CPSC 540 Assignment 2 (due February 1 at midnight)

The assignment instructions are the same as for the previous assignment, but for this assignment you can
work in groups of 1-3. However, please only hand in one assignment for the group.

1. Name(s):
2. Student ID(s):

1 Calculation Questions

1.1 Convexity
Show that the following functions are convex, by only using one of the definitions of convexity (i.e., without
using the “operations that preserve convexity” or using convexity results stated in class):?!

1. L2-regularized weighted least squares: f(w) = 3(Xw —y)"V(Xw —y) + 3[jw|>.
(V is a diagonal matrix with positive values on the diagonal).

2. Poisson regression: f(w) = —y' Xw + 1Tv (where v; = exp(w ' 2?)).

3. Weighted infinity-norm: f(w) = max;c(1,2,... .4y Lj|w;| (where each L; > 0).
Hint: Max and absolute value are not differentiable in general, so you cannot use the Hessian for this
question.

Show that the following functions are convex (you can use results from class and operations that preserve
convexity if they help):

4. Regularized regression with arbitrary p-norm and weighted g-norm: f(w) = [|[Xw — y||, + MAw||4-
5. Support vector regression: f(w) = Zf\;l max{0, |w' z; — y;| — €} + 3[|w|3.

0 ifAw<bd

6. Indicator function for linear constraints: f(w) = oo
oo otherwise

Hint: the “domain” of this function is the values where f(w) < oo.

1.2 Convergence of Gradient Descent

For these questions it will be helpful to use the “convexity inequalities” notes posted on the webpage.

1. In class we showed that if V f is L-Lipschitz continuous and f is bounded below then with a step-size of
1/L gradient descent is guaranteed to have found a w* with ||V f(w*)||? < e after t = O(1/e) iterations.
Suppose that a more-clever algorithm exists which, on iteration ¢, is guaranteed to have found a w*
satisfying |V f(w®)||? < 2L(f(w®) — f*)/t*/3. How many iterations of this algorithm would we need
to find a w® with |V f(wk)|* < €?

1That C° convex functions are below their chords, that C'! convex functions are above their tangents, or that C? convex
functions have a positive semidefinite Hessian.



1.3

In practice we typically don’t know L. A common strategy in this setting is to start with some small
guess LO that we know is smaller than the true L (usually we take L° = 1). On each iteration k, we
initialize with L* = L*¥~! and we check the inequality

(= ZeVI) < £04) = g IV

If this is not satisfied, we double L and test it again. This continues until we have an L* satisfying
the inequality, and then we take the step. Show that gradient descent with oy, = 1/L* defined in this
way has a linear convergence rate of

Fh) — fwt) < (1 29)" ) - fw)),

if Vf is L-Lipschitz continuousn and f is p-strongly convex.
Hint: if a function is L-Lipschitz continuous that it is also L’-Lipschitz continuous for any L’ > L.

Suppose that, in the previous question, we initialized with L¥ = %kal. Describe a setting where this
could work much better.

. In class we showed that if V f is L-Lipschitz continuous and f is strongly-convex, then with a step-size

of ay; = 1/L gradient descent has a convergence rate of

Show that under these assumptions that a convergence rate of O(p”) in terms of the function values
implies that the iterations have a convergence rate of

lw" —w| = O(p""?).

Beyond Gradient Descent

. We can write the proximal-gradient update as

wh T = b - arV f(w)

1
w*t = argmin {Hv —whtE? 4 akr(v)} )
vERD 2

Show that this is equivalent to setting

1
wh ! € argmin {f(wk) + V(W) (v —wh) + — v —w"||* + r(v)} .
vERC 20%

. The “sum” version of multi-class SVMs uses an objective of the form

n ; ; by
fowv) = Z Z [1—wyz’+w! 2']" + 5\\W||§m

i=1 ey’

where [y]T sets negative values to zero (and you can use k as the number of classes so the inner loop
is over (k — 1) elements). Derive the sub-differential of this objetive.



3. In some situations it might be hard to accurately compute the elements of the gradient, but we
might have access to the sign of the gradient (this can also be useful in distributed settings where
communicating one bit for each element of the gradient is cheaper than communicating a floating
point number for each gradient element). Consider an f that is bounded below and where Vf is
Lipschitz continuous in the co-norm, meaning that

F©) < 700+ V)T (0 =) + 2= ol

for all v and w and some L.,. For this setting, consider a sign-based gradient descent algorithm of the

form
k+1 _ wk - ||Vf£ik)1SIgH(Vf(wk)),

where we define the sign function element-wise as

w

+1 w; > 0
sign(w;) =40  w; =0,
-1 w; < 0

Show that this sign-based gradient descent algorithm finds a w" satisfying ||V f(w")||? < e after t =
O(1/e€) iterations.

2 Computation Questions

2.1 Proximal-Gradient

If you run the demo example_group.jl, it will load a dataset and fit a multi-class logistic regression (softmax)
classifier. This dataset is actually linearly-separable, so there exists a set of weights W that can perfectly
classify the training data (though it may be difficult to find a W that perfectly classifiers the validation
data). However, 90% of the columns of X are irrelevant. Because of this issue, when you run the demo you
find that the training error is 0 while the test error is something like 0.2980.

1. Write a new function, logRegSoftmazL?2, that fits a multi-class logistic regression model with L2-
regularization (this only involves modifying the objective function). Hand in the modified loss function
and report the validation error achieved with A = 10 (which is the best value among powers to 10).
Also report the number of non-zero parameters in the model and the number of original features that
the model uses.

2. While L2-regularization reduces overfitting a bit, it still uses all the variables even though 90% of them
are irrelevant. In situations like this, L1-regularization may be more suitable. Write a new function,
logRegSoftmaxL1, that fits a multi-class logistic regression model with L1-regularization. You can use
the function findMinL1, which minimizes the sum of a differentiable function and an L1-regularization
term. Report the number of non-zero parameters in the model and the number of original features
that the model uses.

3. Ll-regularization achieves sparsity in the model parameters, but in this dataset it’s actually the original
features that are irrelevant. We can encourage sparsity in the original features by using group L1-
regularization. Write a new function, prozGradGroupLl, to allow (disjoint) group Ll-regularization.
Use this within a new function, softmaxClassiferGL1, to fit a group L1-regularized multi-class logistic
regression model (where rows of W are grouped together and we use the L2-norm of the groups). Hand
in both modified functions (logRegSoftmazGL1 and proxGradGroupL1) and report the validation error
achieved with A = 10. Also report the number of non-zero parameters in the model and the number



of original features that the model uses.
Hint: findMinL1 implements a generic proximal-gradient method for Ll-regularization, which you
could modify to give a generic proximal-gradient method for group Ll-regularization.

2.2 Coordinate Optimization

The function example_CD.jl loads a dataset and tries to fit an L2-regularized least squares model using
coordinate descent. Unfortunately, if we use Ly as the Lipschitz constant of V f, the runtime of this procedure

is O(d3 +nd2% log(1/€)). This comes from spending O(d®) computing L s, having an iteration cost of O(nd),
and requiring O(d% log(1/€)) iterations to reach an accuracy of e. This non-ideal runtime is also reflected
in practice: the algorithm’s iterations are relatively slow and it often takes over 200 “passes” through the
data for the parameters to stabilize.

1. Modify this code so that the runtime of the algorithm is O(nd% log(1/€)), where L. is the Lipschitz
constant of all partial derivatives V;f. You can do this by increasing the step-size to 1/L. (the
coordinate-wise Lipschitz constant given by max;{||z;||*} + A where z; is column j of the matrix X),
and modifying hte iterations so they have a cost of O(n) instead of O(nd). Hand in your code and
report an estimate of the change in time and number of iterations.

2. While it doesn’t improve the worst-case time complexity (without making stronger assumptions), you
might expect to improve performance by using a more-clever choice of step-size. Modify the code to
compute the optimal step-size (which you can do in closed-form without increasing the runtime), and
report the effect of using the optimal step-size on the time and number of iterations.

2.3 Stochastic Gradient

If you run the demo example_SG.jl, it will load a dataset and try to fit an L2-regularized logistic regression
model using 10 “passes” of stochastic gradient using the step-size of oy = 1/At that is suggested in many
theory papers. Note that in other high-level languages (like R/Matlab/Python) this demo would run really
slowly so you would need to write the inner loop in a low-level language like C, but in Julia you can directly
write the stochastic gradient code and have it run fast.

Unfortunately, despite Julia making this code run fast compared to other high-level languages, the perfor-
mance of this stochastic gradient method is atrocious. It often goes to areas of the parameter space where
the objective function overflows and the final value is usually in the range of something like 6.5 — 7.5 x 10.
This is quite far from the solution of 2.7068 x 10* and is even worse than just choosing w = 0 which gives
3.5 x 10%. (This is unlike gradient descent and coordinate optimization, which never increase the objective
function if your step-size is small enough.)

1. Although a; = 1/At gives the best possible convergence rate in the worst case, in practice it’s typically
horrible (as we’re not usually opitmizing the hardest possible A-strongly convex function). Experiment
with different choices of step-size sequence to see if you can get better performance. Report the step-
size sequence that you found gave the best performance, and the objective function value obtained by
this strategy for one run.

2. Besides tuning the step-size, another strategy that often improves the performance is using a (possibly-
weighted) average of the iterations w’. Explore whether this strategy can improve performance. Report
the performance with an averaging strategy, and the objective function value obtained by this strategy
for one run. Note that the best step-size sequence with averaging might be different than without
averaging (usually you can use bigger steps when you average).



3.

3

A popular variation on stochastic is AdaGrad, which uses the iteration

Wit = wk — DLV f(wh),

where the element in position (7, 7) of the diagonal matrix Dy, is given by 1/\/6 + ZZ’:O(ijik’ (wh"))2.
Here, i, is the example i selected on iteration & and V; denotes element j of the gradient (and in
AdaGrad we typically don’t average the steps). Implement this algorithm and experiment with the
tuning parameters «; and . Hand in your code as well as the best step-size sequence you found and
again report the performance for one run.

Impelement the SAG algorithm with a step-size of 1/L, where L is the maximum Lipschitz constant
across the training examples (L = imaxi{||m1||2} + A). Hand in your code and again report the
performance for one run.

Very-Short Answer Questions

Consider a function that is C' over R? and five possible assumptions: (L) gradient is Lipschitz continuous,
(B) function is bounded below, (C) function is convex, (C*) function is strictly-convex, and (SC) function
is strongly-convex. Among the choices below, state which of the five assumptions on their own imply the
following:

1.
2.
3.
4.

There exists an f* such that f(w) > f* for all w.
There exists a stationary point.
There exists at most one stationary point.

All stationary points are global optima.

Give a short and concise 1-sentence answer to the below questions.

5.

10.

11.

12.

The no free lunch theorem says that all possible machine learning models have equivalent performance
across the set of possible learning problems. However, XGBoost wins a lot of Kaggle competitions
while naive Bayes does not. Explain why or why not this empirical observation violates the no free
lunch theorem.

Why is it useful to know whether a function satisfies the PL inequality when applying gradient descent?

Give an example (function, w value, and subgradient) where the subgradient method will increase the
objective for any positive step-size.

Why shoudn’t we use the L1-norm of the groups when do group L1-regularization?
What is the difference between inductive and tranductive semi-supervised learning?

We said coordinate optimization makes sense for label propagation when you choose the coordinate
to update uniformly at random. Describe a label propagation setting where choosing the coordinates
non-uniformly would make the algorithm innefficient.

For finite-sum optimization problems, why are stochastic subgradient methods more appealing for non-
smooth problems than for smooth problems? (Assuming that you only observe the function through
“black box” calls to a function and subgradient oracle.)

Desipte it’s empirical sucess in certain settings, what is the flaw in the logic behind with the “linear
scaling rule” (“you should double the step-size when you double the batch-size”) in general? In other
words, if you find a step-size sequnece {ay} that works for a batch-size of m but now you want to use
a batch size of 10m (which would divide the variance by 10, why might using {10ay} be problematic?



13. What is the key advantage of SVRG over SAG?



