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Example: Vancouver Rain Data

Consider density estimation on the “Vancouver Rain” dataset:

Variable xij = 1 if it rained on day j in month i.
Each row is a month, each column is a day of the month.
Data ranges from 1896-2004.

The strongest signals in the data:
It tends to rain more in the winter than the summer.
If it rained yesterday, it’s likely to rain today (> 50% chance of (xij == xij−1)).
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Rain Data with Independent Bernoullis

With independent Bernoullis, we get p(xij =“rain”) ≈ 0.41 (sadly).

Samples from product of Bernoullis model (left) vs. real data (right):

Making days independent misses seasons and misses correlations.
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Rain Data with Mixture of Bernoullis

A better model is a mixture of Bernoullis:

Samples from product of Bernoullis model (left) vs. mixture of 50 Bernoullis (right):

Mixture of Bernoullis can learn that there are seasons (clusters).

But mixture of Bernoullis can’t easily learn the between-day correlations.
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Rain Data with Mixture of Bernoullis
Visualizing the mean parameters of the mixture of 50 Bernoullis:

Recall that mixture of Bernoullis assumes independence, given cluster.
This makes it try to model between-day correlations in a weird way:

Uses clusters with rain for consectuve days, during different parts of month.

So you would need a lot of clusters to model all between-day correlations.
Doesn’t account for “position independence” of the correlation.
Need cluster that correlate that day 1 and 2, that correlate day 2 and 3, and so on.
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Markov Chains

A better model for the between-day correlations is a Markov chain.
Models p(xij | xij−1): probability of rain today given yesterday’s value.

Captures dependency between adjacent days.

It can perfectly capture the “position-independent” between-day correlation.

With only a few parameters and a closed-form MLE (no EM or non-convexity).
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Markov Chain for Rain

Markov chain ingredients and MLE for rain data:
State space:

Set of possible states (indexed by c) we can be in at time j (“rain” or “not rain”).

Initial probabilities:

p(x1 = c): probability that we start in state c at time j = 1 (p(“rain”) on day 1).

Transition probabilities:

p(xj = c | xj−1 = c′): probability that we move from state c′ to state c at time j.
Probability that it rains today, given what happened yesterday.

Notation alert: I’m going to start using “xj” as short for “xij” for a generic i.

We’re assuming that the order of features is meaningful.

We’re modeling dependency of each feature on the previous feature.
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Markov Chain Ingredients

Markov chain ingredients and MLE for rain data:
State space:

At time t, we can be in the “rain” state or the “not rain” state.

Initial probabilities:

c p(x1 = c)
Rain 0.37

Not Rain 0.63

Transition probabilities:

c′ c p(xj = c | xj−1 = c′)
Rain Rain 0.65
Rain Not Rain 0.35

Not Rain Rain 0.25
Not Rain Not Rain 0.75

Becuase of “sum to 1” constraints, there are only 3 parameters in this model.
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Chain Rule of Probability

By using the product rule, p(a, b) = p(a)p(b | a), we can write any density as

p(x1, x2, . . . , xd) = p(x1)p(x2, x3, . . . , xd | x1)
= p(x1)p(x2 | x1)p(x3, x4, . . . , xd | x1, x2)
= p(x1)p(x2 | x1)p(x3 | x2, x1)p(x4, x5, . . . , xd | x1, x2, x3),

and so on until we get

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1).

This factorization of a density is called the chain rule of probability.

But it leads to complicated conditionals:

For binary xj , we need 2d parameters for p(xd | x1, x2, . . . , xd−1) alone.
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Markov Chains

Markov chains simplify the distribution by assuming the Markov property:

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1),
that xj is independent of the past given xj−1.

To predict “rain”, the only relevant past information is whether it rained yesterday.

The probability for a sequence x1, x2, · · · , xd in a Markov chain simplifies to

p(x1, x2, . . . , xd) = p(x1)p(x2 | x1)p(x3 | x2, x1) · · · p(xd | xd−1, xd−2, . . . , x1)
= p(x1)p(x2 | x1)p(x3 | x2) · · · p(xd | xd−1)

Another way to write the joint probability is

p(x1, x2, . . . , xd) = p(x1)︸ ︷︷ ︸
initial prob.

d∏
j=2

p(xj | xj−1)︸ ︷︷ ︸
transition prob.

.
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Markov Chains

Markov chains are ubiquitous in sequence/time-series models:
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Homogenous Markov Chains

For rain data it makes sense to use a homogeneous Markov chain:
Transition probabilities p(xj | xj−1) are the same for all j.

With discrete states, we could parameterize transition probabilities by

p(xj = c | xj−1 = c′) = θc,c,

where θc,c′ ≥ 0 and
∑k

c=1 θc,c′ = 1 (and we use the same θc,c′ for all j).
So we have a categorical distribution over c values for each c′ value.

MLE for homogeneous Markov chain with discrete xj is:

θc,c′ =
(number of transitions from c′ to c)

(number of times we went from c′ to anything)
,

so learning is just counting.
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Parameter Tieing

Using same parameters θc,c′ for different j is called parameter tieing.

“Making different parts of the model use the same parameters.”

Key advantages to parameter tieing:
1 You have more data available to estimate each parameter.

Don’t need to independently learn p(xj | xj−1) for days 3 and 24.

2 You can have training examples of different sizes.

Same model can be used for any number of days.
We could even treat the data as one long Markov chain (n = 1).

We’ve seen parameter tieing before:

In 340 we discussed convolutional neural networks, which repeat same filters.
Throughout 340/540, we’ve assumed tied parameters across training examples.

That you use the same parameter for xi and xj .
Can think of mixtures models as relaxing this (same parameters only within cluster).
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Example: Modeling DNA Sequences

A nice demo of independent vs. Markov (and HMMs) for DNA sequences:
http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://www.tes.com/lessons/WE5E9RncBhieAQ/dna

Independent model for elements of sequence:

http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences
Transition probabilities in a Markov chain model for elements of sequence:

(visualizing transition probabilities based on previous symbol):
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Density Estimation for MNIST Digits

We’ve previously considered density estimation for MNIST images of digits.

We saw that independent Bernoullis do terrible

We saw that a mixture of Bernoullis does better:

The shape is looking better, but it’s missing correlation between adjacent pixels.
Could we capture this with a Markov chain?
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Density Estimation for MNIST Digits
Samples from a homogeneous Markov chain (putting rows into one long vector):

Captures correlations between adjacent pixels in the same row.
But misses long-range dependencies in row and dependencies between rows.
Also, “position independence” of homogeneity means it loses position information.
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Inhomogeneous Markov Chains

Markov chains could allow a different p(xj | xj−1) for each j.

This makes sense for digits data, but probably not for the rain data.

For discrete xj we could use

p(xj = c | xj=1 = c′) = θjc,c′ .

MLE for discrete xj values is given by

θjc,c′ =
(number of transitions from c′ to c starting at (j − 1))

(number of times we saw c′ at position (j − 1))
,

Such inhomogeneous Markov chains include independent models as special case:

We could set p(xj | xj−1) = p(xj).
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Density Estimation for MNIST Digits

Samples from an inhomogeneous Markov chain:

We have correlations between adjacent pixels in rows and position information.
But isn’t capturing long-range dependencies or dependency between rows.
Later we’ll discuss graphical models which address this.
You could alternately consider a mixture of Markov chains.
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Training Markov Chains

Some common setups for fitting the parameters Markov chains:
1 We have one long sequence, and fit parameters of an homogeneous Markov chain.

Here, we just focus on the transition probabilities.

2 We have many sequences of different lengths, and fit a homogeneous chain.

And we can use it to model sequences of any length.

3 We have many sequences of same length, and fit an inhomgeneous Markov chain.

This allows “position-specific” effects.

4 We use domain knowledge to guess the initial and transition probabilities.
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Inference in Markov Chains

Given a Markov chain model, these are the most common inference tasks:
1 Sampling: generate sequences that follow the probability.

2 Marginalization: compute probability of being in state c at time j.

3 Decoding: compute most likely sequence of states.

Decoding and marginalization will be important when we return to supervised learning.

4 Conditioning: do any of the above, assuming xj = c for some j and c.

For example, “filling in” missing parts of the image.

5 Stationary distribution: probability of being in state c as j goes to ∞.

Usually for homogeneous Markov chains.
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Fun with Markov Chains

Markov Chains “Explained Visually”:
http://setosa.io/ev/markov-chains

Snakes and Ladders:
http://datagenetics.com/blog/november12011/index.html

Candyland:
http://www.datagenetics.com/blog/december12011/index.html

Yahtzee:
http://www.datagenetics.com/blog/january42012/

Chess pieces returning home and K-pop vs. ska:
https://www.youtube.com/watch?v=63HHmjlh794

http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012/
https://www.youtube.com/watch?v=63HHmjlh794
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Summary

Markov chains model dependencies between adjacent features.

Parameter tieing uses same parameters in different parts of a model.

Example of “homogeneous” Markov chain.
Allows models of different sizes and more data per parameter.

Markov chain tasks:

Sampling, marginalization, decoding, conditioning, stationary distributions.

Next time: the other “MC” in MCMC.
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