CPSC 540: Machine Learning 340 Overview

Mark Schmidt

University of British Columbia

Winter 2020

Motivating Problem: Depth Estimation from Images

We want to build system that predicts "distance to car" for each pixel in an image:

https://www.gadzooki.com/gadgets/5-ways-technology-is-going-to-make-driving-safer

- For example, pixel (59, 108) has distance 30.4 meters.
- One way to build such a system:
 - ① Collect a large number of images and label their pixels with the true depth.
 - ② Use supervised learning to build a model that can predict depth of any pixel.

Supervised Learning Notation

- Supervised learning input is a set of *n* training examples.
- Each training example *i* consists of:
 - A set of features x^i .
 - \bullet A label y^i
- For depth estimation:
 - Features could be a bunch of convolutions centered around the pixel.
 - Label would be the actual distance to the object in the pixel.
 - Supervised learning is a crucial tool used in self-driving cars.
- Supervised learning output is a model:
 - With linear models, summarized by a d-dimensioanl parameter vector w.
 - Given a new input \tilde{x}^i , model makes a prediction \hat{y}^i .
 - Goal is to maximize accuracy on new examples (test error).

Supervised Learning Notation

We'll assume that all vectors are column-vectors,

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}, \quad y = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{bmatrix}, \quad x^i = \begin{bmatrix} x^i_1 \\ x^i_2 \\ \vdots \\ x^i_d \end{bmatrix}.$$

- I'm using w_j as the scalar parameter j.
- I'm using y^i as the label of example i (currently a scalar).
- ullet I'm using x^i as the list of features for example i.
- I'm using x_j^i to denote feature j in training example i.
- ullet I'll use x_j to denote feature j in a generic training example.

Supervised Learning Notation

• We'll use X to denote the data matrix containing the x^i in the rows:

$$X = \begin{bmatrix} \overline{} & (x^1)^{\top} & \overline{} \\ \overline{} & (x^2)^{\top} & \overline{} \\ \vdots & \overline{} & (x^n)^{\top} & \overline{} \end{bmatrix}, \quad y = \begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{bmatrix},$$

ullet We'll use $ilde{X}$ and $ilde{y}$ to denote test data:

$$\tilde{X} = \begin{bmatrix} \overline{} & (\tilde{x}^1)^\top & \overline{} \\ \overline{} & (\tilde{x}^2)^\top & \overline{} \\ \vdots & \vdots & \vdots \\ \overline{} & (\tilde{x}^n)^\top & \overline{} \end{bmatrix}, \quad \tilde{y} = \begin{bmatrix} \tilde{y}^1 \\ \tilde{y}^2 \\ \vdots \\ \tilde{y}^n \end{bmatrix},$$

and \hat{y} to denote a vector of predictions.

- Our prediction in linear models is $\hat{y}^i = w^\top x^i$ (train) or $\hat{y}^i = w^\top \tilde{x}^i$ (test).
 - Notation alert: I use \hat{y}^i whether it's a prediction on training or test data.

MAP Estimation

ullet We typically fit parameters w by MAP estimation,

$$\hat{w} \in \operatorname*{argmax}_{w \in \mathbb{R}^d} \underbrace{p(w \mid X, y)}_{\text{posterior}}.$$

By Bayes rule this is equivalent to

$$\hat{w} \in \operatorname*{argmax}_{w \in \mathbb{R}^d} \underbrace{p(y \mid X, w)}_{\text{likelihood}} \underbrace{p(w)}_{\text{prior}},$$

and also equivalent to

$$\hat{w} \in \operatorname*{argmin}_{w \in \mathbb{R}^d} \ \underbrace{-\log p(y \mid X, w)}_{\text{NLL}} - \underbrace{\log p(w)}_{\text{log-prior}},$$

see probability notes as well as notes on max and argmax on the webpage.

MAP Estimation

• If training examples i are IID then first term becomes sum over examples,

$$\hat{w} \in \operatorname*{argmin}_{w \in \mathbb{R}^d} - \sum_{i=1}^n \log p(y^i \mid x^i, w) - \log p(w).$$

• Gaussian likelihoods and priors are the most common choice,

$$p(y^i \mid x^i, w) \propto \exp\left(-\frac{1}{2}(w^\top x^i - y^i)^2\right), \quad p(w_j) \propto \exp\left(\frac{\lambda}{2}w_j^2\right),$$

making MAP estimation equivalent to minimizing L2-regularized squared error,

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{\top} x^{i} - y^{i})^{2} + \frac{\lambda}{2} \sum_{i=1}^{d} w_{j}^{2}.$$

Loss Plus Regularizer Framework

• This is a special case of the "loss plus regularizer" framework,

$$f(w) = \underbrace{\sum_{i=1}^{n} f_i(w)}_{\text{data-fitting term}} + \underbrace{\lambda g(w)}_{\text{regularizer}}.$$

- Loss function f_i measures how well we fit example i with parameters w.
 - In our example $f_i(w) = \frac{1}{2}(w^\top x^i y^i)^2$.
- Regularizer q measures how complicated the model is with parameters w.
 - In our example $r(w) = \frac{1}{2} \sum_{i=1}^d w_i^2$.
- Regularization parameter $\lambda > 0$ controls strength of regularization:
 - Controls complexity of model, with large λ leading to less overfitting.
 - Usually set by optimizing error on a validation set or with cross-validation.

Other Loss Functions and Regularizers

• "Loss plus regularizer" framework:

$$f(w) = \underbrace{\sum_{i=1}^{n} f_i(w)}_{\text{data-fitting term}} + \underbrace{\lambda g(w)}_{\text{regularizer}}.$$

- Alternative loss functions to squared error:
 - Absolute error $|w^{\top}x^i y^i|$ is more robust to outliers.
 - Hinge loss $\max\{0, 1 y^i w^\top x^i\}$ is better for binary y^i .
 - Logistic loss $\log(1 + \exp(-y^i w^\top x^i))$ is better for binary y^i and is smooth.
 - Softmax loss $-w_{vi}^{\top}x^i + \log(\sum_{c=1}^k \exp(w_c^{\top}x^i))$ for discrete y^i .
- Another common regularizer is L1-regularizer,

$$g(w) = \sum_{j=1}^{d} |w_j|,$$

which encourages sparsity in w (many w_i are set to zero for large λ).

Solution of L2-Regularized Least Squares

Our L2-regularized least squares objective function was

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{\top} x^{i} - y^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2},$$

which we can write in matrix and norm notation as

$$f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2.$$

• The gradient of this quadratic objective is given by

$$\nabla f(w) = X^{\top}(Xw - y) + \lambda w,$$

and setting the gradient to zero and solving for \boldsymbol{w} gives

$$w = (X^{\top}X + \lambda I)^{-1}(X^{\top}y),$$

where we've used that $(X^{\top}X + \lambda I)$ is invertible (we'll show this later).

Stationary Points and Convexity

- Is a stationary point (satisfying $\nabla f(w) = 0$) necessarily a global optimum?
 - Yes, if the objective is convex.
- In our example,

$$f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2.$$

- $||w||^2$ is convex because squared norms are convex.
- $\|Xw y\|^2$ is convex because it's composition of convex $\|r\|^2$ and linear Xw y.
- ullet f is convex because sums of convex functions with non-negative weights are convex.

Training Cost and Huge Datasets

• It costs $O(nd^2 + d^3)$ to compute the solution,

$$w = (X^{\top}X + \lambda I)^{-1}(X^{\top}y).$$

- If d is huge, it might be better to use gradient descent.
 - It costs O(ndt) to do t iterations.
 - As t grows it converges to a stationary point (with small-enough step size).
- If n is huge, it might be better to use stochastic gradient.
 - It costs O(dt) to do t iterations.
 - As t grows it converges to a stationary point (with decreasing step sizes).

Non-Linear Models

• Our running L2-regularized least squares example:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{\top} x^{i} - y^{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} w_{j}^{2},$$

- To model non-linear effects we can use:
 - Non-linear features transformations ("change of basis"):
 - Replace each vector x^i with a set of non-linear transformations z^i .
 - Kernel trick:
 - Allows some exponential- or infinite-sized z^i .
 - Matrix factorization (PCA, NMF, sparse coding, ...):
 - Unsupervised learning of the z^i .
 - Deep learning methods like neural networks.
 - ullet Simultaneous learning of the z^i and w.

Summary

- Machine learning: automatically detecting patterns in data to help make predictions and/or decisions.
- CPSC 540: advanced/difficult graduate-level 2nd or 3rd+ course on this topic.
- Overview of CPSC 340 topics: you are expected to know all this already.
 - If you had trouble following this material, you may not be ready for the course.

Next time: filling in some theory gaps from 340.

"Proportional to" Notation

We we write

$$g(y) \propto f(y)$$
,

it means that

$$g(y) = \kappa f(y),$$

for all y for some $\kappa \neq 0$.

- ullet If we know that g is a probability, then κ is unique.
 - \bullet It's the value that that g sum/integrate to 1 over all y.

"Proportional to" Probability Notation

So when we write

$$p(y) \propto f(y)$$
,

for a probability distribution p and non-negative f we mean that

$$p(y) = \kappa f(y),$$

where κ is the unique number needed to make p a probability.

• If y is discrete taking values in \mathcal{Y} ,

$$\kappa = \frac{1}{\sum_{y \in \mathcal{V}} f(y)}.$$

• If y is continuous taking values in \mathcal{Y} ,

$$\kappa = \frac{1}{\int_{y \in \mathcal{V}} f(y) \mathrm{d}y}.$$