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Last Time: Monte Carlo Methods

o If we want to approximate expectations of random functions,

Elg(x)] = 3 g(e)p(z) or Elg(x)] = / g(@)p(e)d,
reX zeEX
—_——— VT

. continuous x
discrete ©

the Monte Carlo estimate is
1 n
Elg(@)] ~ > gla),
i=1
where the z* are independent samples from p(x).

@ We can use this to approximate marginals,
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Exact Marginal Calculation

@ In typical settings Monte Carlo has slow convergence like stochastic gradient.
e O(1/t) convergence rate where constant is variance of samples.

o If all samples look the same, it converges quickly.
o If samples look very different, it can be painfully slow.

@ For discrete-state Markov chains, we can actually compute marginals directly:

o We're given initial probabilities p(x1 = s) for all s as part of the definition.
o We can use transition probabilities to compute p(z2 = s) for all s:

k k
plas) = D plaz, @) = Y plea | z1)p(z1) .
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product rule

marginalization rule

o We can repeat this calculation to obtain p(z3 = s) and subsequent marginals.
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Exact Marginal Calculation
@ Recursive formula for maginals at time j:

k

plzj) = > pxj|zj1)p(zj-1),

J,’j_lil

called the Chapman-Kolmogorov (CK) equations.

@ The CK equations can be implemented as matrix-vector multiplication:
o Define 7/ as a vector containing the marginals at time ¢:

o Define T7 as a matrix cotaining the transition probabilities:

T), =plzj=c|zj1 =)
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Exact Marginal Calculation
@ Implementing the CK equations as a matrix multiplications:

) p(zj—1 =1)
R plej =1lz;_1=1) ple; =1lzj1=2) ... plej=1z; 1 =k)] |plzj—1=2)
7777 = |p(zj =2[z;_1 =1) p(zj; =2|z;_1 =2) p(r; =2[z;_1 = k) .
lp(zj = klzj_1 =1) plzj =klzj_1=2) ... pla;=klej_1=k) :
p(xj—1 =k)
[k ip@; =1]ej_1 =c)p(zj_1 = c) p(z; = 1)
de—1p(zj =2z 1 =c)p(zj_1 =c) p(zj = 2) .
= . = . =l
Sk p(e; =k |21 =c)p(zj_1 =c) plj = k)

o Cost of multiplying a vector by a k x k matrix is O(k?).

@ So cost to compute marginals up to time d is O(dk?).
o This is fast considering that last step sums over all k% possible paths.

k k

k k k
P(l’d): Z Z Z pxl,xQ,...,xd).

r1=122=1 rj1=1lz;p1=1 xg_1=1

Message Passing



Exact Marginals and PageRank Message Passing

Marginals in CS Grad Career

e CK equations can give all marginals p(x; = ¢) from CS grad Markov chain:

~

° o 2 o
= & 8 g

@ Each row j is a state and each column c is a year.
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Continuous-State Markov Chains

@ The CK equations also apply if we have continuous states:

plz) = / p(#5 | 21 )p(j1)di1,

g=1

but this integral may not have a closed-form solution.

@ Gaussian probabilities are an important special case:
o If p(xj_1) and p(z; | ;1) are Gaussian, then p(z;) is Gaussian.
e Joint distribution is a product of Gaussians.

e So we can write p(z;) in closed-form in terms of mean and variance.

o If the probabilities are non-Gaussian, usually can’t represent p(x;) distribution.
e You are stuck using Monte Carlo or other approximations.
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Stationary Distribution

@ A stationary distribution of a homogeneous Markov chain is a vector 7 satisfying
m(e)=> plz;=clzj1=)n(d).
C/
e "Probabilities don't change across time” (also called “invariant” distribution).

o Here are talking about the “marginal” probabilities p(z;),
not the “transition” probabilities p(z; | z;_1).

@ Under certain conditions, marginals converge to a stationary distribution.
o p(xz; =c) = m(c) as j goes to oo.
o If we fit a Markov chain to the rain example, we have 7(“rain”) = 0.41.
o In the CS grad student example, we have 7("dead”) = 1.

Stationary distribution is basis for Google's PageRank algorithm.
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Application: PageRank

@ Web search before Google:
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@ It was also easy to fool search engines by copying popular websites.
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http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
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State Transition Diagram

@ State transition diagrams are common for visualizing homogenous Markov chains:
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@ Each node is a state, each edge is a non-zero transition probability.
o For web-search, each node will be a webpage.

@ Cost of CK equations is only O(z) if you have only z edges.
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Application: PageRank

e Wikipedia's cartoon illustration of Google's PageRank:
o Large face means higher rank.

PageRank

https://en.wikipedia.org/wiki/PageRank

@ “Important webpages are linked from other important webpages”.
@ “Link is more meaningful if a webpage has few links".


https://en.wikipedia.org/wiki/PageRank
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Application: PageRank

@ Google's PageRank algorithm for measuring the importance of a website:
o Stationary probability in “random surfer” Markov chain:

o With probability «, surfer clicks on a random link on the current webpage.
o Otherwise, surfer goes to a completely random webpage.

@ To compute the stationary distribution, they use the power method:

o Repeatedly apply the CK equations.
o lterations are faster than O(k?) due to sparsity of links.

@ Transition matrix is “sparse plus rank-1" which allows fast multiplication.

o Can be easily parallelized.
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Application: Game of Thrones

@ PageRank can be used in other applications.
@ “Who is the main character in the Game of Thrones books?”

— Figure 2. The social network
generated from A Storm of
G Swords. The color of a vertex
indicates its community. The
size of a vertex corresponds 1o

its PageRank value, and the size

centrality. An edge’s
thickness represents its weight.

http:
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//qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character


http://qz.com/650796/mathematicians-mapped-out-every-game-of-thrones-relationship-to-find-the-main-character
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Existence/Uniqueness of Stationary Distribution

@ Does a stationary distribution 7 exist and is it unique?

o A sufficient condition for existence/uniqueness is that all p(z; = c |z = ¢’) > 0.
e PageRank satisfies this by adding probability « of jumping to a random page.

o Weaker sufficient conditions for existence and uniqueness ( “ergodic”):

© ‘Irreducible” (doesn't get stuck in part of the graph).
@ “Aperiodic” (probability of returning to state isn't on fixed intervals).
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Decoding: Maximizing Joint Probability

@ Decoding in density models: finding x with highest joint probability:
argmax p(zy1,Ta,...,xq).
L1,X2,..-,Td
@ For CS grad student (d = 60) the decoding is “industry” for all years.
o The decoding often doesn’t look like a typical sample.
e The decoding can change if you increase d.
@ Decoding is easy for independent models:
o Here, p(21, 22,23, 24) = p(@1)p(w2)p(23)p(24).
e You can optimize p(x1, z2, 3, x4) by optimizing each p(z;) independently.
@ Can we also maximize the marginals to decode a Markov chain?



Exact Marginals and PageRank

Example of Decoding vs. Maximizing Marginals

@ Consider the “plane of doom” 2-variable Markov chain:

“land”
“land”
“crash”
X = | “explode”
“crash”
“land”

@ 40% of the time the plane lands and you live.

“ H 1 ]
alive

“alive”
“dead”
“dead”
“dead”

“alive”

@ 30% of the time the plane crashes and you die.

@ 30% of the time the explodes and you die.

Message Passing
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Example of Decoding vs. Maximizing Marginals
@ Initial probabilities are given by
p(z1 = "land”) = 0.4, p(x; = “crash”) =0.3, p(z1 = “explode”) = 0.3,

and x9 is “alive” iff 21 is “land”.

o If we apply the CK equations we get
p(ze = "alive”) =04, p(ze = “dead”) = 0.6,

so maximizing the marginals p(z;) independently gives (“land”, “dead”).
e This actually has probability 0.

@ Decoding considers the joint assignment to x; and x2 maximizing probaiblity.
o In this case it's (“land”, “alive”), which has probability 0.4.
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Digression: Recursive Joint Maximization

@ To decode Markov chains, it will be helpful to re-write joint maximizations as

max f(z1,x2) = max fi(z1),
xr1,T2 1

where fi(x1) = max,, f(x1,z2) (this fi “maximizes out” over x3).

e This is similar to the marginalization rule in probability.

@ Plugging in the definition of f;(x1) we obtain:

max f(z1,x2) = maxmax f(z1,x2) .
T To

T1,T9
—_—————
fi(z1)
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Decoding with Dynamic Programming

@ Note that decoding can't be done forward in time as in CK equations.

o Even if p(z; = 1) = 0.99, the most likely sequence could have z; = 2.
e So we need to optimize over all k% assignments to all variables.

o Fortunately, we can solve this problem using dynamic programming.
o Key quantity is solving the sub-problem M;(x;).
o Find the "highest probability sequence of length j ending in z;",

Mj(z;) = max  p(z1,22,...,2;).
T1,X2,..+,T5—1

o Base case: Mi(x1) = p(x1) (which is given by the initial probability).
o We can compute other M;(z;) recursively (next slide).
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Decoding with Dynamic Programming

@ Recursive calculation of “highest probability sequence of length j ending in x;":

Mj(zj) = max p(z1,x2,...,T;5) (definition of M;(x;))

T1,@2, T 1

= max p(z; | x1,22,...xj—1)p(z1, T2, ..., Tj_1) (product rule)
T1,T2,. T 1

= max  p(z; | zj—1)p(x1,®2,...,Tj-1) (Markov property)
T1,T2,. T 1

= max { max  p(z; | :ijl)p(zhxg,xj,l)} (max f(a,b) = max{max f(a,b)})
Tj—1 | T1,%2,---Tj—2 a,b a b

= max {p(:):j | 1) max p(xl,mg,zjfl)} (max ca; = amaxa; for o > 0)
Tj-1 1,T2,-..Tj—2 i 7

= maxp(zj | :Ejfl) Mjfl(a:jfl) (definition of Mjfl(xjfl))
Tj_1

given recurse

@ Once we have computed M;(z; = ¢) for all j and ¢ values,
we can backtrack to solve the problem (later).
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Example: Decoding the Plane of Doom

@ We have M;(x1) = p(x1) so in “plane of doom” we have
M;i("land") = 0.4, M;("crash”)=0.3, M;("explode”)=0.3.
e We have Ms(x2) = max,, p(xs | x1)M;p(x1) so we get
Mo(“alive”) = 0.4, Mo("“dead") = 0.3.

@ My(2) # p(z2 = 2) because we needed to choose either “crash” or “explode”.
o And notice that Ele Ms(xzj; = c¢) # 1 (this is not a distribution over x3).

e We maximize Ms(z2) to find that the optimal decoding ends with “alive”.
o We now need to backtrack to find the state that lead to “alive”, giving “land”.
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Viterbi Decoding

@ The Viterbi decoding algorithm (special case of dynamic programming):
e Set M1(£E1) = p(xl) for all xIy.
@ Compute My (x2) for all x4, store value of x; leading to the best value of each xs.
© Compute Ms(x3) for all z3, store value of zo leading to the best value of each 3.
Q ...
© Maximize My(x4) to find value of 4 in a decoding.
@ Bactrack to find the value of x4_; that lead to this x.
@ Backtrack to find the value of xz4_o that lead to this z4_1.
Q ...
© Backtrack to find the value of x; that lead to this 5.

o Computing all M;(x;) given all M;_q(x;_1) costs O(k?).
o Total cost is only O(dk?) to search over all k¢ paths.
e Has numerous applications like decoding digital TV.
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Application: Voice Photoshop

@ Application: Adobe VoCo uses Viterbi as part of synthesizing voices:

Query I
ey ol P51 || s16 || 1&R GRAH
4 Y
sps1 -] sik IV.GR GRAH |
sp_S_1 - S_IF IYGR G_R_EY
spSI1 k-1 SIT 16N |\ GREY
ﬁ SIV.G 160 |\ GRAY
splG
Initial candidate table
PG including all Triphones
and Diphones
Triphone match SEOER ‘ Diphone match ‘ """ Consecttie

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

e https://www.youtube.com/watch?v=I314XLZ59iw


http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf
https://www.youtube.com/watch?v=I3l4XLZ59iw

Summary

Chapman-Kolmogorov equations compute exact univariate marginals.
e For discrete or Gaussian Markov chains.

Stationary distribution of homogenous Markov chain.

e Marginals as time goes to co.
e Basis of Google's PageRank method.

Decoding is task of finding most probable z.
Viterbi decoding allow efficient decoding with Markov chains.

Next time: measuring defence in the NBA.

Message Passing



Message Passing

Label Propagation as a Markov Chain Problem

@ Basic label propagation method has a Markov chain interpretation.
o We have n + t states, one for each [un]labeled example.

@ Monte Carlo approach to label propagation ( “adsorption”):

e At time t = 0, set the state to the node you want to label.
e At time t > 0 and on a labeled node, output the label.

o Labeled nodes are absorbing states.
e At time ¢ > 0 and on an unlabeled node i:
@ Move to neighbour j with probability proportional w;; (or w;;).

@ Final predictions are probabilities of outputting each label.

o Nice if you only need to label one example at a time (slow if labels are rare).
e Common hack is to limit random walk time to bound runtime.
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