
Kernel Density Estimation Probabilistic PCA

CPSC 540: Machine Learning
Kernel Density Estimation

Mark Schmidt

University of British Columbia

Winter 2020



Kernel Density Estimation Probabilistic PCA

Last Time: Expectation Maximization
EM considers learning with observed data O and hidden data H.

In this case the “marginal” log-likelihood has a nasty form,

log p(O | Θ) = log

(∑
H

p(O,H | Θ)

)
.

EM applies when “complete” likelihood, p(O,H | Θ), has a nice form.

EM iterations take the form of a weighted “complete” NLL,

Θt+1 = argmax
Θ

{∑
H

αH log p(O,H | Θ)

}
,

where αH = p(H | O,Θt).
For mixture models, has a closed-form solution for common distributions.
Guarantees monotonic improvment in objective function.

Rate of convergence is at least as fast as gradient descent with fixed step size.
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EM for MAP Estimation
We can also use EM for MAP estimation. With a prior on Θ our objective is:

log p(O | Θ) = log

(∑
H

p(O,H | Θ)

)
+ log p(Θ).

EM iterations take the form of a regularized weighted “complete” NLL,

Θt+1 = argmax
Θ

{∑
H

αH log p(O,H | Θ) + log p(Θ)

}
,

Now guarantees monotonic improvement in MAP objective.

This still has a closed-form solution for “conjugate” priors (defined later).

For mixture of Gaussians with − log p(Θc) = λTr(Θc) for precision matrices Θc:
Closed-form solution that satisfies positive-definite constraint (no log |Θ| needed).
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A Non-Parametric Mixture Model
The classic parametric mixture model has the form

p(xi) =

k∑
c=1

p(zi = c)p(xi | zi = c).

A natural way to define a non-parametric mixture model is

p(xi) =

n∑
j=1

p(zi = j)p(xi | zi = j),

where we have one mixture for every training example i.
Common example: zi is uniform and xi | zi is Gaussian with mean xj ,

p(xi) =
1

n

n∑
j=1

N (xi | xj , σ2I),

and we use a shared covariance σ2I (σ can be estimated with validation set).
This is a special case of kernel density estimation (or Parzen window).



Kernel Density Estimation Probabilistic PCA

Histogram vs. Kernel Density Estimator

Think of kernel density estimator as a generalization of a histogram:

https://en.wikipedia.org/wiki/Kernel_density_estimation

https://en.wikipedia.org/wiki/Kernel_density_estimation
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Kernel Density Estimator for Visualization

Visualization of people’s opinions about what “likely” and other words mean.

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html
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Violin Plot: Added KDE to a Boxplot

Violin plot adds KDE to a boxplot:

https://datavizcatalogue.com/methods/violin_plot.html

https://datavizcatalogue.com/methods/violin_plot.html
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Violin Plot: Added KDE to a Boxplot
Violin plot adds KDE to a boxplot:

https://seaborn.pydata.org/generated/seaborn.violinplot.html

https://seaborn.pydata.org/generated/seaborn.violinplot.html
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Kernel Density Estimation
The 1D kernel density estimation (KDE) model uses

p(xi) =
1

n

n∑
j=1

kσ (xi − xj︸ ︷︷ ︸
r

),

where the PDF k is the “kernel” and the parameter σ is the “bandwidth”.

In the previous slide we used the (normalized) Gaussian kernel,

k1(r) =
1√
2π

exp

(
−r

2

2

)
, kσ(r) =

1

σ
√

2π
exp

(
− r2

2σ2

)
.

Note that we can add a “bandwith” (standard deviation) σ to any PDF k1, using

kσ(r) =
1

σ
k1

( r
σ

)
,

from the change of variables formula for probabilities (| ddr
[
r
σ

]
| = 1

σ ).

Under common choices of kernels, KDEs can model any continuous density.



Kernel Density Estimation Probabilistic PCA

Efficient Kernel Density Estimation
KDE with the Gaussian kernel is slow at test time:

We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

k1(r) =
3

4

(
1− r2

)
I [|r| ≤ 1] .

This kernel has two nice properties:
Epanechnikov showed that it is asymptotically optimal in terms of squared error.
It can be much faster to use since it only depends on nearby points (use hashing).

You can use hashing to quickly find neighbours in training data.

It is non-smooth at the boundaries but many smooth approximations exist.
Quartic, triweight, tricube, cosine, etc.

For low-dimensional spaces, we can also use the fast multipole method.
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Visualization of Common Kernel Functions
Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

https://en.wikipedia.org/wiki/Kernel_%28statistics%29

https://en.wikipedia.org/wiki/Kernel_%28statistics%29
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Multivariate Kernel Density Estimation
The multivariate kernel density estimation (KDE) model uses

p(xi) =
1

n

n∑
j=1

kA(xi − xj︸ ︷︷ ︸
r

),

The most common kernel is a product of independent Gaussians,

kI(r) =
1

(2π)
d
2

exp

(
−‖r‖

2

2

)
.

We can add a bandwith matrix A to any kernel using

kA(r) =
1

|A|
k1(A−1r) (generalizes kσ(r) =

1

σ
k1

( r
σ

)
),

and in Gaussian case we get a multivariate Gaussian with Σ = AAT .

To reduce number of parameters, we typically:
Use a product of independent distributions and use A = σI for some σ.
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KDE vs. Mixture of Gaussian
By fixing mean/covariance/k, we don’t have to worry about local optima.



Kernel Density Estimation Probabilistic PCA

KDE vs. Mixture of Gaussian
By fixing mean/covariance/k, we don’t have to worry about local optima.
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Mean-Shift Clustering
Mean-shift clustering uses KDE for clustering:

Define a KDE on the training examples, and then for test example x̂:
Run gradient descent to maximize p(x) starting from x̂.

Clusters are points that reach same local minimum.

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Not sensitive to initialization, no need to choose k, can find non-convex clusters.

Similar to density-based clustering from 340.
But doesn’t require uniform density within cluster.
And can be used for vector quantization.

“The 5 Clustering Algorithms Data Scientists Need to Know”:
https://towardsdatascience.com/

the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
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Kernel Density Estimation on Digits
Samples from a KDE model of digits:

Sample is on the left, right is the closest image from the training set.

KDE basically just adds independent noise to the training examples.
Usually makes more sense for continuous data that is densely packed.

A variation with a location-specific variance:
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Outline

1 Kernel Density Estimation

2 Probabilistic PCA
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Continuous Mixture Models

We’ve been discussing mixture models where zi is discrete,

p(xi) =

k∑
zi=1

p(zi)p(xi | zi = c).

We can also consider mixtures models where zi is continuous,

p(xi) =

∫
zi
p(zi)p(xi | zi = c)dzi.

Unfortunately, computing the integral might be hard.

But if both probabilities are Gaussian then it’s straightforward.
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Probabilistic PCA

In 340 we discussed PCA, which approximates (centered) xi by

xi ≈W T zi.

In probabilistic PCA we assume that

xi ∼ N (W T zi, σ2I), zi ∼ N (0, I).

We then treat zi as nuisance parameters,

p(xi |W ) =

∫
zi
p(xi, zi |W )dzi.

Looks ugly, but this is the marginal of a Gaussian so it’s Gaussian.
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Probabilistic PCA

The continuous mixture representation of probabilistic PCA:

p(xi |W ) =

∫
zi
p(xi, zi |W )dzi =

∫
zi
p(zi |W )p(xi | zi,W )dzi.

After a lot of tedious Gaussian identities and matrix formulas we get (bonus)

xi |W ∼ N (0,W TW + σ2I),

Regular PCA is obtained as the limit of σ2 going to 0 (bonus).

PCA can be viewed as fitting a multivariate Gaussian with a restricted form for Σ.
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Generalizations of Probabilistic PCA
Why do we need a probabilistic interpretation of PCA?

Good excuse to play with Gaussian identities and matrix formulas?
We now understand that PCA fits a Gaussian with restricted covariance:

Hope is that WTW + σI is a good approximation of full covariance XTX.
We can do fancy things like mixtures of PCA models.

http://www.miketipping.com/papers/met-mppca.pdf

We could consider different xi | zi distribution (but integrals are ugly).
E.g., Laplace or student if you want it to be robust.
E.g., logistic or softmax if you have discrete xi

j .

Lets us understand connection between PCA and factor analysis.

http://www.miketipping.com/papers/met-mppca.pdf
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Factor Analysis
Factor analysis (FA) is a method for discovering latent-factors.

A standard tool and widely-used across science and engineering.
Historical applications are measures of intelligence and personality traits.

Some controversy, like trying to find factors of intelligence due to race.
(without normalizing for relevant factors)

https://new.edu/resources/big-5-personality-traits

“Big Five” aspects of personality (vs. non-evidence-based Myers-Briggs):
https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt

https://new.edu/resources/big-5-personality-traits
https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt
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Factor Analysis

FA approximates (centered) xi by

xi ≈W T zi,

and assumes zi and xi | zi are Gaussian.

Which should sound familiar...

Are PCA and FA the same?

Both are more than 100 years old.
There are many online discussions about whether they are the same.

Some software packages run PCA when you call their FA method.
Some online discussions claiming they are completely different.
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PCA vs. Factor Analysis

In probabilistic PCA we assume

xi | zi ∼ N (W T zi, σ2I), zi ∼ N (0, I),

and we obtain PCA as σ → 0.

In FA we assume

xi | zi ∼ N (W T zi, D), zi ∼ N (0, I),

where D is a diagonal matrix.

The difference is that you can have a noise variance for each dimension.

So FA has extra degrees of freedom in variance of original variables.
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PCA vs. Factor Analysis
In practice they usually give pretty similar results:

http:

//stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi

Remember in 340 that difference with PCA and ISOMAP/t-SNE was huge.

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
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Summary: PCA vs. Factor Analysis

In probabilistic PCA we assume

xi | zi ∼ N (W T zi, σ2I), zi ∼ N (0, I),

and we obtain PCA as σ → 0.

And factor analysis replaces σ2I with a diagonal D.

Differences of FA with PCA:
FA is Not affected by scaling individual features.

FA doesn’t chase large-noise features that are uncorrelated with other features.

But unlike PCA, it’s affected by rotation of the data (XQ vs. X).
No nice “SVD” approach for FA, you can get different local optima.
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Independent Component Analysis (ICA)
Factor analysis has found an enormous number of applications.

People really want to find the “factors” that make up their data.

But even in ideal settings factor analysis can’t uniquely identify the true factors.
We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach.
Around 30 years old instead of > 100.
Under certain assumptions, it can identify factors.
Canonical applications: blind source separation, identifying causal direction.

It’s the only algorithm we didn’t cover in 340 from the list of
“The 10 Algorithms Machine Learning Engineers Need to Know”.

Previous year’s material on probabilistic PCA, factor analysis, and ICA here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L17.5.pdf
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End of Part: Basic Density Estimation and Mixture Models

We defined the problem of density estimation

Computing probability of new examples x̃i.

We discussed basic distributions for 1D-case:

Bernoulli, categorical, Gaussian.

We discussed product of independent distributions:

Model each feature individually.

We discussed multivariate Gaussian:

Joint Gaussian model of multiple variables.
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End of Part: Basic Density Estimation and Mixture Models

We discussed mixture models:

Write density as a convex combination of densities.
Examples include mixture of Gaussians and mixture of Bernoullis.
Can model multi-modal densities.

Commonly-fit using expectation maximization.

Generic method for dealing with missing at random data.
Can be viewed as a “minimize upper bound” method.

Kernel density estimation is a non-parametric mixture model.

Place on mixture component on each data point.
Nice for visualizing low-dimensional densities.
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Summary

Kernel density estimation: Non-parametric density estimation method.

Allows smooth variations on histograms.

Probabilistic PCA:

Continuous mixture models based on Gaussian assumptions.
Factor analysis extends probabilistic PCA with different noise in each dimension.

Very similar but not identical to PCA.

Next time: the sad truth about rain in Vancouver.
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Derivation of Probabilistic PCA
From the probabilistic PCA assumptions we have (leaving out i superscripts):

p(x | z,W ) ∝ exp

(
−(x−W T z)T (x−W T z)

2σ2

)
, p(z) ∝ exp

(
−z

T z

2

)
.

Multiplying and expanding we get

p(x, z |W ) = p(x | z,W )p(z |W )

= p(x | z,W )p(z) (z ⊥W )

∝ exp

(
−(x−W T z)T (x−W T z)

2σ2
− zT z

2

)
= exp

(
−x

Tx− xTW T z − zTWx+ zTWW T z

2σ2
+
zT z

2

)
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Derivation of Probabilistic PCA
So the “complete” likelihood satsifies

p(x, z |W ) ∝ exp

(
−
xT x− xTWT z − zTWx+ zTWWT z

2σ2
+
zT z

2

)
= exp

(
−

1

2

(
xT

(
1

σ2
I

)
x+ xT

(
1

σ2
WT

)
z + zT

(
1

σ2
W

)
x+ zT

(
1

σ2
WWT + I

)
z

))
,

We can re-write the exponent as a quadratic form,

p(x, z |W ) ∝ exp

(
−1

2

[
xT zT

] [ 1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

] [
x
z

])
,

This has the form of a Gaussian distribution,

p(v |W ) ∝ exp

(
−1

2
(v − µ)TΣ−1(v − µ)

)
,

with v =

[
x
z

]
, µ = 0, and Σ−1 =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

]
.
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Derivation of Probabilistic PCA
Remember that if we write multivariate Gaussian in partitioned form,[

x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

then the marginal distribution p(x) (integrating over z) is given by

x ∼ N (µx,Σxx).

For probabilistic PCA we assume µx = 0, but we partitioned Σ−1 instead of Σ.

To get Σ we can use a partitioned matrix inversion formula,

Σ =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

]−1

=

[
W TW + σ2I W T

W I

]
,

which gives that solution to integrating over z is

x |W ∼ N (0,W TW + σ2I).
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PCA vs. Probabilistic PCA
NLL of observed data has the form

− log p(x |W ) =
n

2
Tr(SΘ)− n

2
log |Θ|+ const.,

where Θ = (W TW + σ2I)−1 and S is the sample covariance.

Not convex, but non-global stationary points are saddle points.
Equivalence with regular PCA:

Consider WT orthogonal so WWT = I (usual assumption).
Using matrix determinant lemma we have

|WTW + σ2I| = |I +
1

σ2
WWT︸ ︷︷ ︸

I

| · |σ2I| = const.

Using matrix inversion lemma we have

(WTW + σ2I)−1 =
1

σ2
I − 1

σ2(σ2 + 1)
WTW,

so minimizing NLL maximizes Tr(WTWS) as in “analysis” view of PCA.
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PCA vs. Factor Analysis
In probabilistic PCA we assume

xi | zi ∼ N (W T zi, σ2I), zi ∼ N (0, I),

and we obtain PCA as σ → 0.

In FA we assume

xi | zi ∼ N (W T zi, D), zi ∼ N (0, I),

where D is a diagonal matrix.

The difference is that you can have a noise variance for each dimension.

Repeating the previous exercise we get that

xi ∼ N (0,W TW +D).

So FA has extra degrees of freedom in variance of individual variables.
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PCA vs. Factor Analysis

We can write non-centered versions of both models:

Probabilistic PCA:

xi | zi ∼ N (WT zi + µ, σ2I), zi ∼ N (0, I),

Factor analysis:
xi | zi ∼ N (WT zi + µ,D), zi ∼ N (0, I),

where D is a diagonal matrix.

A different perspective is that these models assume

xi = W T zi + ε,

where PPCA has ε ∼ N (µ, σ2I) and FA has ε ∼ N (µ,D).
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Factor Analysis Discussion

Similar to PCA, FA is invariant to rotation of W ,

W TW = W T QTQ︸ ︷︷ ︸
I

W = (WQ)T (WQ),

for orthogonal Q.

So as with PCA you can’t interpret multiple factors as being unique.

Differences with PCA:
Not affected by scaling individual features.

FA doesn’t chase large-noise features that are uncorrelated with other features.

But unlike PCA, it’s affected by rotation of the data.
No nice “SVD” approach for FA, you can get different local optima.
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Orthogonality and Sequential Fitting

The PCA and FA solutions are not unique.

Common heuristic:
1 Enforce that rows of W have a norm of 1.
2 Enforce that rows of W are orthogonal.
3 Fit the rows of W sequentially.

This leads to a unique solution up to sign changes.

But there are other ways to resolve non-uniqueness (Murphy’s Section 12.1.3):

Force W to be lower-triangular.
Choose an informative rotation.
Use a non-Gaussian prior (“independent component analysis”).
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Scale Mixture Models

Another weird mixture model is a scale mixture of Gaussians,

p(xi) =

∫
σ2

p(σ2)N (xi | µ, σ2)dσ2.

Common choice for p(σ2) is a gamma distribution (which makes integral work):

Many distributions are special cases, like Laplace and student t.

Leads to EM algorithms for fitting Laplace and student t.
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