
CPSC 540: Machine Learning
340 Overview

Mark Schmidt

University of British Columbia

Winter 2020

Motivating Problem: Depth Estimation from Images

We want to build system that predicts “distance to car” for each pixel in an image:

https://www.gadzooki.com/gadgets/5-ways-technology-is-going-to-make-driving-safer

For example, pixel (59, 108) has distance 30.4 meters.
One way to build such a system:

1 Collect a large number of images and label their pixels with the true depth.
2 Use supervised learning to build a model that can predict depth of any pixel.

https://www.gadzooki.com/gadgets/5-ways-technology-is-going-to-make-driving-safer

Supervised Learning Notation

Supervised learning input is a set of n training examples.

Each training example i consists of:

A set of features xi.
A label yi

For depth estimation:

Features could be a bunch of convolutions centered around the pixel.
Label would be the actual distance to the object in the pixel.
Supervised learning is a crucial tool used in self-driving cars.

Supervised learning output is a model:

With linear models, summarized by a d-dimensioanl parameter vector w.
Given a new input x̃i, model makes a prediction ŷi.
Goal is to maximize accuracy on new examples (test error).

Supervised Learning Notation

We’ll assume that all vectors are column-vectors,

w =


w1

w2
...
wd

 , y =


y1

y2

...
yn

 , xi =


xi1
xi2
...
xid

 .
I’m using wj as the scalar parameter j.

I’m using yi as the label of example i (currently a scalar).

I’m using xi as the list of features for example i.

I’m using xij to denote feature j in training example i.

I’ll use xj to denote feature j in a generic training example.

Supervised Learning Notation

We’ll use X to denote the data matrix containing the xi in the rows:

X =


(x1)>

(x2)>

...
(xn)>

 , y =


y1

y2

...
yn

 ,
We’ll use X̃ and ỹ to denote test data:

X̃ =


(x̃1)>

(x̃2)>

...
(x̃n)>

 , ỹ =


ỹ1

ỹ2

...
ỹn

 ,
and ŷ to denote a vector of predictions.
Our prediction in linear models is ŷi = w>xi (train) or ŷi = w>x̃i (test).

Notation alert: I use ŷi whether it’s a prediction on training or test data.

MAP Estimation

We typically fit parameters w by MAP estimation,

ŵ ∈ argmax
w∈Rd

p(w | X, y)︸ ︷︷ ︸
posterior

.

By Bayes rule this is equivalent to

ŵ ∈ argmax
w∈Rd

p(y | X,w)︸ ︷︷ ︸
likelihood

p(w)︸︷︷︸
prior

,

and also equivalent to

ŵ ∈ argmin
w∈Rd

− log p(y | X,w)︸ ︷︷ ︸
NLL

− log p(w)︸ ︷︷ ︸
log-prior

,

see probability notes as well as notes on max and argmax on the webpage.

MAP Estimation

If training examples i are IID then first term becomes sum over examples,

ŵ ∈ argmin
w∈Rd

−
n∑

i=1

log p(yi | xi, w)− log p(w).

Gaussian likelihoods and priors are the most common choice,

p(yi | xi, w) ∝ exp

(
−1

2
(w>xi − yi)2

)
, p(wj) ∝ exp

(
λ

2
w2
j

)
,

making MAP estimation equivalent to minimizing L2-regularized squared error,

f(w) =
1

2

n∑
i=1

(w>xi − yi)2 + λ

2

d∑
j=1

w2
j .

Loss Plus Regularizer Framework

This is a special case of the “loss plus regularizer” framework,

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

Loss function fi measures how well we fit example i with parameters w.

In our example fi(w) =
1
2 (w

>xi − yi)2.

Regularizer g measures how complicated the model is with parameters w.

In our example r(w) = 1
2

∑d
j=1 w

2
j .

Regularization parameter λ > 0 controls strength of regularization:

Controls complexity of model, with large λ leading to less overfitting.
Usually set by optimizing error on a validation set or with cross-validation.

Other Loss Functions and Regularizers
“Loss plus regularizer” framework:

f(w) =

n∑
i=1

fi(w)︸ ︷︷ ︸
data-fitting term

+ λg(w)︸ ︷︷ ︸
regularizer

.

Alternative loss functions to squared error:
Absolute error |w>xi − yi| is more robust to outliers.
Hinge loss max{0, 1− yiw>xi} is better for binary yi.
Logistic loss log(1 + exp(−yiw>xi)) is better for binary yi and is smooth.

Softmax loss −w>
yixi + log(

∑k
c=1 exp(w

>
c x

i)) for discrete yi.

Another common regularizer is L1-regularizer,

g(w) =
d∑

j=1

|wj |,

which encourages sparsity in w (many wj are set to zero for large λ).

Solution of L2-Regularized Least Squares

Our L2-regularized least squares objective function was

f(w) =
1

2

n∑
i=1

(w>xi − yi)2 + λ

2

d∑
j=1

w2
j ,

which we can write in matrix and norm notation as

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

The gradient of this quadratic objective is given by

∇f(w) = X>(Xw − y) + λw,

and setting the gradient to zero and solving for w gives

w = (X>X + λI)−1(X>y),

where we’ve used that (X>X + λI) is invertible (we’ll show this later).

Stationary Points and Convexity

Is a stationary point (satisfying ∇f(w) = 0) necessarily a global optimum?

Yes, if the objective is convex.

In our example,

f(w) =
1

2
‖Xw − y‖2 + λ

2
‖w‖2.

‖w‖2 is convex because squared norms are convex.
‖Xw − y‖2 is convex because it’s composition of convex ‖r‖2 and linear Xw − y.
f is convex because sums of convex functions with non-negative weights are convex.

Training Cost and Huge Datasets

It costs O(nd2 + d3) to compute the solution,

w = (X>X + λI)−1(X>y).

If d is huge, it might be better to use gradient descent.

It costs O(ndt) to do t iterations.
As t grows it converges to a stationary point (with small-enough step size).

If n is huge, it might be better to use stochastic gradient.

It costs O(dt) to do t iterations.
As t grows it converges to a stationary point (with decreasing step sizes).

Non-Linear Models

Our running L2-regularized least squares example:

f(w) =
1

2

n∑
i=1

(w>xi − yi)2 + λ

2

d∑
j=1

w2
j ,

To model non-linear effects we can use:
Non-linear features transformations (“change of basis”):

Replace each vector xi with a set of non-linear transformations zi.

Kernel trick:

Allows some exponential- or infinite-sized zi.

Matrix factorization (PCA, NMF, sparse coding, . . .):

Unsupervised learning of the zi.

Deep learning methods like neural networks.

Simultaneous learning of the zi and w.

Summary

Machine learning: automatically detecting patterns in data to help make
predictions and/or decisions.

CPSC 540: advanced/difficult graduate-level 2nd or 3rd+ course on this topic.

Overview of CPSC 340 topics: you are expected to know all this already.

If you had trouble following this material, you may not be ready for the course.

Next time: filling in some theory gaps from 340.

“Proportional to” Notation

We we write
g(y) ∝ f(y),

it means that
g(y) = κf(y),

for all y for some κ 6= 0.

If we know that g is a probability, then κ is unique.

It’s the value that that g sum/integrate to 1 over all y.

“Proportional to” Probability Notation

So when we write
p(y) ∝ f(y),

for a probability distribution p and non-negative f we mean that

p(y) = κf(y),

where κ is the unique number needed to make p a probability.

If y is discrete taking values in Y,

κ =
1∑

y∈Y f(y)
.

If y is continuous taking values in Y,

κ =
1∫

y∈Y f(y)dy
.

