Markov Chains

CPSC 540: Machine Learning
Markov Chains

Mark Schmidt

University of British Columbia

Winter 2020

[In]JHomogeneous Markov Chains



Markov Chains

Example: Vancouver Rain Data

o Consider density estimation on the “Vancouver Rain" dataset:
[Day 1 Day2 {oaya | Daya [Day |Dayo Day7 Daya |Days | |
Moitn [ 0 0 1 0 1
Meh 2 1
Menlh > 2
Mg 1
MuntiT 0
Ml 0

@ Variable UL; = 1 if it rained on day j in month i.

e Each row is a month, each column is a day of the month.
e Data ranges from 1896-2004.
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@ The strongest signals in the data:
e It tends to rain more in the winter than the summer.
o If it rained yesterday, it's likely to rain today (> 50% chance of (2 == z%_,)).



Markov Chains

Rain Data with Independent Bernoullis

e With independent Bernoullis, we get p(m; ="rain") ~ 0.41 (sadly).

o Samples from product of Bernoullis model (left) vs. real data (right):
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@ Making days independent misses seasons and misses correlations.
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Rain Data with Mixture of Bernoullis

@ A better model is a mixture of Bernoullis:
o Samples from product of Bernoullis model (left) vs. mixture of 50 Bernoullis (right):
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e Mixture of Bernoullis can learn that there are seasons (clusters).

@ But mixture of Bernoullis can't easily learn the between-day correlations.
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Rain Data with Mixture of Bernoullis

@ Visualizing the mean parameters of the mixture of 50 Bernoullis:

@ Recall that mixture of Bernoullis assumes independence, given cluster.
@ This makes it try to model between-day correlations in a weird way:
o Uses clusters with rain for consectuve days, during different parts of month.

@ So you would need a lot of clusters to model all between-day correlations.
e Doesn't account for “position independence” of the correlation.
o Need cluster that correlate that day 1 and 2, that correlate day 2 and 3, and so on.
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Markov Chains

@ A better model for the between-day correlations is a Markov chain.
o Models p(z} | x_,): probability of rain today given yesterday's value.
o Captures dependency between adjacent days.

@ It can perfectly capture the “position-independent” between-day correlation.
o With only a few parameters and a closed-form MLE (no EM or non-convexity).
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Markov Chain for Rain

@ Markov chain ingredients and MLE for rain data:
e State space:
@ Set of possible states (indexed by ¢) we can be in at time j (“rain” or “not rain").
e Initial probabilities:
e p(x1 = c): probability that we start in state ¢ at time j =1 (p(“rain”) on day 1).
e Transition probabilities:

e p(x; =c|zj_1 =c'): probability that we move from state ¢’ to state c at time j.
@ Probability that it rains today, given what happened yesterday.

e Notation alert: I'm going to start using “x;" as short for L; for a generic i.

@ We're assuming that the order of features is meaningful.
o We're modeling dependency of each feature on the previous feature.
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Markov Chain Ingredients

@ Markov chain ingredients and MLE for rain data:
e State space:
@ At time t, we can be in the “rain” state or the “not rain” state.
o Initial probabilities:
¢ plai=o
Rain 0.37
Not Rain 0.63

e Transition probabilities:

d c ple;=clzj_1=C)
Rain Rain 0.65
Rain Not Rain 0.35
Not Rain Rain 0.25
Not Rain  Not Rain 0.75

@ Becuase of “sum to 1" constraints, there are only 3 parameters in this model.
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Chain Rule of Probability

@ By using the product rule, p(a,b) = p(a)p(b | a), we can write any density as

p($15$25 cee 7xd) :p(xl)p(l?vx:}: <.y 2y | ffl)
:p(xl)p(xQ ’ l‘1)p(£3,£4, BRI | CCl,CCQ)
= p(x1)p(xe | w1)p(xs | 2, 21)p(24, 25, .. ., Tq | T1, 22, 23),

and so on until we get
p(x1,22,. .., 7q) = p(w1)p(z2 | 1)p(73 | T2, 21) - p(Td | a1, Ta—2, .-, 71).

@ This factorization of a density is called the chain rule of probability.

@ But it leads to complicated conditionals:
o For binary z;, we need 2¢ parameters for p(zq | z1,22,...,24—1) alone.
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Markov Chains
@ Markov chains simplify the distribution by assuming the Markov property:
p(xj | wj1,2j-0,. .. 21) = p(x; | zj-1),
that z; is independent of the past given x;_;.
e To predict “rain”, the only relevant past information is whether it rained yesterday.
@ The probability for a sequence z1,x9,--- , x4 in @ Markov chain simplifies to
p(x1,2,...,2q) = p(x1)p(x2 | 1)p(23 | 22 21) -+ P(Ta | Ta1,Td—2, -, T1)
= p(z1)p(w2 | w1)p(w3 | 2) - p(rg | Tq-1)

@ Another way to write the joint probability is

p(x1,22,...,2q) = pr]\:c] 1)

|n|t|a| prob. i= tran5|t|on prob.
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Markov Chains

@ Markov chains are ubiquitous in sequence/time-series models:
9 Applications
9.1 Physics
9.2 Chemistry
9.3 Testing
9.4 Speech Recognition
9.5 Information sciences
9.6 Queueing theory
9.7 Internet applications
9.8 Statistics
9.9 Economics and finance
9.10 Social sciences
9.11 Mathematical biclogy
9.12 Genetics
9.13 Games
9.14 Music
9.15 Baseball
9.16 Markov text generators
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Homogenous Markov Chains

@ For rain data it makes sense to use a homogeneous Markov chain:
e Transition probabilities p(x; | x;_1) are the same for all j.
@ With discrete states, we could parameterize transition probabilities by
plzj=cl|zj1=c)=0e
where 6, > 0 and 25:1 6. =1 (and we use the same 6, for all j).

e So we have a categorical distribution over ¢ values for each ¢’ value.

@ MLE for homogeneous Markov chain with discrete x; is:

(number of transitions from ¢’ to c)

Occr = . .
““ " (number of times we went from ¢’ to anything)’

so learning is just counting.
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Parameter Tieing

@ Using same parameters . for different j is called parameter tieing.
e "Making different parts of the model use the same parameters.”

@ Key advantages to parameter tieing:
@ You have more data available to estimate each parameter.
e Don't need to independently learn p(z; | ;—1) for days 3 and 24.
@ You can have training examples of different sizes.

@ Same model can be used for any number of days.
o We could even treat the data as one long Markov chain (n = 1).

@ We've seen parameter tieing before:

e In 340 we discussed convolutional neural networks, which repeat same filters.
e Throughout 340/540, we've assumed tied parameters across training examples.
o That you use the same parameter for z* and z7.
e Can think of mixtures models as relaxing this (same parameters only within cluster).
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Example: Modeling DNA Sequences
@ A nice demo of independent vs. Markov (and HMMs) for DNA sequences:

@ http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://wuw.tes.com/lessons/WESE9RncBhieAQ/dna

@ Independent model for elements of sequence:

ps=0.2, pc=0.3, R;=°-3v pr=0.2



http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences

@ Transition probabilities in a Markov chain model for elements of sequence:

"AfterA" wheel "AfterC" wheel
Pa=0.2, p:=0.3, p,=0.3, p,=0.2 P=0.1, p:=0.41, p=0.39, p,=0.1
"AfterG" wheel "AfterT" wheel

® D

P=0.25, p=0.25, p=0.25, p,=0.25  p,=0.5, p,=0.17, p=0.17, p,=0.17

(visualizing transition probabilities based on previous symbol):
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Density Estimation for MNIST Digits

@ We've previously considered density estimation for MNIST images of digits.

@ We saw that independent Bernoullis do terrible

@ The shape is looking better, but it's missing correlation between adjacent pixels.
e Could we capture this with a Markov chain?
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Density Estimation for MNIST Digits

@ Samples from a homogeneous Markov chain (putting rows into one long vector):

o Captures correlations between adjacent pixels in the same row.
e But misses long-range dependencies in row and dependencies between rows.
e Also, “position independence” of homogeneity means it loses position information.
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Inhomogeneous Markov Chains

@ Markov chains could allow a different p(x; | ;1) for each j.
e This makes sense for digits data, but probably not for the rain data.
@ For discrete x; we could use
L A g.j
p($]—0|$]:1—6)— c,c"

@ MLE for discrete x; values is given by

g (number of transitions from ¢’ to ¢ starting at (j — 1))

& (number of times we saw ¢ at position (j — 1))

@ Such inhomogeneous Markov chains include independent models as special case:

o We could set p(z; | ;1) = p(z;).
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Density Estimation for MNIST Digits

@ Samples from an inhomogeneous Markov chain:

@ We have correlations between adjacent pixels in rows and position information.
e But isn't capturing long-range dependencies or dependency between rows.
o Later we'll discuss graphical models which address this.
e You could alternately consider a mixture of Markov chains.
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Training Markov Chains

@ Some common setups for fitting the parameters Markov chains:
@ We have one long sequence, and fit parameters of an homogeneous Markov chain.
@ Here, we just focus on the transition probabilities.

@ We have many sequences of different lengths, and fit a homogeneous chain.
@ And we can use it to model sequences of any length.

© We have many sequences of same length, and fit an inhomgeneous Markov chain.
o This allows “position-specific” effects.

© We use domain knowledge to guess the initial and transition probabilities.
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Inference in Markov Chains

@ Given a Markov chain model, these are the most common inference tasks:
@ Sampling: generate sequences that follow the probability.

@ Marginalization: compute probability of being in state ¢ at time j.

© Decoding: compute most likely sequence of states.
@ Decoding and marginalization will be important when we return to supervised learning.

@ Conditioning: do any of the above, assuming z; = ¢ for some j and c.

o For example, “filling in" missing parts of the image.

@ Stationary distribution: probability of being in state ¢ as j goes to co.

@ Usually for homogeneous Markov chains.
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Fun with Markov Chains

Markov Chains “Explained Visually”:
http://setosa.io/ev/markov-chains

Snakes and Ladders:
http://datagenetics.com/blog/november12011/index.html

Candyland:
http://wuw.datagenetics.com/blog/december12011/index.html

Yahtzee:
http://www.datagenetics.com/blog/january42012/

Chess pieces returning home and K-pop vs. ska:
https://www.youtube.com/watch?v=63HHnj1h794


http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/index.html
http://www.datagenetics.com/blog/january42012/
https://www.youtube.com/watch?v=63HHmjlh794
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Summary

Markov chains model dependencies between adjacent features.

Parameter tieing uses same parameters in different parts of a model.

e Example of “homogeneous” Markov chain.
o Allows models of different sizes and more data per parameter.

Markov chain tasks:
e Sampling, marginalization, decoding, conditioning, stationary distributions.

Next time: the other “MC” in MCMC.
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