Last Time: Markov Chains

- We can use Markov chains for density estimation,

\[p(x) = p(x_1) \prod_{j=2}^{d} p(x_j | x_{j-1}), \]

which model dependency between adjacent features.
- Different than mixture models which focus on clusters in the data.

- Homogeneous chains use same transition probability for all \(j \) (parameter tieing).
 - Gives more data to estimate transitions, allows examples of different sizes.

- Inhomogeneous chains allow different transitions at different times.
 - More flexible, but need more data.

- Given a Markov chain model, we overviewed common computational problems:
 - Sampling, marginalization, decoding, conditioning, and stationary distribution.
A common inference task is **sampling from a density**.

- Generating examples x^i that are distributed according to a given density $p(x)$.
- Basically, the “opposite” of density estimation: going from a model to data.

\[
p(x) = \begin{cases}
1 & \text{w.p. 0.5} \\
2 & \text{w.p. 0.25} \\
3 & \text{w.p. 0.25}
\end{cases}
\Rightarrow X = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \end{bmatrix}.
\]
A common inference task is **sampling from a density**.

- Generating examples x^i that are distributed according to a given density $p(x)$.
- Basically, the “opposite” of density estimation: going from a model to data.

We’ve been using pictures of samples to “tell us what the model has learned”.

- If the samples look like real data, then we have a good density model.

Samples can also be used in **Monte Carlo** estimation (today):

- Replace complicated $p(x)$ with samples to solve hard problems at test time.
Simplest Case: Sampling from a Bernoulli

Consider sampling from a Bernoulli, for example

\[p(x = 1) = 0.9, \quad p(x = 0) = 0.1. \]

Sampling methods assume we can sample uniformly over \([0, 1]\).

- Usually, a “pseudo-random” number generator is good enough (like Julia’s `rand`).

How to use a uniform sample to sample from the Bernoulli above:

1. Generate a uniform sample \(u \sim \mathcal{U}(0, 1) \).
2. If \(u \leq 0.9 \), set \(x = 1 \) (otherwise, set \(x = 0 \)).

If uniform samples are “good enough”, then we have \(x = 1 \) with probability 0.9.
Sampling from a Categorical Distribution

Consider a more general categorical density like

\[p(x = 1) = 0.4, \quad p(x = 2) = 0.1, \quad p(x = 3) = 0.2, \quad p(x = 4) = 0.3, \]

we can divide up the \([0, 1]\) interval based on probability values:

- If \(u \sim \mathcal{U}(0, 1) \), 40% of the time it lands in \(x_1 \) region, 10% of time in \(x_2 \), and so on.
Sampling from a Categorical Distribution

- Consider a more general **categorical density** like

 \[p(x = 1) = 0.4, \quad p(x = 2) = 0.1, \quad p(x = 3) = 0.2, \quad p(x = 4) = 0.3. \]

- To **sample from this categorical** density we can use (*sampleDiscrete* function):
 1. Generate \(u \sim \mathcal{U}(0, 1) \).
 2. If \(u \leq 0.4 \), output 1.
 3. If \(u \leq 0.4 + 0.1 \), output 2.
 4. If \(u \leq 0.4 + 0.1 + 0.2 \), output 3.
 5. Otherwise, output 4.
Sampling from a Categorical Distribution

- General case for sampling from categorical.
 1. Generate $u \sim \mathcal{U}(0, 1)$.
 2. If $u \leq p(x \leq 1)$, output 1.
 3. If $u \leq p(x \leq 2)$, output 2.
 4. If $u \leq p(x \leq 3)$, output 3.
 5. . .

- The value $p(x \leq c) = p(x = 1) + p(x = 2) + \cdots + p(x = c)$ is the CDF.
 - “Cumulative distribution function”.

- Worst case cost with k possible states is $O(k)$ by incrementally computing CDFs.

- But to generate t samples only costs $O(k + t \log k)$ instead of $O(tk)$:
 - One-time $O(k)$ cost to store the CDF $p(x \leq c)$ for each c.
 - Per-sample $O(\log k)$ cost to do binary search for smallest c with $u \leq p(x \leq c)$.
Introduction to Sampling Monte Carlo Approximation

Cumulative Distribution Function (CDF)

- We often use $F(c) = p(x \leq c)$ to denote the CDF.
 - $F(c)$ is between 0 and 1, giving proportion of times x is below c.
 - $F(c)$ monotonically increases with c.
 - F can be used for discrete and continuous variables:

 ![CDF Diagram](https://en.wikipedia.org/wiki/Cumulative_distribution_function)

- The “binary search for smallest c” method finds smallest c such that $u \leq F(c)$.
 - This same approach works for continuous and general densities.

- General approach uses the inverse CDF (or “quantile”) function:
 - $F^{-1}(u) = \inf\{c \mid F(c) \geq u\}$.
 - Given a number u between 0 and 1, returns smallest c with $p(x \leq c) = u$.
 - If F is invertible, then F^{-1} is the usual inverse.
Inverse Transform Method (Exact 1D Sampling)

- **Inverse transform** method for exact sampling in 1D:
 1. Sample \(u \sim \mathcal{U}(0, 1) \).
 2. Return \(F^{-1}(u) \).

Why this works (invertible case):

\[
p(F^{-1}(u) \leq c) = p(u \leq F(c)) \quad \text{(apply monotonic } F \text{ to both sides)}
\]
\[
= F(c) \quad \text{(since } p(u \leq y) = y \text{ for uniform } u)\]

- So this algorithm has the same CDF as the distribution we want to sample.

Video on pseudo-random numbers and inverse-transform sampling:

- https://www.youtube.com/watch?v=C82JyCmtKWg
Example: Sampling from a 1D Gaussian

- Consider a Gaussian distribution,
 \[x \sim \mathcal{N}(\mu, \sigma^2). \]

- CDF has the form
 \[F(c) = p(x \leq c) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{c - \mu}{\sigma \sqrt{2}} \right) \right], \]
 where “erf” is the CDF of \(\mathcal{N}(0, 1) \).

- Inverse CDF has the form
 \[F^{-1}(u) = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1). \]

- To sample from a Gaussian:
 1. Generate \(u \sim \mathcal{U}(0, 1) \).
 2. Return \(\mu + \sigma \sqrt{2} \text{erf}^{-1}(2u - 1) \).
In some cases we can sample from multivariate distributions by transformation.

Recall the affine property of multivariate Gaussian:
- If $x \sim \mathcal{N}(\mu, \Sigma)$, then $Ax + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$.

To sample from a general multivariate Gaussian $\mathcal{N}(\mu, \Sigma)$:
1. Sample x from a $\mathcal{N}(0, I)$ (each x_j coming independently from $\mathcal{N}(0, 1)$).
2. Transform to a sample from the right Gaussian using the affine property:

$$Ax + \mu \sim \mathcal{N}(\mu, AA^T),$$

where we choose A so that $AA^T = \Sigma$ (e.g., by Cholesky factorization).
Sampling from a Product Distribution

Consider a product distribution,

\[p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2)\cdots p(x_d). \]

Because variables are independent, we can sample independently:
- Sample \(x_1 \) from \(p(x_1) \).
- Sample \(x_2 \) from \(p(x_2) \).
- \(\ldots \)
- Sample \(x_d \) from \(p(x_d) \).

Example: sampling from a multivariate Gaussian with diagonal covariance.
- Sample each variable independently based on \(\mu_j \) and \(\sigma_j^2 \).
Ancestral Sampling

• To sample dependent random variables we can use the chain rule of probability,

\[p(x_1, x_2, x_3, \ldots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \ldots, x_1). \]

• The chain rule suggests the following sampling strategy:
 - Sample \(x_1 \) from \(p(x_1) \).
 - Given \(x_1 \), sample \(x_2 \) from \(p(x_2 \mid x_1) \).
 - Given \(x_1 \) and \(x_2 \), sample \(x_3 \) from \(p(x_3 \mid x_2, x_1) \).
 - \(\ldots \)
 - Given \(x_1 \) through \(x_{d-1} \), sample \(x_d \) from \(p(x_d \mid x_{d-1}, x_{d-2}, \ldots, x_1) \).

• This is called ancestral sampling.
 - It's easy if (conditional) probabilities are simple, since sampling in 1D is usually easy.
 - But may not be simple, binary conditional \(j \) has \(2^j \) values of \(\{x_1, x_2, \ldots, x_j\} \).
Ancestral Sampling Examples

- For Markov chains the chain rule simplifies to

\[p(x_1, x_2, x_3, \ldots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1}), \]

- So ancestral sampling simplifies too:
 1. Sample \(x_1 \) from initial probabilities \(p(x_1) \).
 2. Given \(x_1 \), sample \(x_2 \) from transition probabilities \(p(x_2 \mid x_1) \).
 3. Given \(x_2 \), sample \(x_3 \) from transition probabilities \(p(x_3 \mid x_2) \).
 4. \(\ldots \)
 5. Given \(x_{d-1} \), sample \(x_d \) from transition probabilities \(p(x_d \mid x_{d-1}) \).

- For mixture models with cluster variables \(z \) we could write

\[p(x, z) = p(z)p(x \mid z), \]

so we can first sample cluster \(z \) and then sample \(x \) given cluster \(z \).

 - If you want samples of \(x \), sample \((x, z)\) pairs and ignore the \(z \) values.
Markov Chain Toy Example: CS Grad Career

“Computer science grad career” Markov chain:

Initial probabilities:

<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td>0.60</td>
<td>They work for a company or own their own company.</td>
</tr>
<tr>
<td>Grad School</td>
<td>0.30</td>
<td>They are trying to get a Masters or PhD degree.</td>
</tr>
<tr>
<td>Video Games</td>
<td>0.10</td>
<td>They mostly play video games.</td>
</tr>
</tbody>
</table>

Transition probabilities (from row to column):

<table>
<thead>
<tr>
<th>From\To</th>
<th>Video Games</th>
<th>Industry</th>
<th>Grad School</th>
<th>Video Games (with PhD)</th>
<th>Industry (with PhD)</th>
<th>Academia</th>
<th>Deceased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Games</td>
<td>0.08</td>
<td>0.90</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry</td>
<td>0.03</td>
<td>0.95</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Grad School</td>
<td>0.06</td>
<td>0.06</td>
<td>0.75</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Video Games (with PhD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>0.60</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry (with PhD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.95</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Academia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Deceased</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

So \(p(x_t = \text{“Grad School”} \mid x_{t-1} = \text{“Industry”}) = 0.01. \)
Example of Sampling x_1

- **Initial probabilities** are:
 - 0.1 (Video Games)
 - 0.6 (Industry)
 - 0.3 (Grad School)
 - 0 (Video Games with PhD)
 - 0 (Academia)
 - 0 (Deceased)

- **So initial CDF is**:
 - 0.1 (Video Games)
 - 0.7 (Industry)
 - 1 (Grad School)
 - 1 (Video Games with PhD)
 - 1 (Academia)
 - 1 (Deceased)

- **To sample the initial state x_1**:
 - First generate a uniform number u, for example $u = 0.724$.
 - Now find the first CDF value bigger than u, which in this case is “Grad School”.

Example of Sampling x_2, Given $x_1 = \text{“Grad School”}$

- So we sampled $x_1 = \text{“Grad School”}$.
- To sample x_2, we’ll use the “Grad School” row in transition probabilities:

<table>
<thead>
<tr>
<th>From\to</th>
<th>Video Games</th>
<th>Industry</th>
<th>Grad School</th>
<th>Video Games (with PhD)</th>
<th>Industry (with PhD)</th>
<th>Academia</th>
<th>Deceased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Games</td>
<td>0.08</td>
<td>0.90</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry</td>
<td>0.03</td>
<td>0.95</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>Grad School</td>
<td>0.06</td>
<td>0.06</td>
<td>0.75</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Video Games (with PhD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>0.60</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry (with PhD)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.95</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Academia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td>0.97</td>
<td>0.01</td>
</tr>
<tr>
<td>Deceased</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example of Sampling x_2, Given $x_1 = \text{“Grad School”}$

- **Transition probabilities:**
 - 0.06 (Video Games)
 - 0.06 (Industry)
 - 0.75 (Grad School)
 - 0.05 (Video Games with PhD)
 - 0.02 (Academia)
 - 0.01 (Deceased)

- **So transition CDF is:**
 - 0.06 (Video Games)
 - 0.12 (Industry)
 - 0.87 (Grad School)
 - 0.97 (Video Games with PhD)
 - 0.99 (Academia)
 - 1 (Deceased)

- **To sample the second state x_2:**
 - First generate a uniform number u, for example $u = 0.113$.
 - Now find the first CDF value bigger than u, which in this case is “Industry”.

Markov Chain Toy Example: CS Grad Career

- **Samples** from “computer science grad career” Markov chain:

- State 7 ("deceased") is called an *absorbing state* (no probability of leaving).
- Samples often give you an idea of what model knows (and what should be fixed).
Outline

1. Introduction to Sampling
2. Monte Carlo Approximation
Marginalization and Conditioning

- Given density estimator, we often want to make **probabilistic inferences**:
 - **Marginals**: what is the probability that \(x_j = c \)?
 - What is the probability we’re in industry 10 years after graduation?
 - **Conditionals**: what is the probability that \(x_j = c \) given \(x_{j'} = c' \)?
 - What is the probability of industry after 10 years, if we immediately go to grad school?

- This is easy for simple independent models:
 - We directly model marginals \(p(x_j) \), and conditional are marginals:
 \[
p(x_j \mid x_{j'}) = p(x_j).
 \]

- This is also easy for mixtures of simple independent models.
 - Do inference for each mixture, add results using mixture probabilities:
 \[
p(x_j) = \sum_z p(z, x_j) = \sum_z p(z) \underbrace{p(x_j \mid z)}_{\text{inference within cluster}}.
 \]

- For Markov chains, it’s more complicated...
Marginals in CS Grad Career

- All marginals $p(x_j = c)$ from “computer science grad career” Markov chain:

- Each row j is a state and each column c is a year.
Monte Carlo: Marginalization by Sampling

- A basic Monte Carlo method for estimating probabilities of events:
 1. Generate a large number of samples x^i from the model,

\[
X = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}.
\]

 2. Compute frequency that the event happened in the samples,

\[
p(x_2 = 1) \approx \frac{3}{4}, \\
p(x_3 = 0) \approx \frac{0}{4}.
\]

- Monte Carlo methods are second most important class of ML algorithms.
 - Originally developed to build better atomic bombs :(
 - Run physics simulator to “sample”, then see if it leads to a chain reaction.
Monte Carlo Method for Rolling Dice

- Monte Carlo estimate of the probability of an event A:

 $\frac{\text{number of samples where } A \text{ happened}}{\text{number of samples}}$.

- Computing probability of a pair of dice rolling a sum of 7:
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - Roll two dice, check if the sum is 7.
 - ...

- Monte Carlo estimate: fraction of samples where sum is 7.
Monte Carlo Method for Inequalities

- Monte Carlo estimate of **probability that variable is above threshold**: Compute fraction of examples where sample is above threshold.
Monte Carlo Method for Mean

- A Monte Carlo approximation of the mean:
 - Approximate the mean by average of samples.

\[E[x] \approx \frac{1}{n} \sum_{i=1}^{n} x^i. \]

- Visual demo of Monte Carlo approximation of mean and variance:
 - http://students.brown.edu/seeing-theory/basic-probability/index.html
Monte Carlo for Non-Uniform Coupon Collecting

Recall the **coupon collecting** problem:
- You have a set of n possible objects.
- How many IID samples do you need before you see all n?

With uniform probabilities, expected value is $O(n \log n)$.

With non-uniform probabilities, you can approximate it with Monte Carlo:
- Take IID samples until you have seen all objects.
- Repeat many times and take the average time.
- Don't even need to necessarily know the probabilities.
Monte Carlo for Markov Chains

- Our samples from the CS grad student Markov chain:

![Graph showing transitions and frequencies.]

- We can estimate probabilities by looking at frequencies in samples.
 - In how many out of the 100 chains did we have $x_{10} = \text{“industry”}$?
- This works for continuous states too (for inequalities and expectations).
Monte Carlo Methods for Markov Chains

- Some Monte Carlo approximations of inference tasks in Markov chains:
 - Marginal $p(x_j = c)$ is the number of chains that were in state c at time j.
 - Average value at time j, $E[x_j]$, is approximated by average of x_j in the samples.
 - $p(x_j \leq 10)$ is approximate by frequency of x_j being less than 10.
 - $p(x_j \leq 10, x_{j+1} \geq 10)$ is approximated by number of chains where both happen.
Monte Carlo Methods

- Monte Carlo methods approximate expectations of random functions,

\[\mathbb{E}[g(x)] = \sum_{x \in \mathcal{X}} g(x)p(x) \quad \text{or} \quad \mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x)\,dx. \]

- Computing mean is the special case of \(g(x) = x \).
- Computing probability of any event \(A \) is also a special case:
 - Set \(g(x) = \mathbb{I}["A \text{ happened in sample } x^i"] \).

- To approximate expectation, generate \(n \) samples \(x^i \) from \(p(x) \) and use:

\[\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^i). \]
Unbiasedness of Monte Carlo Methods

Let \(\mu = \mathbb{E}[g(x)] \) be the value we want to approximate (not necessarily mean).

The Monte Carlo estimate is an unbiased approximation of \(\mu \),

\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{n} g(x^i) \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[g(x^i)] = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu.
\]

The law of large numbers says that:

- Unbiased approximators “converge” (probabilistically) to expectation as \(n \to \infty \).
- So the more samples you get, the closer to the true value you expect to get.
Rate of Convergence of Monte Carlo Methods

- Let f be the squared error in a 1D Monte Carlo approximation,

$$f(x^1, x^2, \ldots, x^n) = \left(\frac{1}{n} \sum_{i=1}^{n} g(x^i) - \mu \right)^2.$$

- If variance is bounded, error with n samples is $O(1/n)$,

$$\mathbb{E} \left[\left(\frac{1}{n} \sum_{i=1}^{n} g(x^i) - \mu \right)^2 \right] = \text{Var} \left[\frac{1}{n} \sum_{i=1}^{n} g(x^i) \right]$$

 (unbiased and def’n of variance)

 $$= \frac{1}{n^2} \text{Var} \left[\sum_{i=1}^{n} g(x^i) \right]$$

 (Var(αx) = α^2Var(x))

 $$= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}[g(x^i)]$$

 (IID)

 $$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}.$$

 (x^i is IID with var σ^2)

- Similar $O(1/n)$ argument holds for $d > 1$ (notice that faster for small σ^2).
Conditional Probabilities with Monte Carlo

- We often want to compute conditional probabilities in Markov chains.
 - We can ask “what lead to \(x_{10} = 4 \)?” with queries like \(p(x_1 \mid x_{10} = 4) \).
 - We can ask “where does \(x_{10} = 4 \) lead?” with queries like \(p(x_d \mid x_{10} = 4) \).

- **Monte Carlo approach** to estimating \(p(x_j \mid x_{j'}) \):
 1. Generate a large number of samples from the Markov chain, \(x^i \sim p(x_1, x_2, \ldots, x_d) \).
 2. Use Monte Carlo estimates of \(p(x_j = c, x_{j'} = c') \) and \(p(x_{j'} = c') \) to give

\[
p(x_j = c \mid x_{j'} = c') = \frac{p(x_j = c, x_{j'} = c')}{p(x_{j'} = c')} \approx \frac{\sum_{i=1}^n I[x_j^i = c, x_{j'}^i = c']}{\sum_{i=1}^n I[x_{j'}^i = c']},
\]

frequency of first event in samples consistent with second event.

- This is a special case of rejection sampling (we’ll see general case later).
 - Unfortunately, if \(x_{j'} = c' \) is rare then most samples are “rejected” (ignored).

http://students.brown.edu/seeing-theory/compound-probability/index.html
Summary

- **Inverse Transform** generates samples from simple 1D distributions.
 - When we can easily invert the CDF.

- **Ancestral sampling** generates samples from multivariate distributions.
 - When conditionals have a nice form.

- **Monte Carlo** methods approximate expectations using samples.
 - Can be used to approximate arbitrary probabilities in Markov chains.

- Next time: the original Google algorithm.
Monte Carlo as a Stochastic Gradient Method

- Consider case of using Monte Carlo method to estimate mean \(\mu = \mathbb{E}[x] \),

\[
\mu \approx \frac{1}{n} \sum_{i=1}^{n} x^i.
\]

- We can write this as minimizing the 1-strongly convex

\[
f(w) = \frac{1}{2} \| w - \mu \|^2.
\]

- The gradient is \(\nabla f(w) = (w - \mu) \).

- Consider applying stochastic gradient descent on \(f \) using

\[
\nabla f_i(w^k) = w^k - x^{k+1},
\]

which is unbiased since each \(x^i \) is unbiased \(\mu \) approximation.

- Monte Carlo method is a stochastic gradient method with this approximation.
Monte Carlo as a Stochastic Gradient Method

- Monte Carlo approximation as a stochastic gradient method with $\alpha_i = 1/(i + 1)$,

 \[w^n = w^{n-1} - \alpha_{n-1}(w^{n-1} - x^i) \]
 \[= (1 - \alpha_{n-1})w^{n-1} + \alpha_{n-1}x^i \]
 \[= \frac{n - 1}{n}w^{n-1} + \frac{1}{n}x^i \]
 \[= \frac{n - 1}{n} \left(\frac{n - 2}{n - 1}w^{n-2} + \frac{1}{n - 1}x^{i-1} \right) + \frac{1}{n}x^i \]
 \[= \frac{n - 2}{n}w^{n-2} + \frac{1}{n} \left(x^{i-1} + x^i \right) \]
 \[= \frac{n - 3}{n}w^{n-3} + \frac{1}{n} \left(x^{i-2} + x^{i-1} + x^i \right) \]
 \[= \frac{1}{n} \sum_{i=1}^{n} x^i. \]

- We know the rate of stochastic gradient for strongly-convex is $O(1/n)$.
Law of the Unconscious Statistician

- We use these identities to define the expectation of a function g applied to a random variable x,

$$
\mathbb{E}[g(x)] = \sum_{x \in \mathcal{X}} g(x)p(x) \quad \text{or} \quad \mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x) \, dx .
$$

- The transformation from expectation to sum/integral is known as the “law of the unconscious statistician”.
 - It’s usually taken as being true, but it’s proof is a bit of a pain.
Introduction to Sampling Monte Carlo Approximation

Accelerated Monte Carlo: Quasi Monte Carlo

- Unlike stochastic gradient, there are some “accelerated” Monte Carlo methods.

- **Quasi Monte Carlo** methods achieve an accelerated rate of $O(1/n^2)$.
 - Key idea: fill the space strategically with a deterministic “low-discrepancy sequence”.
 - Uniform random vs. deterministic low-discrepancy: