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Last Time: Viterbi Decoding and Message Passing

@ Decoding in density models: finding = with highest joint probability:

argmax p(z1,T2,...,2q).
T1,T2,0-,Td

@ For Markov chains, we find decoding by writing maximization as

max  p(x1, 72, 3, 74) = maxmax p(z4 | ) max p(ws | w2) maxp(xs | 21) pr1 ),
T1,22,23,T4 T4 3 2 T N~

My (x1)

Mo (x2)

-~

M3(x3)

My(z4q)

e Viterbi decoding computes M (1) for all z1, My(xz2) for all z2, and so on.
The M;(z;) functions are called messages (summarize everything about past).



Hidden Markov Models Directed Acyclic Graphical Models

Chapman-Kolmogorov Equations as Message Passing

@ We can also view Chapman Kolmogorov equations as message passing:

pea) =D Y plar, wo,ws,xa) =Y Y Y plaa | ws)p(es | z2)p(as | 21)p(z1)

xr3 xro X xrs3 2 xry

= plaa|x3) Y plas | x2)y  ples | 1) Mi(21)
x3 xTo €,

=Y plaa | x3)y_ plas | w2)Ma(xs)
z3 T2

=Y pls | x3)Ms(w3)

3
:M4(‘I4)v

@ Messages M;(z;) are the marginals of the Markov chain.

e So we can view CK equations as Viterbi decoding with "max” replace by “sum”.
@ These two methods are also known as “max-product” and “sum-product” algorithms.
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Message-Passing Algorithms

@ We've discussed several algorithms with similar structure:
e Viterbi decoding algorithm for decoding in discrete Markov chains.
e CK equations for marginals in discrete Markov chains.
o Gaussian updates for marginals in Gaussian Markov chains.

@ These are all special cases of message-passing algorithms:
@ Define M; summarizing all relevant information about the past at time j.
© Use Markov property to write M recursively in terms of M;_;.
© Solve task by computing My, M, ..., M.

@ “Generalized distributive law” is a framework for describing when/why this works:
e https://authors.library.caltech.edu/1541/1/AJTIieeetit00.pdf

@ In some cases we'll also need backwards message V; (‘“cost to go”):
o V; summarizes all relevant information about the future at time j.


https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

Hidden Markov Models Directed Acyclic Graphical Models

Backwards “Cost to Go” Messages

@ Using backwards messages Vj(x;) to (innefficiently) compute p(z1):

p(x1) =2 3 > pler, w2, 23,24) = 3 > > p(z1)p(z2 | 1)p(es | 22)p(24 | ©3)

x2 T3 T4 g x3 x4

=p(z1) Y p(ez2 | z1) > ples | 22) Y p(za | x3)
£} x3 x4

=p(z1) > plza | 21) D> p(z3 | 22)D_ p(ws | v3) Va(zs)
2 x3 x4 ~—
=1
=p(z1) D> _p(z2 | 21)D_ p(es | w2) Va(zs)
z9 x3 \—\1/—’
=p(z1)y_ plez | 21) Valwz)
xo N——
1
=p(z1) Vi(z1).
———

1

@ Observe that backwards messages V;(x;) are not probabilities as in CK equations.

e But they summarize everything you need to know about the future.
o Can use this structure to condition on the future, and compute things like p(z1 | 24).
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Forward-Backward Algorithm

o Computing all M;(x;) and Vj(x;) is called the forward-backward algorithm.
o Not interesting for Markov chains since Vj(z;) =1 for all j and z;.

@ Why do we care about backwards messages?
o Can efficiently compute all conditionals p(z; = s | z10 = 3) (for all j and s).

@ Messages are modified when you condition (see bonus slides).
o The modified Vj(z;) will reflect “what you need to know about the future events”.

o Can be used to compute probabilities in generalizations of Markov chains (next).

@ In this setting the forward messages may not be probabilities either.

o In reinforcement learning, estimating the “cost to go” (“value") function is the goal.

o We aren’t covering RL, but understanding Markov chains will help you understand RL.
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Back to the Rain Data

@ We previously considered the “Vancouver Rain" data:

@ We used homogeneous Markov chains to model between-day dependence.
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Back to the Rain Data

@ But doesn't it rain less in the summer?

@ There are hidden clusters in the data not captured by the Markov chain.
e But mixture of independent models are inefficient at representing direct dependency.

@ Mixture of Markov chains could capture direct dependence and clusters,

2
p(w1, 72, .. xa) = Y pz =) p(x1 | z = )p(z | w1,2 = ¢) -~ p(wg| a1,2 = ¢).

c=1

Markov chain ¢

@ Cluster z chooses which homogeneous Markov chain parameters to use.

e We could learn that we're more likely to have rain in winter.
e Can modify CK equations to take into account z, and then apply EM.
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Comparison of Models on Rain Data

Independent (homogeneous) Bernoulli:
o Average NLL: 18.9673 (1 parameter).
Independent Bernoullis:
o Average NLL: 18.9518, (28 parmaeters).
Mixture of Bernoullis (k = 10, five random restarts of EM):
o Average NLL: 17.0602 (10 + 10 x 28 = 290 parameters)
@ Homogeneous Markov chain:
o Average NLL: 16.8065 (3 parameters)
e Mixture of Markov chains (k = 10, five random restarts of EM):
o Average NLL: 16.5332 (10 + 10 x 3 = 40 parameters).
o Included what | call a “summer” cluster:

p(z=5)=0.14

p(z1 = “rain” | z =15) = 0.22 (instead of usual 37%)
p(z; = “rain” | z;_1 = “rain”,z = 5) = 0.49) (instead of usual 65%)
p(z; = “rain” | x;_1 = “not rain",z =5) =0.11  (instead of usual 35%)
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Back to the Rain Data

@ The rain data is artificially divideded into months.

@ We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tieing.

@ But a mixture doesn’'t make sense when n = 1.

What we want: different “parts” of the sequence come from different clusters.
o We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this is with a"hidden” Markov model (HMM):

o Instead of examples being assigned to clusters, days are assigned to clusters.
e Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.

@ ——EE)~E)
[ [ 1 ]
H ® ® 6 o

d
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@ We're going to learn clusters z; and the hidden dynamics.
o Hidden cluster z; could be “summer” or “winter" (we're learning the clusters).
o Transition probability p(z; | zj—1) is probability of staying in “summer”.
o Emission probability p(z; | z;) is probability of “rain” during “summer”.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.
OO0

b © 66 o

d
p(T1, 22, ...y 21,22, ... 2d) :p(zl)H p(zj | zj—1 H p(z; | zj).
Jj=2 J=1
@ You observe the x; values but do not see the z; values.
o CK equations won't work since p(z; = s) depends on future x; values.

@ But forward-backward algorithm can be used to compute probailities.
o And subsequently learn with EM (treating z; values as nuissance variables).
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Hidden Markov Models

@ Hidden Markov models have each x; depend on hidden Markov chain.

@ﬂzz-—-ﬂ@—ﬁzq*—?@
| Lol ]
HO® ® & ©

o Note that the x; can be continuous even with discrete clusters z;.
e You could have a “mixture of Gaussians” with cluster changing in time.

o If the z; are continuous it's often called a state-space model.
o If everything is Gaussian, it leads to Kalman filtering.
o Keywords for non-Gaussian: unscented Kalman filter and particle filter.

@ Variants of HMMs are probably the most-used time-series model...
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Applications of HMMs and Kalman Filters

Applications fediy

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).
Applications include:

. Single Molecule Kinetic analysis!'€]

. Cryptanalysis

. Speech recognition

. Speech synthesis

. Part-of-speech tagging

. Document Separation in scanning solutions

+ Machine translation

. Partial discharge

. Gene prediction

. Alignment of bio-sequences

. Time Series Analysis

. Activity recognition

. Protein folding!'?)

. Metamorphic Virus Detection['#!

. DNA Motif Discovery!!9]

Applications (edi

. Aftitude and Heading Reference Systems . Economics, in particular » ime . Simultaneous localization and mapping
. Autopilot series analysis, and econometrics!*?] . Speech enhancement
. Battery state of charge (SoG) estimation[291(4¢] . Inertial guidance system . Visual odometry
. Brain-computer interface . Orbit Determination . Weather forecasting
. Chaotic signals . Power system state estimation . Navigation system
. Tracking and Vertex Fitting of charged particles in - Radar tracker . 3D modeling
Particle Detectors!*1] . Satellite navigation systems . Structural health monitoring
. Tracking of objects in computer vision . Seismology*? . Human sensorimotor processing/4!
. Dynamic positioning . Sensorless control of AC motor variable-frequency

drives
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Example: Modeling DNA Sequences

e Markov model for elements of sequence (dependence on previous symbol):

"AfterA" wheel "AfterC" wheel

P&=0.2, p:=0.3, R;=0.3, p,;=0.2 Pa=0.1, p:=0.41, p;=0.39, p,=0.1

"AfterG" wheel "AfterT" wheel

Pi=0.25, p=0.25, pF0.25,p=0.25  p,=0.5, p=0.17, p=0.17, p,=0.17

https://www.tes.com/lessons/WESE9RncBhieAQ/dna


https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences

Directed Acyclic Graphical Models

e Hidden Markov model (HMM) for elements of sequence (two hidden clusters):

"AT-rich" wheel

p=0.39, pc=0.1, pG=0.1, pT=0.41

p=0.3 of
changing wheel

<———-
p=0.1of
changing wheel

"GC-rich" wheel

p:=0.1, p=0.41, p=0.39, p,=0.1

@ This is a (hidden) state transition diagram.
o Can reflect that probabilities are different in different regions.
o The actual regions are not given, but instead are nuissance variables handled by EM.

@ A better model might be usin a hidden and visible Markov chain.

o With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
o Would have “treewidth 2" which we'll show later means it's tractable to use.
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Who is Guarding Who?

@ There is a lot of data on offense of NBA basketball players.
o Every point and assist is recorded, more scoring gives more wins and $$9$.

@ But how do we measure defense?
o We need to know who each player is guarding.

JA

DEN KAWHI LEONARD
HAR DEFENSIVE SHOT CHAR

http://wuw.lukebornn.com/papers/franks_ssac_2015.pdf

@ HMMs can be used to model who is guarding who over time.
o https://www.youtube.com/watch?v=JvNkZdZJBt4


http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Outline

© Directed Acyclic Graphical Models
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Higher-Order Markov Models

@ Markov models use a density of the form
p(z) = p(z1)p(z2 | 21)p(xs | z2)p(2s | 23) -+ p(ad | 2a—1).
@ They support efficient computation but Markov assumption is strong.
@ A more flexible model would be a second-order Markov model,
p(z) = p(x1)p(x2 | 21)p(xs [ z2, 21)p(2s | 23, 22) - P(Ta | Ta—1,Ta—2),

or even a higher-order models.

@ General case is called directed acyclic graphical (DAG) models:
e They allow dependence on any subset of previous features.
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DAG Models

@ As in Markov chains, DAG models use the chain rule to write

p(z1,22,...,2q) = p(x1)p(z2 | T1)p(T3 | 1, 72) -+ - P(T4 | T1, T2, .+, Ta—1)-
@ We can alternately write this as:

d

plar, @2, xa) = [ [ p(z) | 215-1).
j=1

@ In Markov chains, we assumed x; only depends on previous x;_1 given past.

@ In DAGs, x; can depend on any subset of the past x1,x2,...,2;_1.
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DAG Models
@ We often write joint probability in DAG models as
d
p(l’l,l‘g, ) .’Ed) = Hp(xj | ‘Tpa(j))a
j=1

where pa(j) are the “parents” of node j.

e For Markov chains the only “parent” of jis (7 — 1).
o If we have k parents we only need 2**! parameters.

@ This corresponds to a set of conditional independence assumptions,

p(zj | 21:5-1) = p(T) | Tpa(s))s

that we're independent of previous non-parents given the parents.
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MNIST Dlgits with Markov Chains

@ Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

@ Samples from a DAG model with 8 parents per feature:

=

5 10 15 20 25 5 10 15 20 25

Ell

5 10 15 20 25 5 10 15 20 25

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2"):
{(7'_27.7_2)7 (2_17.7_2)7 (273_2)7 (Z_ij_l)v (1_17]_1% (Zvj_l)v (2_271)7 (7'_17.7)}
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From Probability Factorizations to Graphs

DAG models are also known as “Bayesian networks” and “belief networks".

“Graphical” name comes from visualizing parents/features as a graph:
e We have a node for each feature j.
o We place an edge into j from each of its parents.

@ The DAG representation for a Markov chains is:

OO

o Different than “state transition diagrams”: edges are between variables (not states).

This graph is not just a visualization tool:
o Can be used to test arbitrary conditional independences (“d-separation”).
o Graph structure tells us whether message passing is efficient (“treewidth™).
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Graph Structure Examples

With product of independent we have
p(z) = [ p(z)),

so pa(j) = @ and the graph is:

® @ 6w
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Graph Structure Examples

With Markov chain we have

d
H p(x; | xj-1)
7j=2

so pa(j) = {j — 1} and the graph is:

E)—Ao) D)+

Directed Acyclic Graphical Models
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Graph Structure Examples

With second-order Markov chain we have

d

p(@) = p(x)p(az | z1) [ [ pla; | 2j-1,25-2),
7j=3

so pa(j) = {j — 2,7 — 1} and the graph is:

O INOy D0
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Graph Structure Examples

With general distribution we have

d

p(x) =[] pla; | 215)-

j=1

so pa(j) =4{1,2,...,j5 — 1} and the graph is:
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Graph Structure Examples

In naive Bayes (or GDA with diagonal ) we add an extra variable y and use
d
H p(z; | y),
7j=1
which has pa(y) = 0) and pa(z;) =y giving

7

7INN

®” @ & @ G
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Graph Structure Examples

With mixture of independent models we have

p(z p(xj | 2).

H’:]g

which has pa(z) = () and pa(x;) = z giving same structure as naive Bayes:

Since structure is the same, many computations will be similar.



Hidden Markov Models Directed Acyclic Graphical Models

Graph Structure Examples

With mixture of Markov chains models we have

d

p(z1, 22, ..., 24, 2) = p(2)p(z1 | 2) Hp(mj | zj-1,2).
j=2

which has pa(z) = 0 and pa(z;) = {x;_1, 2}

@_y\fx J
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Graph Structure Examples
Sometimes it's easier to present a model using the graph.

In hidden Markov models we have this structure:

@ﬂzz—ﬂ?@fﬁzq—?@
) | ]
H O 6 b o

The graph and variable names already give you an idea of what this model does:
@ We have hidden variables z; that follow a Markov chain.

@ Each feature z; depends on corresponding hidden variable z;.
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Summary

Message-passing allow efficient calculations with Markov chains.

Hidden Markov models model time-series with hidden per-time cluster.
e Tons of applications, typically more realistic than Markov models.

DAG models factorize joint distribution into product of conditionals.
o Assume conditionals depend on small number of “parents”.

Next time: the [ID assumption as a graphical model?
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Computing Conditional Probabilities

@ Previously: Monte Carlo for approximating conditional probabilities
@ For Gaussian/discrete Markov chains, we can do better than rejection sampling.
© We can generate exact samples from conditional distribution (bonus slide).
@ Rejection sampling is not needed, relies on “backwards sampling” in time.
@ We can find conditional decoding max | zj,:cp(x):
o Run Viterbi decoding with M;/(c) =1 and M;:(¢') =0 for ¢ # ¢'.
© We can find univariate conditionals, p(z; | ;).

e Example of computing p(z1 = ¢ | 23 = 1) in a length-4 discrete Markov chain:

plxy=clxs=1) x p(x; =c,x3 =1)
= ZZP(% = ¢, 22,73 = 1,24),
T4 xro

where the normalizing constant is the marginal p(z3 = 1).
@ This is a sum over k%2 possible assignments to other variables.
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Distributing Sum across Product

@ Fortunately, the Markov property makes the sums simplify as before:

YD per=caas=Lw)=) Y > > plea|zs)plas | z2)p(zz | 21)p(21)

T4 To z4 x3=1 x2 T1=C

=D > > plaa|as)ples | @2) Y plez | z1)p(x1)
x4 x3=1 xo r1=cC

= Z Z (4 | x3) Zp (23 | 2) Z p(xa | x1) My (21)
x4 x3=1 v =@

—ZZ $4|1’3Zp13‘12]\[212)
x4 x3=1

= Z Z p(xy | 23)M3(23)
4 x3=1

= Mu(za),
x4

where M ;(x;) now sums over paths ending in x; instead of maximizing.
o And we set M;(c') =0if ¢ # c and M3(c') =0 for ¢ # 1.
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Conditionals via Backwards Messages

@ Performing our conditional calculation using backwards messages.

D> ple=cayaz=lz) = > > > ples|zs)p(es | z2)p(z2 | @1)p(e1)

T4 T T1=c 3 z3=1 x4
= > pl@) Y plaz|z1) Y plas | 22) ) plwa | @3)
x1=c xo x3=1 x4
= T xo | x z3 | x x4 | x3) Va(x
ZIZ:EP( 1)%1)( 2 | 1)x322110( 3 | 2);17( 4| x3) 4;4)
= > @)Y plz2]e1) Y plas | w2)Vs(es)
x1=cC z2 x3=1

= > p(@1))_ pla2 | 21)Va(2)

z1=C T

= p(z1)Vi(z1).
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Forward-Backward Algorithm

@ Generic forward and backward messages for discrete marginals have the form

Mj(x;) = > play | mj-1)Mja(z;-1), Vilzy) =Y plaj | 25)Vipa (@)

Tj—1 Tj+1

@ We can compute p(z; = ¢ | j» = ¢’) using only forward messages:
o Set M;(c) =1 and M, () =1.

o Why we would need backward messages?



Directed Acyclic Graphical Models

Forward-Backward Algorithm

o We can compute p(z; = ¢ | zj; = ) for all j in O(dk?) with both messages.

e First compute all message normally with M;/(¢) =1 and Vj/(¢') = 1.
(Set M (c) and Vj/(c) to O for other values of c.)

@ We then have that

o M;(z;) sums up all the paths that end in state x; (with =, = ¢).
o Vj(z;) sums up all the paths that start in state z; (with 2;; = ¢).
o We can combine these values to get

p(zj | ) o< Mj(z)V;(z;),

o Computing all M; and Vj is called the forward-backward algorithm.
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Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

2]

If we're only conditioning on first j states, x1.;, just fix these values and start
ancestral sampling from time (j + 1).

If we have the marginals p(z;), we can get the “backwards” transition
probabilities using Bayes rule,
p(zj1 | z;)p(x;)

p(zjt1)

p(zj | Tj1) =

which lets us run ancestral sampling in reverse: sample x4 from p(z4), then z4_1
from p(z4—1 | z4), and so on.

If we're only conditioning on last j states x4_;.q4, run CK equations to get
marginals and then start ancestral sampling “backwards” starting from (d —j — 1)
to sample the earlier states.
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Conditional Samples from Gaussian/Discrete Markov Chain

© If we're conditioning on contiguous states in the middle, x;.;/, run ancestral
sampling forward starting from position (5" + 1) and backwards starting from
position (j — 1).
@ If you condition on non-contiguous positions j and j' with j < j’, need to do (i)
forward sampling starting from (5" + 1), (ii) backward sampling starting from
(j — 1), and (iii) CK equations on the sequence (j : j') to get marginals
conditioned on value of j then backwards sampling back to j starting from
(G —1).
The above are all special cases of conditioning in an undirected graphical model
(UGM)), followed by applying the “forward-filter backward-sampling” algorithm on each
of the resulting chain-structured UGMs.
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