These would depend on specific choices of the $p(x_j \mid x_{pa(j)})$.
 - Or some *orderings* of the chain rule may reveal different independences.
 - So lack of d-separation does not imply dependence.
- Instead of restricting to $\{1, 2, \dots, j-1\}$, consider general parent choices.
 - x_2 could be a parent of x_1 .
- As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).
 (all DAGs have a "topological order" of variables where parents are before children)

Conditional Independence D-Separation

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
 - Equivalent graphs: same v-structures and other (undirected) edges are the same.
 - Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):



Conditional Independence D-Separation

Discussion of D-Separation

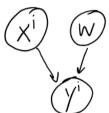
- So the graph is not necessarily unique and is not the whole story.
- But, we can already do a lot with d-separation:
 - Implies every independence/conditional-independence we've used in 340/540.
- Here we start blurring distinction between data/parameters/hyper-parameters...

Tilde Notation as a DAG

When we write

$$y^i \sim \mathcal{N}(w^T x^i, 1),$$

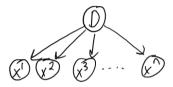
this can be interpretd as a DAG model:



- "The variables on the right of \sim are the parents of the variables on the left".
 - In this case, w only depends on X since we know y.
- Note that we're now including both data and parameters in the graph.
 - This allows us to see and reason about their relationships.

IID Assumption as a DAG

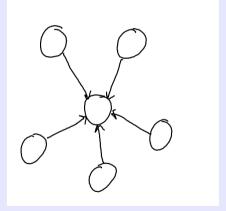
• During week 1, our first independence assumption was the IID assumption:



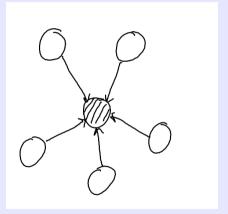
- \bullet Training/test examples come independently from data-generating process D.
- But D is unobserved, so knowing about some x^i tells us about the others.
 - This why the IID assumptions lets us learn.
- We'll use this understanding later to relax the IID assumption.
 - Bonus: using this to ask "when does semi-supervised learning make sense?"

Summary

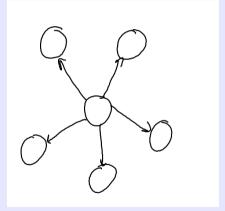
- Joint distribution of models we've discussed can be written as DAG models.
- Conditional independence of A and B given C:
 - Knowing B tells us nothing about A if we already know C.
- D-separation allows us to test conditional independences based on graph.
- Next time: trying to discover the graph structure from data.



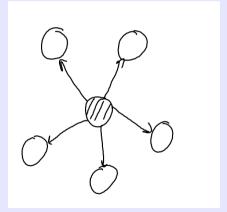
- "5 aliens get together and make a baby alien".
 - Unconditionally, the 5 aliens are independent.



- "5 aliens get together and make a baby alien".
 - Conditioned on the baby, the 5 aliens are dependent.



- "An organism produces 5 clones".
 - Unconditionally, the 5 clones are dependent.



- "An organism produces 5 clones".
 - Conditioned on the original, the 5 clones are independent.

Conditional Independence D-Separation

Beware of the "Causal" DAG

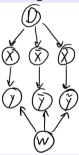
- It can helpful to use the language of causality when reasoning about DAGs.
 - You'll find that they give the correct causal interpretation based on our intuition.
- However, keep in mind that the arrows are not necessarily causal.
 - "A causes B" has the same graph as "B causes A".
- There is work on causal DAGs which add semantics to deal with "interventions".
 - But these require extra assumptions: fitting a DAG to observational data doesn't imply anything about causality.

Does Semi-Supervised Learning Make Sense?

- Should unlabeled examples always help supervised learning?
 - No!
- Consider choosing unlabeled features \bar{x}^i uniformly at random.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of \bar{x}^i says nothing about \bar{y}^i .
- Example where SSL is not possible:
 - Try to detect food allergy by trying random combinations of food:
 - The actual random process isn't important, as long as it isn't affected by labels.
 - ullet You can sample an infinite number of $ar{x}^i$ values, but they says nothing about labels.
- Example where SSL is possible:
 - Trying to classify images as "cat" vs. "dog.:
 - Unlabeled data would need to be images of cats or dogs (not random images).
 - Unlabeled data contains information about what images of cats and dogs look like.
 - For example, there could be clusters or manifolds in the unlabeled images.

Does Semi-Supervised Learning Make Sense?

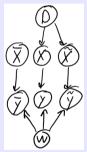
• Let's assume our semi-supervised learning model is represented by this DAG:



- Assume we observe $\{X, y, \bar{X}\}$ and are interested in test labels \tilde{y} :
 - ullet There is a dependency between y and \tilde{y} because of path through w.
 - ullet Parameter w is tied between training and test distributions.
 - There is a dependency between X and \tilde{y} because of path through w (given y).
 - But note that there is also a second path through D and \tilde{X} .
 - ullet There is a dependency between $ar{X}$ and $ar{y}$ because of path through D and $ar{X}$.
 - \bullet Unlabeled data helps because it tells us about data-generating distribution D.

Does Semi-Supervised Learning Make Sense?

• Now consider generating \bar{X} independent of D:



- Assume we observe $\{X, y, \bar{X}\}$ and are interested in test labels \tilde{y} :
 - ullet Knowing X and y are useful for the same reasons as before.
 - But knowing \bar{X} is not useful:
 - Without knowing \bar{y} , \bar{X} is d-separated from \tilde{y} (no dependence).