
CPSC 540 Assignment 1 (due January 11th at midnight)

IMPORTANT!!!!! Before proceeding, please carefully read the homework instructions:
www.cs.ubc.ca/~schmidtm/Courses/540-W18/assignments.pdf

We will deduct 50% on assignments that do not follow the instructions.

Most of the questions below are related to topics covered in CPSC 340, or other courses listed on the
prerequisite form. There are several “notes” available on the webpage which can help with some relevant
background.

If you find this assignment to be difficult overall, that is an early warning sign that you may not be prepared
to take CPSC 540 at this time. Future assignments will be longer and more difficult than this one.

We use blue to highlight the deliverables that you must answer/do/submit with the assignment.

Basic Information

1. Name:

2. Student ID:

3. Graduate students in CPSC/EECE/STAT must submit the prerequisite form as part of a1sol.zip:
https://www.cs.ubc.ca/~schmidtm/Courses/540_prereqs.pdf

1 Very-Short Answer Questions

Give a short and concise 1-2 sentence answer to the below questions.

1. Why was I unimpressed when a student who thought they did not need to take CPSC 340 said they
were able to obtain 97% training accuracy (on their high-dimensional supervised learning problem) as
the main result of their MSc thesis?

2. What is the difference between a test set error and the test error?

3. Suppose that a famous person in the machine learning community is advertising their “extremely-
deep convolutional fuzzy-genetic Hilbert-long-short recurrent neural network” classifier, which has 500
hyper-parameters. This person claims that if you take 10 different famous (and very-difficult) datasets,
and tune the 500 hyper-parameters based on each dataset’s validation set, that you can beat the current
best-known validation set error on all 10 datasets. Explain whether or not this amazing claim is likely
to be meaningful.

4. In a parametric model, what is the effect of the number of training examples n that our model uses on
the training error and on the approximation error (the difference between the training error and test
error)?

5. Give a way to set the random tree depth in a random forest model that makes the model parametric,
and a choice that makes the model non-parametric.
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6. In the regression setting, the popular software XGBoost uses the squared error at the leaves of its
regression tree, which is different than the “number of training errors” (

∑n
i=1(ŷi 6=yi)) we used for

decision trees in 340. Why does it use the squared error instead of the number of training errors?

7. Describe a situation where it could be better to use gradient descent than Newton’s method (known
as IRLS in statistics) to fit the parameters of a logistic regression model.

8. How does λ in an L2-regularizer affect the sparsity pattern of the solution (number of wj set to exactly
0), the training error, and the approximation error?

9. Minimizing the squared error used by in k-means clustering is NP-hard. Given this, does it make sense
that the standard k-means algorithm is easily able to find a local optimum?

10. Suppose that a matrix X is non-singular. What is the relationship between the condition number of
the matrix, κ(X), and the matrix L2-norm of the matrix, ‖X‖2.

11. How many regression weights do we have in a multi-class logistic regression problem with k classes?

12. Give a supervised learning scenario where you would use the sigmoid likelihood and one where you
would use a Poisson likelihood.

13. Suppose we need to multiply a huge number of matrices to compute a product like A1A2A3 · · ·Ak. The
matrices have wildly-different sizes so the order of multiplication will affect the runtime (e.g., A1(A2A3)
may be faster to compute than (A1A2)A3). Describe (at a high level) an O(k3)-time algorithm that
finds the lowest-cost order to multiply the matrices.

14. You have a supervised learning dataset {X, y}. You fit a 1-hidden-layer neural network using stochastic
gradient descent to minimize the squared error, that makes predictions of the form ŷi = v>Wxi where
W and v are the parameters. You find that this gives the same training error as using the linear model
(ŷi = w>xi) that minimizes the squared error. You thought the accuracy might be higher for the
neural network. Explain why or why not this result is reasonable.

15. Is it possible that the neural network and training procedure from the previous question results in
a higher training error than the linear least squares model? Is it possible that it results in a lower
training error?

16. What are two reasons that convolutional neural networks overfit less than classic neural networks?

2 Calculation Questions

2.1 Minimizing Strictly-Convex Quadratic Functions

Solve for the minimizer w of the below strictly-convex quadratic functions:

1. f(w) = 1
2‖w − u‖Σ (projection of u onto the real space under the quadratic norm defined by Σ).

2. f(w) = 1
2σ2 ‖Xw−y‖2 +w>Λw (ridge regression with known variance and weighted L2-regularization).

3. f(w) = 1
2

∑n
i=1 vi(w

>xi − yi)2 + 1
2 (w − u)>Λ(w − u) (weighted least squares shrunk towards u).

Above we use our usual supervised learning notation. In addition, we assume that u is d× 1 and v is n× 1,
while Σ and Λ are symmetric positive-definite d × d matrices. You can use V as a diagonal matrix with v
along the diagonal (with the vi non-negative). Hint: positive-definite matrices are invertible.
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2.2 Norm Inequalities

Show that the following inequalities hold for vectors w ∈ Rd, u ∈ Rd, and X ∈ Rn×d:

1. ‖w‖∞ ≤ ‖w‖2 ≤ ‖w‖1 (relationship between decreasing p-norms)

2. 1
2‖w + u‖22 ≤ ‖w‖22 + ‖u‖22 (“not the triangle inequality” inequality)

3. ‖X‖2 ≤ ‖X‖F (matrix norm induced by L2-norm is smaller than Frobenius norm)

You should use the definitions of the norms, but should not use the known equivalences between these norms
(since these are the things you are trying to prove). Hint: for many of these it’s easier if you work with
squared values (and you may need to “complete the square”). Beyond non-negativity of norms, it may also

help to use the Cauchy-Schwartz inequality, to use that ‖x‖1 = x>sign(x), to use that
∑n
i=1

∑d
j=1 x

2
ij =∑min{n,d}

c=1 σc(X)2 (where σc(X) is singular value c of X), and to use that ‖X‖2 = σ1(X) (the top singular
value).

2.3 MAP Estimation

In 340, we showed that under the assumptions of a Gaussian likelihood and Gaussian prior,

yi ∼ N (w>xi, 1), wj ∼ N
(

0,
1

λ

)
,

that the MAP estimate is equivalent to solving the L2-regularized least squares problem

f(w) =
1

2

n∑
i=1

(w>xi − yi)2 +
λ

2

d∑
j=1

w2
j ,

in the “loss plus regularizer” framework. For each of the alternate assumptions below, write it in the “loss
plus regularizer” framework (simplifying as much as possible):

1. Laplace likelihood (with a scale of 1) for each training example and Gaussian prior with separate
variance σ2

j for each variable

yi ∼ L(w>xi, 1), wj ∼ N
(
0, σ2

j

)
.

2. Robust student-t likelihood and Gaussian prior centered at u.

p(yi|xi, w) =
1

√
νB
(

1
2 ,

ν
2

) (1 +
(w>xi − yi)2

ν

)− ν+1
2

, wj ∼ N
(
uj ,

1

λ

)
,

where u is d× 1, B is the “Beta” function, and the parameter ν is called the “degrees of freedom”.1

3. We use a Poisson-distributed likelihood (for the case where yi represents counts), and we use a uniform
prior for some constant κ,

p(yi|xi, w) =
exp(yiw>xi) exp(− exp(w>xi))

yi!
, p(wj) ∝ κ.

(This prior is “improper” since w ∈ Rd but it doesn’t integrate to 1 over this domain, but nevertheless
the posterior will be a proper distribution.)

For this question, you do not need to convert to matrix notation.

1This likelihood is more robust than the Laplace likelihood, but leads to a non-convex objective.
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2.4 Gradients and Hessian in Matrix Notation

Express the gradient ∇f(w) and Hessian ∇2f(w) of the following functions in matrix notation, simplifying
as much as possible:

1. Regularized and tilted Least Squares

f(w) =
1

2
‖Xw − y‖2 +

λ

2
‖w‖2 + w>u.

wher u is d× 1.

2. L2-regularized weighted least squares with non-Euclidean quadratic regularizaiton,

f(w) =
1

2

n∑
i=1

vi(w
>xi − yi)2 +

1

2

d∑
i=1

d∑
j=1

wiwjλij

where you can use V as a matrix with the vi along the diagonal and Λ as a positive-definite d × d
(symmetric) matrix with λij in position (i, j).

3. Squared hinge loss,

f(w) =
1

2

n∑
i=1

(
max{0, 1− yiw>xi}

)2
.

(Technically, the second derivative isn’t everywhere, so just give an expression that works for locations
where it is defined.)

Hint: You can use the results from the linear and quadratic gradients and Hessians notes to simplify the
derivations. You can use 0 to represent the zero vector or a matrix of zeroes and I to denote the identity
matrix. It will help to convert the second question to matrix notation first. For the last question you’ll need to
define new vectors to express the gradient and Hessian in matrix notation and you can use ◦ as element-wise
multiplication of vectors. As a sanity check, make sure that your results have the right dimension.

3 Coding Questions

If you have not previously used Julia, there is a list of useful Julia commands (and syntax) among the list
of notes on the course webpage.

3.1 Regularization and Hyper-Parameter Tuning

Download a1.zip from the course webpage, and start Julia (latest version) in a directory containing the
extracted files. If you run the script example nonLinear, it will:

1. Load a one-dimensional regression dataset.

2. Fit a least-squares linear regression model.

3. Report the test set error.

4. Draw a figure showing the training/testing data and what the model looks like.

This script uses the JLD package to load the data and the PyPlot package to make the plot. If you have
not previously used these packages, they can be installed using:2

2Last term, several people (eventually including myself) had a runtime problem on some system. This
seems to be fixed using the answer of K. Gkinis at this url: https://stackoverflow.com/questions/46399480/

julia-runtime-error-when-using-pyplot
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using Pkg

Pkg.add("JLD")

Pkg.add("PyPlot")

Unfortunately, this is not a great model of the data, and the figure shows that a linear model is probably
not suitable.

1. Write a function called leastSquaresRBFL2 that implements least squares using Gaussian radial basis
functions (RBFs) and L2-regularization.
You should start from the leastSquares function and use the same conventions: n refers to the number
of training examples, d refers to the number of features, X refers to the data matrix, y refers to the
targets, Z refers to the data matrix after the change of basis, and so on. Note that you’ll have to
add two additional input arguments (λ for the regularization parameter and σ for the Gaussian RBF
variance) compared to the leastSquares function. To make your code easier to understand/debug, you
may want to define a new function rbfBasis which computes the Gaussian RBFs for a given training
set, testing set, and σ value. Hand in your function and the plot generated with λ = 1 and σ = 1.

2. When dealing with larger datasets, an important issue is the dependence of the computational cost on
the number of training examples n and the number of features d. What is the cost in big-O notation of
training the model on n training examples with d features under (a) the linear basis, and (b) Gaussian
RBFs (for a fixed σ)? What is the cost of classifying t new examples under these two bases? Assume
that multiplication by an n by d matrix costs O(nd) and that solving a d by d linear system costs
O(d3).

3. Modify the script to split the training data into a “train” and “validation” set (you can use half the
examples for training and half for validation), and use these to select λ and σ. Hand in your modified
script and the plot you obtain with the best values of λ and σ.

4. There are reasons why this dataset is particularly well-suited to Gaussian RBFs are that (i) the period
of the oscillations stays constant and (ii) we have evenly sampled the training data across its domain.
If either of these assumptions are violated, the performance with our Gaussian RBFs might be much
worse. Consider a scenario where either (i) or (ii) is violated, and describe a way that you could address
this problem.

Note: the distancesSquared function in misc.jl is a vectorized way to quickly compute the squared Euclidean
distance between all pairs of rows in two matrices.

3.2 Multi-Class Logistic Regression

The script example multiClass.jl loads a multi-class classification dataset and fits a “one-vs-all” logistic
regression classifier, then reports the validation error and shows a plot of the data/classifier. The performance
on the validation set is ok, but could be much better. For example, this classifier never even predicts some
of the classes.

Using a one-vs-all classifier hurts performance because the classifiers are fit independently, so there is no
attempt to calibrate the columns of the matrix W . An alternative to this independent model is to use the
softmax probability,

p(yi|W,xi) =
exp(w>yix

i)∑k
c=1 exp(w>c x

i)
.

Here c is a possible label and wc is column c of W . Similarly, yi is the training label, wyi is column yi of
W . The loss function corresponding to the negative logarithm of the softmax probability is given by

f(W ) =

n∑
i=1

[
−w>yix

i + log

(
k∑

c′=1

exp(w>c′x
i)

)]
.
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Make a new function, softmaxClassifier, which fits W using the softmax loss from the previous section instead
of fitting k independent classifiers. Hand in the code and report the validation error.

Hint: you can use the derivativeCheck option when calling findMin to help you debug the gradient of the
softmax loss. Also, note that the findMin function treats the parameters as a vector (you may want to use
reshape when writing the softmax objective).

3.3 Robust and Brittle Regression

The script example outliers.jl loads a one-dimensional regression dataset that has a non-trivial number of
“outlier” data points. These points do not fit the general trend of the rest of the data, and pull the least
squares model away from the main cluster of points. One way to improve the performance in this setting is
simply to remove or downweight the outliers. However, in high-dimensions it may be difficult to determine
whether points are indeed outliers (or the errors might simply be heavy-tailed). In such cases, it is preferable
to replace the squared error with an error that is more robust to outliers.

1. Write a new function, leastAbsolutes(X,y), that adds a bias variable and fits a linear regression model
by minimizing the absolute error instead of the square error,

f(w) = ‖Xw − y‖1.

You should turn this into a linear program as shown in class, and you can solve this linear program
using the linprog function the MathProgBase package. Hand in the new function and the updated plot.

2. The previous question assumes that the “outliers” are points that we don’t want to model. But what
if we want good performance in the worst case across all examples (including the outliers)? In this
setting we may want to consider a “brittle” regression method that chases outliers in order to improve
the worst-case error. For example, consider minimizing the absolute error in the worst-case,

f(w) = ‖Xw − y‖∞.

This objective function is non-smooth because of the absolute value function as well as the max function.
Show how to formulate this non-smooth optimization problem as a linear program.

3. Write and hand in a function, leastMax, that fits this model using linprog (after adding a bias variable).
Hand in the new function and the updated plot.

To use the linprog function, you can use:

using MathProgBase, GLPKMathProgInterface

solution = linprog(c,A,d,b,lb,ub,GLPKSolverLP())

x = solution.sol

This requires installing the appropriate packages, and finds a vector x minimizing the function c>x subject
to d ≤ Ax ≤ b and lb ≤ x ≤ ub. You can set values of c to 0 for variables that don’t affect the cost function,
and you can set values in b/d/lb/ub (or the other variables) to appropriate infinite values if there are no
lower/upper bounds. The vectors c/d/b/lb/ub should all be lists.
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