CPSC 540: Machine Learning
Coordinate Optimization

Mark Schmidt
University of British Columbia
Winter 2019
Last Time: Structured Regularization

- We discussed total variation regularization,
 \[
 \arg\min_w f(w) + \sum_{(i,j) \in E} \lambda_{ij} (w_i - w_j)^2,
 \]
 if we want \(w_i\) values to be similar across nodes in a graph.

- We discussed structured sparsity,
 \[
 \arg\min_w f(w) + \sum_{g \in G} \lambda_g \|w_g\|,
 \]
 where overlapping groups can enforce patterns of sparsity.

- These regularizers aren’t “simple”, but several solvers exist.
 - Gradient descent if smooth, inexact proximal gradient for non-smooth.
UV^\top Parameterization for Matrix Problems

- We discussed **nuclear norm regularization** problems,
 \[
 \arg\min_{W \in \mathbb{R}^{d \times k}} f(W) + \lambda \|W\|_*,
 \]
 which gives a solution with a low rank representation $W = UV^\top$.

- But standard algorithms are **too costly** in many applications.
 - We often **can’t store** W.

- Many recent approaches **directly minimize under UV^\top parameterization,**
 \[
 \arg\min_{U \in \mathbb{R}^{d \times R}, V \in \mathbb{R}^{k \times R}} f(UV^\top) + \lambda_U \|U\|_F^2 + \lambda_V \|V\|_F^2,
 \]
 and just regularize U and V (here we’re using the **Frobenius matrix norm**).
UV^T Parameterization for Matrix Problems

- We used this approach in 340 for latent-factor models,

\[f(W, Z) = \frac{1}{2} \|ZW - X\|_F^2 + \frac{\lambda_1}{2} \|Z\|_F^2 + \frac{\lambda_2}{2} \|W\|_F^2. \]

- We can sometimes prove these non-convex re-formulation give a global solution.
 - Includes PCA.

- In other cases, people are working hard on finding assumptions where this is true.
 - These assumptions are typically unrealistically strong.
 - But it works well enough in practice that practitioners don’t seem to care.
Transductive Learning

- Our usual **supervised learning** framework:

\[
X = \begin{bmatrix}
0 & 0.7 & 0 & 0.3 & 0 & 0 \\
0.3 & 0.7 & 0 & 0.6 & 0 & 0.01 \\
0 & 0 & 0 & 0.8 & 0 & 0 \\
0.3 & 0.7 & 1.2 & 0 & 0.10 & 0.01 \\
\end{bmatrix}, \quad y = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}.
\]

- In **transductive learning**, we also have **unlabeled examples**,

\[
\bar{X} = \begin{bmatrix}
0.3 & 0 & 1.2 & 0.3 & 0.10 & 0.01 \\
0.6 & 0.7 & 0 & 0.3 & 0 & 0.01 \\
0 & 0.7 & 0 & 0.6 & 0 & 0 \\
0.3 & 0.7 & 0 & 0 & 0.20 & 0.01 \\
\end{bmatrix},
\]

and our goal is **only to label these particular examples**.

- We don’t worry about performance on other potential test examples.
Transductive Learning

- **Transductive learning** framework:
 1. We have \(n \) labeled examples \((x^i, y^i)\).
 2. We have \(t \) unlabeled examples \(\bar{x}^i\) that we want to label.

- This arises a lot:
 - Usually **getting unlabeled data** is easy but **getting labeled data** is hard \((t >> n)\).
 - Typically situation: small number of labeled and huge number of unlabeled.

- Sometimes classifying the data is an **intermediate step**:
 - Goal is to ultimately use labeled examples to do something else.
 - “I can label a small number of examples, if it helps labeling them all”.

- Sometimes it’s **not possible to obtain labels** for any \(x^i\).
 - Predicting gene functions is limited by what we can measure.
Transductive Learning vs. (Semi-)Supervised Learning

- Transductive learning is a special case **semi-supervised learning** (SSL).
 - Learning with labeled and unlabeled examples (we’ll come back to SSL later).

- But transductive SSL has an unusual measure of performance:
 - We don’t worry about “test error” (performance on all possible examples).
 - We only care about error for our “test” examples \tilde{x}_i.

- Any supervised or semi-supervised method can be used for transduction.
 - Fit model, then apply it to unlabeled examples.

- But in transductive learning, we don’t need a model that can predict on new \tilde{x}_i.
 - Some methods don’t fit a generic model for mapping from x_i to y_i.
Transductive Learning

- Why should unlabeled data tell us anything about labels?
- Usually, we assume that similar features → similar labels.
Transductive Learning

- Why should unlabeled data tell us anything about labels?
 - Usually, we assume that similar features → similar labels.
Digression: Transductive vs. Inductive SSL

- In **transductive** learning we don’t need to be able to predict on new examples.
- In **inductive** semi-supervised learning goal is to predict well on new examples.
Label Propagation (Graph-Based SSL)

- A weird idea: treat the \bar{y}^i as variables that we can optimize.
 - Now optimize the \bar{y}^i to encourage that “similar features have similar labels”.

Label propagation (“graph-based SSL”) method:
- Define weights w_{ij} saying how similar labeled example i is to unlabeled example j.
- Define weights \bar{w}_{ij} saying how similar unlabeled example i is to unlabeled example j.
- Find labels \bar{y}^i minimizing a measure of total variation on the label space:

$$
\arg\min_{\bar{y} \in \mathbb{R}^t} \sum_{i=1}^{n} \sum_{j=1}^{t} w_{ij} (y^i - \bar{y}^j)^2 + \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{ij} (\bar{y}^i - \bar{y}^j)^2.
$$

- **First term:** unlabeled example should get similar labels to “close” labeled examples.
 - “If x^i and \bar{x}^j are similar, then \bar{y}^j should be similar to y^i.”
- **Second term:** similar unlabeled examples should have similar labels.
 - “Label information ’propagates’ through the graph of \bar{y}^i values”.
Label Propagation (Graph-Based SSL)

- Label propagation is often surprisingly effective (even with few labeled examples).

- A common choice of the weights (many variations exist):
 - Find the k-nearest neighbours of each example (among labeled and unlabeled).
 - Set w_{ij} and \bar{w}_{ij} to 0 if nodes i and j aren't neighbours.
 - Otherwise, set these to some measure of similarity between features.
Label Propagation for YouTube Tagging and Bioinformatics

- Label propagation doesn’t necessarily need features.
 - Consider assigning “tags” to YouTube videos (e.g., “cat”).

- Construct a graph based on sequence of videos that people watch.
 - Give high weight if video ‘A’ is often followed/preceded by video ‘B’.
 - Use label propagation to tag all videos.

- Becoming popular in bioinformatics:
 - Label a subset of genes using manual experiments.
 - Find out which genes interact using more manual experiments.
 - Predict function/location/etc. of genes using label propagation.
Label Propagation Variations

- Many variations on label propagation exist:
 - Different ways to choose the graph/weights.
 - Multi-class versions,

 \[
 \arg\min_{\bar{Y} \in \mathbb{R}^{t \times k}} \sum_{i=1}^{n} \sum_{j=1}^{t} w_{ij} \| y^i - \bar{y}^j \|^2 + \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{ij} \| \bar{y}^i - \bar{y}^j \|^2.
 \]
 - Other measures of similarity/distance,

 \[
 \arg\min_{\bar{y} \in \mathbb{R}^{t}} \sum_{i=1}^{n} \sum_{j=1}^{t} f_{ij}(y^i, \bar{y}^j) + \sum_{i=1}^{t} \sum_{j=1}^{t} f_{ij}(\bar{y}^i, \bar{y}^j).
 \]
 - Variants where the given labels y^i are also variables (as they might be wrong).
 - Weight gives how much you trust original label.
 - Variants where the unlabeled \bar{y}^i are regularized towards a default value.
 - Can reflect that example is really far from any labeled examples.
Outline

1 Label Propagation

2 Coordinate Optimization
Beyond Gradient Descent

- For high-dimensional problems we often prefer gradient descent over Newton.
 - Gradient descent requires far more iterations.
 - But iteration cost is only linear in d.

- For very large datasets, even gradient descent iterations can be too slow.
 - If iteration cost is $O(nd)$, we may only be able to do a small number of iterations.

- Two common strategies for yielding even cheaper iterations:
 - Coordinate optimization (today).
 - Stochastic gradient (next time).
Coordinate Optimization

- Each iteration of coordinate optimization only updates on variable:

\[w_{jk}^{k+1} = w_{jk}^k - \alpha_k \nabla_{jk} f(w^k), \]

a gradient descent step on coordinate \(j_k \) (other \(w_j \) stay the same).

- This variation is called coordinate descent (many variations exist).
Why use Coordinate Descent?

- Theoretically, coordinate descent is a provably bad algorithm:
 - The convergence rate is slower than gradient descent.
 - The iteration cost can be similar to gradient descent.
 - Computing 1 partial derivative may have same cost as computing gradient.

- But it is widely-used in practice:
 - Nothing works better for certain problems.
 - Certain fields think it is the “ultimate” algorithm.

Renewed theoretical interest began with a paper by Nesterov in 2010:
- Showed global convergence rate for randomized coordinate selection.
- Coordinate descent is faster than gradient descent if iterations are d times cheaper.
Problems Suitable for Coordinate Optimization

- For what functions is coordinate descent d times faster than gradient descent?

- The simplest example is separable functions,
 \[f(w) = \sum_{j=1}^{d} f_j(w_j), \]

 Here f is the sum of an f_j applied to each w_j, like
 \[f(x) = \|w - v\|^2 = \sum_{j=1}^{d} (w_j - v_j)^2. \]

- Cost of gradient descent vs. coordinate descent:
 - Gradient descent costs $O(d)$ to compute each $f'(w_j^k)$.
 - Coordinate descent costs $O(1)$ to compute the one $f'_{jk}(w_{jk}^k)$.

- In fact, for separable functions you should only use coordinate optimization.
 - The variables w_j have “separate” effects, so can be minimized independently.
A more interesting example is pairwise-separable functions,

\[f(w) = \sum_{i=1}^{d} \sum_{j=1}^{d} f_{ij}(w_i, w_j), \]

which depend on a function of each pair of variables.

An example is label propagation.
- Also includes any quadratic function.

Cost of gradient descent vs. coordinate descent:
- Gradient descent costs \(O(d^2) \) to compute each \(f'_{ij} \).
- Coordinate descent costs \(O(d) \) to compute \(d \) values of \(f'_{ij} \).
Problems Suitable for Coordinate Optimization

Our label propagation example looked a bit more like this:

\[
f(w) = \sum_{j=1}^{d} f_j(w_j) + \sum_{(i,j) \in E} f_{ij}(w_i, w_j),
\]

where \(E \) is a set of \((i, j)\) pairs ("edges" in a graph).

- Adding a separable function doesn't change costs.
 - We could just combine the \(f_j \) with one \(f_{ij} \).

- Restricting \((i, j)\) to \(E \) makes gradient descent cheaper:
 - Now costs \(O(|E|) \) to compute gradient.
 - Coordinate descent could also cost \(O(|E|) \) if degree of \(j_k \) is \(O(|E|) \).

- Coordinate descent is still \(d \) times faster in expectation if you randomly pick \(j_k \).
 - Each \(f'_{ij} \) is needed with probability \(2/d \).
 - So expected cost of \(O(|E|/d) \) to compute one partial derivative.
Label Propagation with Coordinate Optimization

- For the binary label propagation objective,

\[
\arg\min_{\bar{y} \in \mathbb{R}^t} \sum_{i=1}^{n} \sum_{j=1}^{t} w_{ij} (y^i - \bar{y}^j)^2 + \frac{1}{2} \sum_{i=1}^{t} \sum_{j=1}^{t} \bar{w}_{ij} (\bar{y}^i - \bar{y}^j)^2,
\]

we can exactly optimize one coordinate given the others.

- Taking the derivative and setting it to 0 gives:

\[
\bar{y}^i = \frac{\sum_{j=1}^{n} w_{ij} y^j + \sum_{j \neq i} \bar{w}_{ij} \bar{y}^j}{\sum_{j=1}^{n} w_{ij} + \sum_{j \neq i} \bar{w}_{ij}},
\]

where I’m assuming \(\bar{w}_{ij} = \bar{w}_{ji} \) (otherwise, you replace both by their average).

- So coordinate optimization takes weighted average of neighbours.
Label Propagation with Coordinate Optimization

- Label propagation with coordinate optimization in action:
Label Propagation with Coordinate Optimization

- Label propagation with coordinate optimization in action:
Label Propagation with Coordinate Optimization

- Label propagation with coordinate optimization in action:
Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:
Label Propagation with Coordinate Optimization

- Label propagation with coordinate optimization in action:
Label Propagation with Coordinate Optimization

- Label propagation with coordinate optimization in action:
Analyzing Coordinate Descent

To analyze coordinate descent, we can write it as

$$w_{k+1} = w_k - \alpha_k e_j \nabla_{j_k} f(w^k),$$

where “elementary vector” e_j has a zero in every position except j,

$$e_j^\top = [0
0
1
0
0
0
0
0]$$

We usually assume that each $\nabla_j f$ is L-Lipschitz (“coordinate-wise Lipschitz”),

$$|\nabla_j f(w + \gamma e_j) - \nabla_j f(w)| \leq L |\gamma|,$$

which for C^2 functions is equivalent to $|\nabla^2_{jj} f(w)| \leq L$ for all i.

(diagonals of Hessian are bounded)

This is not a stronger assumption:

- If the gradient is L-Lipschitz then it’s also coordinate-wise L-Lipschitz.
Convergence Rate of Coordinate Optimization

- **Coordinate-wise Lipschitz** assumption implies a coordinate-wise descent lemma,

\[f(w^{k+1}) \leq f(w^k) + \nabla_j f(w^k)(w^{k+1} - w^k)_j + \frac{L}{2} (w^{k+1} - w^k)_j^2, \]

for any \(w^{k+1} \) and \(w^k \) that only differ in coordinate \(j \).

- With \(\alpha_k = 1/L \) (for simplicity), plugging in \((w^{k+1} - w^k) = -(1/L)e_j \nabla_j f(w^k) \) gives

\[f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} |\nabla_j f(w^k)|^2, \]

a progress bound based on only updating coordinate \(j_k \).

- If we did optimal update (as in label propagation), this bound would still hold.
 - Optimal update decreases \(f \) by at least as much as any other update.
Convergence Rate of Randomized Coordinate Optimization

- Our bound for updating coordinate j_k is

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} |∇_{j_k} f(w^k)|^2,$$

so progress depends on which j_k that we choose.

- Let’s consider expected progress with random selection of j_k,

$$\mathbb{E}[f(w^{k+1})] \leq \mathbb{E} \left[f(w^k) - \frac{1}{2L} |∇_{j_k} f(w^k)|^2 \right]$$

(expectation wrt j_k given w^k)

$$= \mathbb{E}[f(w^k)] - \frac{1}{2L} \mathbb{E}[|∇_{j_k} f(w^k)|^2]$$

(linearity of expectation)

$$= f(w^k) - \frac{1}{2L} \sum_{j=1}^{d} p(j_k = j) |∇_j f(w^k)|^2$$

(definition of expectation)
Convergence Rate of Randomized Coordinate Optimization

- The bound from the previous slide is

\[E[f(w^{k+1})] \leq f(w^k) - \frac{1}{2L} \sum_{j=1}^{d} p(j_k = j) \| \nabla_j f(w^k) \|^2. \]

- Let’s choose \(j_k \) uniformly in this bound, \(p(j_k = j) = 1/d \).

\[
\mathbb{E}[f(w^{k+1})] \leq f(w^k) - \frac{1}{2L} \sum_{j=1}^{d} \frac{1}{d} \| \nabla_j f(w^k) \|^2 \\
= f(w^k) - \frac{1}{2dL} \sum_{j=1}^{d} \| \nabla_j f(w^k) \|^2 \\
= f(w^k) - \frac{1}{2dL} \| \nabla f(w^k) \|^2.
\]
Convergence Rate of Randomized Coordinate Optimization

- Our guaranteed progress bound for randomized coordinate optimization,
 \[
 \mathbb{E}[f(w^{k+1})] \leq f(w^k) - \frac{1}{2dL} \|\nabla f(w^k)\|^2.
 \]

- If we use strongly convexity or PL and recurse carefully (see bonus) we get
 \[
 \mathbb{E}[f(w^k)] - f^* \leq \left(1 - \frac{\mu}{dL}\right)^k [f(w^0) - f^*].
 \]

 which means we expect to need \(O\left(\frac{L}{\mu} \log(1/\epsilon)\right)\) iterations.

- Remember that gradient descent needs \(O\left(\frac{L}{\mu} \log(1/\epsilon)\right)\) iterations.

- So coordinate optimization needs \(d\)-times as many iterations?
Randomized Coordinate Optimization vs. Gradient Descent

- If coordinate descent step are d-times cheaper then both algorithms need

\[O\left(\frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right)\right), \]

in terms of gradient descent iteration costs.

- So why prefer coordinate optimization?

- The Lipschitz constants L are different.
 - Gradient descent uses L_f and coordinate optimization uses L_c.
 - L_c is maximum gradient changes if you change one coordinate.
 - L_f is maximum gradient changes if you change all coordinates.

- Since $L_c \leq L_f$, coordinate optimization is faster.
 - By a factor that could be as large as d.
 - The gain is because coordinate descent allows bigger step-sizes.
Summary

- **Transductive learning:**
 - Given labeled and unlabeled examples, label the unlabeled examples.

- **Label propagation:**
 - Transductive learning method minimizing variation in the label space.

- **Coordinate optimization:** updating one variable at a time.
 - Efficient if updates are d-times cheaper than gradient descent.

- Next time: the most important algorithm in machine learning.
Applying Expected Bound Recursively

- **Our guaranteed progress bound for randomized coordinate optimization,**
 \[
 \mathbb{E}[f(w^{k+1})] \leq f(w^k) - \frac{1}{2dL} \|\nabla f(w^k)\|^2.
 \]

- If we subtract \(f^*\) and use **strong-convexity** or **PL** (as before),
 \[
 \mathbb{E}[f(w^{k+1})] - f^* \leq \left(1 - \frac{\mu}{dL}\right) [f(w^k) - f^*].
 \]

- By recursing we get **linear convergence rate,**
 \[
 \mathbb{E} [\mathbb{E}[f(w^{k+1})]] - f^* \leq \mathbb{E} \left[\left(1 - \frac{\mu}{dL}\right) [f(w^k) - f^*]\right] \quad \text{(expectation wrt \(j_{k-1} \))}
 \]
 \[
 \mathbb{E}[f(w^{k+1})] - f(w^*) \leq \left(1 - \frac{\mu}{dL}\right) [\mathbb{E}[f(w^k)] - f^*] \quad \text{(iterated expectations)}
 \]
 \[
 \leq \left(1 - \frac{\mu}{dL}\right)^2 [f(w^{k-1}) - f^*]
 \]

- You keep alternating between taking an expectation back in time and recursing.