CPSC 540: Machine Learning
Markov Chains

Mark Schmidt
University of British Columbia

Winter 2020
Example: Vancouver Rain Data

Consider density estimation on the “Vancouver Rain” dataset:

Variable $x^i_j = 1$ if it rained on day j in month i.
- Each row is a month, each column is a day of the month.
- Data ranges from 1896-2004.

The strongest signals in the data:
- It tends to rain more in the winter than the summer.
- If it rained yesterday, it’s likely to rain today ($> 50\%$ chance of $(x^i_j = x^i_{j-1})$).
Rain Data with Independent Bernoullis

- With independent Bernoullis, we get \(p(x^i_j = \text{"rain"}) \approx 0.41 \) (sadly).
- Samples from product of Bernoullis model (left) vs. real data (right):

- Making days independent misses seasons and misses correlations.
A better model is a mixture of Bernoullis:

- Samples from product of Bernoullis model (left) vs. mixture of 50 Bernoullis (right):

- Mixture of Bernoullis can learn that there are seasons (clusters).
- But mixture of Bernoullis can’t easily learn the between-day correlations.
Rain Data with Mixture of Bernoullis

- Visualizing the mean parameters of the mixture of 50 Bernoullis:

- Recall that mixture of Bernoullis assumes independence, given cluster.
- This makes it try to model between-day correlations in a weird way:
 - Uses clusters with rain for consecutive days, during different parts of month.

- So you would need a lot of clusters to model all between-day correlations.
 - Doesn’t account for “position independence” of the correlation.
 - Need cluster that correlate that day 1 and 2, that correlate day 2 and 3, and so on.
A better model for the between-day correlations is a Markov chain.

- Models $p(x^i_j \mid x^i_{j-1})$: probability of rain today given yesterday’s value.
- Captures dependency between adjacent days.

- It can perfectly capture the “position-independent” between-day correlation.
 - With only a few parameters and a closed-form MLE (no EM or non-convexity).
Markov Chain for Rain

- Markov chain ingredients and MLE for rain data:
 - **State space:**
 - Set of possible states (indexed by \(c \)) we can be in at time \(j \) ("rain" or "not rain").
 - **Initial probabilities:**
 - \(p(x_1 = c) \): probability that we start in state \(c \) at time \(j = 1 \) (p("rain") on day 1).
 - **Transition probabilities:**
 - \(p(x_j = c \mid x_{j-1} = c') \): probability that we move from state \(c' \) to state \(c \) at time \(j \).
 - Probability that it rains today, given what happened yesterday.

- Notation alert: I’m going to start using "\(x_j \)" as short for "\(x_i^j \)" for a generic \(i \).

- We’re assuming that the order of features is meaningful.
 - We’re modeling dependency of each feature on the previous feature.
Markov Chain Ingredients

- **Markov chain ingredients** and MLE for rain data:
 - **State space:**
 - At time t, we can be in the “rain” state or the “not rain” state.
 - **Initial probabilities:**

State	Probability
Rain	0.37
Not Rain	0.63

 - **Transition probabilities:**

c'	c	$p(x_j = c \mid x_{j-1} = c')$
Rain	Rain	0.65
Rain	Not Rain	0.35
Not Rain	Rain	0.25
Not Rain	Not Rain	0.75

 - Because of “sum to 1” constraints, there are **only 3 parameters** in this model.
Chain Rule of Probability

- By using the **product rule**, \(p(a, b) = p(a)p(b \mid a) \), we can write any density as

\[
p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2, x_3, \ldots, x_d \mid x_1) \\
= p(x_1)p(x_2 \mid x_1)p(x_3, x_4, \ldots, x_d \mid x_1, x_2) \\
= p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1)p(x_4, x_5, \ldots, x_d \mid x_1, x_2, x_3),
\]

and so on until we get

\[
p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \ldots, x_1).
\]

- This **factorization** of a density is called the **chain rule of probability**.

- But it leads to **complicated conditionals**:
 - For binary \(x_j \), we need \(2^d \) parameters for \(p(x_d \mid x_1, x_2, \ldots, x_{d-1}) \) alone.
Markov Chains

- Markov chains simplify the distribution by assuming the Markov property:

\[p(x_j \mid x_{j-1}, x_{j-2}, \ldots, x_1) = p(x_j \mid x_{j-1}), \]

that \(x_j \) is independent of the past given \(x_{j-1} \).

- To predict “rain”, the only relevant past information is whether it rained yesterday.

- The probability for a sequence \(x_1, x_2, \ldots, x_d \) in a Markov chain simplifies to

\[
p(x_1, x_2, \ldots, x_d) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2, x_1) \cdots p(x_d \mid x_{d-1}, x_{d-2}, \ldots, x_1) \\
= p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_d \mid x_{d-1})
\]

- Another way to write the joint probability is

\[
p(x_1, x_2, \ldots, x_d) = p(x_1) \prod_{j=2}^{d} p(x_j \mid x_{j-1}).
\]

\[
\text{initial prob.} \quad \text{transition prob.}
\]
Markov Chains

Markov chains are ubiquitous in sequence/time-series models:

- 9 Applications
 - 9.1 Physics
 - 9.2 Chemistry
 - 9.3 Testing
 - 9.4 Speech Recognition
 - 9.5 Information sciences
 - 9.6 Queueing theory
 - 9.7 Internet applications
 - 9.8 Statistics
 - 9.9 Economics and finance
 - 9.10 Social sciences
 - 9.11 Mathematical biology
 - 9.12 Genetics
 - 9.13 Games
 - 9.14 Music
 - 9.15 Baseball
 - 9.16 Markov text generators
Homogenous Markov Chains

- For rain data it makes sense to use a homogeneous Markov chain:
 - Transition probabilities $p(x_\ldots \mid x_{\ldots-1})$ are the same for all \ldots.

- With discrete states, we could parameterize transition probabilities by

 $p(x_\ldots = c \mid x_{\ldots-1} = c') = \theta_{c,c}$

 where $\theta_{c,c'} \geq 0$ and $\sum_{c=1}^{k} \theta_{c,c'} = 1$ (and we use the same $\theta_{c,c'}$ for all \ldots).

 - So we have a categorical distribution over c values for each c' value.

- MLE for homogeneous Markov chain with discrete x_\ldots is:

 $\theta_{c,c'} = \frac{(\text{number of transitions from } c' \text{ to } c)}{(\text{number of times we went from } c' \text{ to anything})}$

 so learning is just counting.
Parameter Tieing

- Using same parameters $\theta_{c,c'}$ for different j is called parameter tieing.
 - “Making different parts of the model use the same parameters.”

- Key advantages to parameter tieing:
 1. You have more data available to estimate each parameter.
 - Don’t need to independently learn $p(x_j | x_{j-1})$ for days 3 and 24.
 2. You can have training examples of different sizes.
 - Same model can be used for any number of days.
 - We could even treat the data as one long Markov chain ($n = 1$).

- We’ve seen parameter tieing before:
 - In 340 we discussed convolutional neural networks, which repeat same filters.
 - Throughout 340/540, we’ve assumed tied parameters across training examples.
 - That you use the same parameter for x^i and x^j.
 - Can think of mixtures models as relaxing this (same parameters only within cluster).
Example: Modeling DNA Sequences

- A nice demo of independent vs. Markov (and HMMs) for DNA sequences:

- Independent model for elements of sequence:

![DNA structure image](https://www.tes.com/lessons/WE5E9RncBhieAQ/dna)
Example: Modeling DNA Sequences

- **Transition probabilities** in a Markov chain model for elements of sequence:

 (visualizing transition probabilities based on previous symbol):
Density Estimation for MNIST Digits

- We’ve previously considered density estimation for MNIST images of digits.
- We saw that independent Bernoullis do terrible

![Images of MNIST digits](image1.png)

- We saw that a mixture of Bernoullis does better:

![Images of MNIST digits](image2.png)

- The shape is looking better, but it’s missing correlation between adjacent pixels.
 - Could we capture this with a Markov chain?
Density Estimation for MNIST Digits

- Samples from a **homogeneous Markov chain** (putting rows into one long vector):

 - Captures correlations between adjacent pixels in the same row.
 - But misses **long-range dependencies in row** and dependencies between rows.
 - Also, “position independence” of homogeneity means it **loses position information**.
Inhomogeneous Markov Chains

- **Markov chains** could allow a different $p(x_j \mid x_{j-1})$ for each j.
 - This makes sense for digits data, but probably not for the rain data.

- For discrete x_j we could use

 $$p(x_j = c \mid x_{j-1} = c') = \theta_{c,c}'^j.$$

- MLE for discrete x_j values is given by

 $$\theta_{c,c}'^j = \frac{\text{(number of transitions from } c' \text{ to } c \text{ starting at } (j - 1)\text{)}}{\text{(number of times we saw } c' \text{ at position } (j - 1)\text{)}},$$

- Such inhomogeneous Markov chains include independent models as special case:
 - We could set $p(x_j \mid x_{j-1}) = p(x_j).$
Density Estimation for MNIST Digits

- Samples from an inhomogeneous Markov chain:

- We have correlations between adjacent pixels in rows and position information.
 - But isn’t capturing long-range dependencies or dependency between rows.
 - Later we’ll discuss graphical models which address this.
 - You could alternately consider a mixture of Markov chains.
Some common setups for fitting the parameters Markov chains:

1. We have one long sequence, and fit parameters of an homogeneous Markov chain.
 - Here, we just focus on the transition probabilities.

2. We have many sequences of different lengths, and fit a homogeneous chain.
 - And we can use it to model sequences of any length.

3. We have many sequences of same length, and fit an inhomogeneous Markov chain.
 - This allows “position-specific” effects.

4. We use domain knowledge to guess the initial and transition probabilities.
Inference in Markov Chains

Given a Markov chain model, these are the most common inference tasks:

1. **Sampling**: generate sequences that follow the probability.

2. **Marginalization**: compute probability of being in state c at time j.

3. **Decoding**: compute most likely sequence of states.
 - Decoding and marginalization will be important when we return to supervised learning.

4. **Conditioning**: do any of the above, assuming $x_j = c$ for some j and c.
 - For example, “filling in” missing parts of the image.

5. **Stationary distribution**: probability of being in state c as j goes to ∞.
 - Usually for homogeneous Markov chains.
Fun with Markov Chains

- Markov Chains “Explained Visually”:
 http://setosa.io/ev/markov-chains

- Snakes and Ladders:
 http://datagenetics.com/blog/november12011/index.html

- Candyland:
 http://www.datagenetics.com/blog/december12011/index.html

- Yahtzee:
 http://www.datagenetics.com/blog/january42012/

- Chess pieces returning home and K-pop vs. ska:
 https://www.youtube.com/watch?v=63HHmjlh794
Summary

- **Markov chains** model dependencies between adjacent features.

- **Parameter tying** uses same parameters in different parts of a model.
 - Example of “homogeneous” Markov chain.
 - Allows models of different sizes and more data per parameter.

- **Markov chain tasks**: Sampling, marginalization, decoding, conditioning, stationary distributions.

- Next time: the other “MC” in MCMC.