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Last Time: Viterbi Decoding and Message Passing

Decoding in density models: finding x with highest joint probability:

argmax
x1,x2,...,xd

p(x1, x2, . . . , xd).

For Markov chains, we find decoding by writing maximization as

max
x1,x2,x3,x4

p(x1, x2, x3, x4) = max
x4

max
x3

p(x4 | x3) max
x2

p(x3 | x2) max
x1

p(x2 | x1) p(x1︸︷︷︸
M1(x1)

)

︸ ︷︷ ︸
M2(x2)︸ ︷︷ ︸

M3(x3)︸ ︷︷ ︸
M4(x4)

,

Viterbi decoding computes M1(x1) for all x1, M2(x2) for all x2, and so on.
The Mj(xj) functions are called messages (summarize everything about past).
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Chapman-Kolmogorov Equations as Message Passing

We can also view Chapman Kolmogorov equations as message passing:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4) =
∑
x3

∑
x2

∑
x1

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x3

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1

p(x2 | x1)M1(x1)

=
∑
x3

p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x3

p(x4 | x3)M3(x3)

=M4(x4),

Messages Mj(xj) are the marginals of the Markov chain.

So we can view CK equations as Viterbi decoding with “max” replace by “sum”.
These two methods are also known as “max-product” and “sum-product” algorithms.
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Message-Passing Algorithms

We’ve discussed several algorithms with similar structure:
Viterbi decoding algorithm for decoding in discrete Markov chains.
CK equations for marginals in discrete Markov chains.
Gaussian updates for marginals in Gaussian Markov chains.

These are all special cases of message-passing algorithms:
1 Define Mj summarizing all relevant information about the past at time j.
2 Use Markov property to write Mj recursively in terms of Mj−1.
3 Solve task by computing M1, M2, . . . , Md.

“Generalized distributive law” is a framework for describing when/why this works:
https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf

In some cases we’ll also need backwards message Vj (“cost to go”):
Vj summarizes all relevant information about the future at time j.

https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
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Backwards “Cost to Go” Messages
Using backwards messages Vj(xj) to (innefficiently) compute p(x1):

p(x1) =
∑
x2

∑
x3

∑
x4

p(x1, x2, x3, x4) =
∑
x2

∑
x3

∑
x4

p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3)

= p(x1)
∑
x2

p(x2 | x1)
∑
x3

p(x3 | x2)
∑
x4

p(x4 | x3)

= p(x1)
∑
x2

p(x2 | x1)
∑
x3

p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)︸ ︷︷ ︸
=1

= p(x1)
∑
x2

p(x2 | x1)
∑
x3

p(x3 | x2)V3(x3)︸ ︷︷ ︸
1

= p(x1)
∑
x2

p(x2 | x1)V2(x2)︸ ︷︷ ︸
1

= p(x1)V1(x1)︸ ︷︷ ︸
1

.

Observe that backwards messages Vj(xj) are not probabilities as in CK equations.
But they summarize everything you need to know about the future.
Can use this structure to condition on the future, and compute things like p(x1 | x4).
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Forward-Backward Algorithm

Computing all Mj(xj) and Vj(xj) is called the forward-backward algorithm.

Not interesting for Markov chains since Vj(xj) = 1 for all j and xj .

Why do we care about backwards messages?
Can efficiently compute all conditionals p(xj = s | x10 = 3) (for all j and s).

Messages are modified when you condition (see bonus slides).
The modified Vj(xj) will reflect “what you need to know about the future events”.

Can be used to compute probabilities in generalizations of Markov chains (next).

In this setting the forward messages may not be probabilities either.

In reinforcement learning, estimating the “cost to go” (“value”) function is the goal.

We aren’t covering RL, but understanding Markov chains will help you understand RL.
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Back to the Rain Data

We previously considered the “Vancouver Rain” data:

We used homogeneous Markov chains to model between-day dependence.
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Back to the Rain Data

But doesn’t it rain less in the summer?

There are hidden clusters in the data not captured by the Markov chain.

But mixture of independent models are inefficient at representing direct dependency.

Mixture of Markov chains could capture direct dependence and clusters,

p(x1, x2, . . . , xd) =

k∑
c=1

p(z = c) p(x1 | z = c)p(x2 | x1, z = c) · · · p(xd | xd−1, z = c)︸ ︷︷ ︸
Markov chain c

.

Cluster z chooses which homogeneous Markov chain parameters to use.

We could learn that we’re more likely to have rain in winter.
Can modify CK equations to take into account z, and then apply EM.
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Comparison of Models on Rain Data
Independent (homogeneous) Bernoulli:

Average NLL: 18.9673 (1 parameter).
Independent Bernoullis:

Average NLL: 18.9518, (28 parmaeters).
Mixture of Bernoullis (k = 10, five random restarts of EM):

Average NLL: 17.0602 (10 + 10× 28 = 290 parameters)
Homogeneous Markov chain:

Average NLL: 16.8065 (3 parameters)
Mixture of Markov chains (k = 10, five random restarts of EM):

Average NLL: 16.5332 (10 + 10× 3 = 40 parameters).
Included what I call a “summer” cluster:

p(z = 5) = 0.14

p(x1 = “rain” | z = 5) = 0.22 (instead of usual 37%)

p(xj = “rain” | xj−1 = “rain”, z = 5) = 0.49) (instead of usual 65%)

p(xj = “rain” | xj−1 = “not rain”, z = 5) = 0.11 (instead of usual 35%)
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Back to the Rain Data

The rain data is artificially divideded into months.

We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tieing.

But a mixture doesn’t make sense when n = 1.

What we want: different “parts” of the sequence come from different clusters.
We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this is with a“hidden” Markov model (HMM):
Instead of examples being assigned to clusters, days are assigned to clusters.
Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

Hidden Markov models have each xj depend on hidden Markov chain.

p(x1, x2, . . . , xd, z1, z2, . . . zd) = p(z1)
d∏

j=2

p(zj | zj−1)
d∏

j=1

p(xj | zj).

We’re going to learn clusters zj and the hidden dynamics.
Hidden cluster zj could be “summer” or “winter” (we’re learning the clusters).
Transition probability p(zj | zj−1) is probability of staying in “summer”.
Emission probability p(xj | zj) is probability of “rain” during “summer”.
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Hidden Markov Models
Hidden Markov models have each xj depend on hidden Markov chain.

p(x1, x2, . . . , z1, z2, . . . zd) = p(z1)

d∏
j=2

p(zj | zj−1)
d∏

j=1

p(xj | zj).

You observe the xj values but do not see the zj values.
CK equations won’t work since p(z1 = s) depends on future xj values.

But forward-backward algorithm can be used to compute probailities.
And subsequently learn with EM (treating zj values as nuissance variables).
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Hidden Markov Models
Hidden Markov models have each xj depend on hidden Markov chain.

Note that the xj can be continuous even with discrete clusters zj .
You could have a “mixture of Gaussians” with cluster changing in time.

If the zj are continuous it’s often called a state-space model.
If everything is Gaussian, it leads to Kalman filtering.
Keywords for non-Gaussian: unscented Kalman filter and particle filter.

Variants of HMMs are probably the most-used time-series model...
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Applications of HMMs and Kalman Filters

Also includes chain-structured conditional random fields.
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Example: Modeling DNA Sequences
Markov model for elements of sequence (dependence on previous symbol):

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences
Hidden Markov model (HMM) for elements of sequence (two hidden clusters):

This is a (hidden) state transition diagram.
Can reflect that probabilities are different in different regions.
The actual regions are not given, but instead are nuissance variables handled by EM.

A better model might be usin a hidden and visible Markov chain.
With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
Would have “treewidth 2”, which we’ll show later means it’s tractable to use.
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Who is Guarding Who?
There is a lot of data on offense of NBA basketball players.

Every point and assist is recorded, more scoring gives more wins and $$$.

But how do we measure defense?
We need to know who each player is guarding.

http://www.lukebornn.com/papers/franks_ssac_2015.pdf

HMMs can be used to model who is guarding who over time.
https://www.youtube.com/watch?v=JvNkZdZJBt4

http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Outline

1 Hidden Markov Models

2 Directed Acyclic Graphical Models
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Higher-Order Markov Models

Markov models use a density of the form

p(x) = p(x1)p(x2 | x1)p(x3 | x2)p(x4 | x3) · · · p(xd | xd−1).

They support efficient computation but Markov assumption is strong.

A more flexible model would be a second-order Markov model,

p(x) = p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4 | x3, x2) · · · p(xd | xd−1, xd−2),

or even a higher-order models.

General case is called directed acyclic graphical (DAG) models:

They allow dependence on any subset of previous features.
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DAG Models

As in Markov chains, DAG models use the chain rule to write

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xd | x1, x2, . . . , xd−1).

We can alternately write this as:

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | x1:j−1).

In Markov chains, we assumed xj only depends on previous xj−1 given past.

In DAGs, xj can depend on any subset of the past x1, x2, . . . , xj−1.
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DAG Models

We often write joint probability in DAG models as

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)),

where pa(j) are the “parents” of node j.

For Markov chains the only “parent” of j is (j − 1).
If we have k parents we only need 2k+1 parameters.

This corresponds to a set of conditional independence assumptions,

p(xj | x1:j−1) = p(xj | xpa(j)),

that we’re independent of previous non-parents given the parents.
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MNIST DIgits with Markov Chains

Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

Samples from a DAG model with 8 parents per feature:

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2”):

{(i−2, j−2), (i−1, j−2), (i, j−2), (i−2, j−1), (i−1, j−1), (i, j−1), (i−2, j), (i−1, j)}.
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From Probability Factorizations to Graphs

DAG models are also known as “Bayesian networks” and “belief networks”.

“Graphical” name comes from visualizing parents/features as a graph:
We have a node for each feature j.
We place an edge into j from each of its parents.

The DAG representation for a Markov chains is:

Different than “state transition diagrams”: edges are between variables (not states).

This graph is not just a visualization tool:
Can be used to test arbitrary conditional independences (“d-separation”).
Graph structure tells us whether message passing is efficient (“treewidth”).
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Graph Structure Examples

With product of independent we have

p(x) =

d∏
j=1

p(xj),

so pa(j) = ∅ and the graph is:
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Graph Structure Examples

With Markov chain we have

p(x) = p(x1)

d∏
j=2

p(xj | xj−1),

so pa(j) = {j − 1} and the graph is:
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Graph Structure Examples

With second-order Markov chain we have

p(x) = p(x1)p(x2 | x1)
d∏

j=3

p(xj | xj−1, xj−2),

so pa(j) = {j − 2, j − 1} and the graph is:
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Graph Structure Examples

With general distribution we have

p(x) =

d∏
j=1

p(xj | x1:j−1).

so pa(j) = {1, 2, . . . , j − 1} and the graph is:
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Graph Structure Examples

In naive Bayes (or GDA with diagonal Σ) we add an extra variable y and use

p(y, x) = p(y)

d∏
j=1

p(xj | y),

which has pa(y) = ∅ and pa(xj) = y giving
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Graph Structure Examples

With mixture of independent models we have

p(z, x) = p(z)

d∏
j=1

p(xj | z).

which has pa(z) = ∅ and pa(xj) = z giving same structure as naive Bayes:

Since structure is the same, many computations will be similar.
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Graph Structure Examples

With mixture of Markov chains models we have

p(x1, x2, . . . , xd, z) = p(z)p(x1 | z)

d∏
j=2

p(xj | xj−1, z).

which has pa(z) = ∅ and pa(xj) = {xj−1, z}:
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Graph Structure Examples

Sometimes it’s easier to present a model using the graph.

In hidden Markov models we have this structure:

The graph and variable names already give you an idea of what this model does:

We have hidden variables zj that follow a Markov chain.

Each feature xj depends on corresponding hidden variable zj .
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Summary

Message-passing allow efficient calculations with Markov chains.

Hidden Markov models model time-series with hidden per-time cluster.

Tons of applications, typically more realistic than Markov models.

DAG models factorize joint distribution into product of conditionals.

Assume conditionals depend on small number of “parents”.

Next time: the IID assumption as a graphical model?
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Computing Conditional Probabilities

Previously: Monte Carlo for approximating conditional probabilities
For Gaussian/discrete Markov chains, we can do better than rejection sampling.

1 We can generate exact samples from conditional distribution (bonus slide).
Rejection sampling is not needed, relies on “backwards sampling” in time.

2 We can find conditional decoding maxx | xj′=c p(x):

Run Viterbi decoding with Mj′(c) = 1 and Mj′(c
′) = 0 for c 6= c′.

3 We can find univariate conditionals, p(xj | xj′).

Example of computing p(x1 = c | x3 = 1) in a length-4 discrete Markov chain:

p(x1 = c | x3 = 1) ∝ p(x1 = c, x3 = 1)

=
∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4),

where the normalizing constant is the marginal p(x3 = 1).

This is a sum over kd−2 possible assignments to other variables.
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Distributing Sum across Product
Fortunately, the Markov property makes the sums simplify as before:∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4) =
∑
x4

∑
x3=1

∑
x2

∑
x1=c

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x4

∑
x3=1

∑
x2

p(x4 | x3)p(x3 | x2)
∑
x1=c

p(x2 | x1)p(x1)

=
∑
x4

∑
x3=1

p(x4 | x3)
∑
x2

p(x3 | x2)
∑
x1=c

p(x2 | x1)M1(x1)

=
∑
x4

∑
x3=1

p(x4 | x3)
∑
x2

p(x3 | x2)M2(x2)

=
∑
x4

∑
x3=1

p(x4 | x3)M3(x3)

=
∑
x4

M4(x4),

where Mj(xj) now sums over paths ending in xj instead of maximizing.
And we set M1(c′) = 0 if c′ 6= c and M3(c′) = 0 for c′ 6= 1.
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Conditionals via Backwards Messages

Performing our conditional calculation using backwards messages.

∑
x4

∑
x2

p(x1 = c, x2, x3 = 1, x4) =
∑
x1=c

∑
x2

∑
x3=1

∑
x4

p(x4 | x3)p(x3 | x2)p(x2 | x1)p(x1)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)
∑
x4

p(x4 | x3)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)
∑
x4

p(x4 | x3)V4(x4)︸ ︷︷ ︸
=1

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)
∑
x3=1

p(x3 | x2)V3(x3)

=
∑
x1=c

p(x1)
∑
x2

p(x2 | x1)V2(x2)

=
∑
x1=c

p(x1)V1(x1).
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Forward-Backward Algorithm

Generic forward and backward messages for discrete marginals have the form

Mj(xj) =
∑
xj−1

p(xj | xj−1)Mj−1(xj−1), Vj(xj) =
∑
xj+1

p(xj+1 | xj)Vj+1(xj+1).

We can compute p(xj = c | xj′ = c′) using only forward messages:

Set Mj(c) = 1 and Mj′(c
′) = 1.

Why we would need backward messages?
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Forward-Backward Algorithm

We can compute p(xj = c | xj′ = c′) for all j in O(dk2) with both messages.

First compute all message normally with Mj′(c
′) = 1 and Vj′(c

′) = 1.
(Set Mj′ (c) and Vj′ (c) to 0 for other values of c.)

We then have that

Mj(xj) sums up all the paths that end in state xj (with xj′ = c′).
Vj(xj) sums up all the paths that start in state xj (with xj′ = c′).
We can combine these values to get

p(xj | xj′) ∝Mj(xj)Vj(xj),

Computing all Mj and Vj is called the forward-backward algorithm.
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Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

1 If we’re only conditioning on first j states, x1:j , just fix these values and start
ancestral sampling from time (j + 1).

2 If we have the marginals p(xj), we can get the “backwards” transition
probabilities using Bayes rule,

p(xj | xj+1) =
p(xj+1 | xj)p(xj)

p(xj+1)
,

which lets us run ancestral sampling in reverse: sample xd from p(xd), then xd−1
from p(xd−1 | xd), and so on.

3 If we’re only conditioning on last j states xd−j:d, run CK equations to get
marginals and then start ancestral sampling “backwards” starting from (d− j − 1)
to sample the earlier states.
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Conditional Samples from Gaussian/Discrete Markov Chain

4 If we’re conditioning on contiguous states in the middle, xj:j′ , run ancestral
sampling forward starting from position (j′ + 1) and backwards starting from
position (j − 1).

5 If you condition on non-contiguous positions j and j′ with j < j′, need to do (i)
forward sampling starting from (j′ + 1), (ii) backward sampling starting from
(j − 1), and (iii) CK equations on the sequence (j : j′) to get marginals
conditioned on value of j then backwards sampling back to j starting from
(j′ − 1).

The above are all special cases of conditioning in an undirected graphical model
(UGM), followed by applying the “forward-filter backward-sampling” algorithm on each
of the resulting chain-structured UGMs.
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