
Label Propagation Coordinate Optimization

CPSC 540: Machine Learning
Coordinate Optimization

Mark Schmidt

University of British Columbia

Winter 2019

Label Propagation Coordinate Optimization

Last Time: Structured Regularization

We discussed total variation regularization,

argmin
w

f(w) +
∑

(i,j)∈E

λij(wi − wj)2,

if we want wi values to be similar across nodes in a graph.

We discussed structured sparsity,

argmin
w

f(w) +
∑
g∈G

λg‖wg‖,

where overlapping groups can enforce patterns of sparsity.

These regularizers aren’t “simple”, but several solvers exist.
Gradient descent if smooth, inexact proximal gradient for non-smooth.

Label Propagation Coordinate Optimization

UV > Parameterization for Matrix Problems

We discussed nuclear norm regularization problems,

argmin
W∈Rd×k

f(W) + λ‖W‖∗,

which gives a solution with a low rank representation W = UV >.

But standard algorithms are too costly in many applications.

We often can’t store W .

Many recent approaches directly minimize under UV > parameterization,

argmin
U∈Rd×R,V ∈Rk×R

f(UV >) + λU‖U‖2F + λV ‖V ‖2F ,

and just regularize U and V (here we’re using the Frobenius matrix norm).

Label Propagation Coordinate Optimization

UV > Parameterization for Matrix Problems

We used this approach in 340 for latent-factor models,

f(W,Z) =
1

2
‖ZW −X‖2F +

λ1

2
‖Z‖2F +

λ2

2
‖W‖2F .

We can sometimes prove these non-convex re-formulation give a global solution.

Includes PCA.

In other cases, people are working hard on finding assumptions where this is true.

These assumptions are typically unrealistically strong.
But it works well enough in practice that practitioners don’t seem to care.

Label Propagation Coordinate Optimization

Transductive Learning

Our usual supervised learning framework:

X =

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01
0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

 , y =

1
1
0
1

 .
In transductive learning, we also have unlabeled examples,

X̄ =

0.3 0 1.2 0.3 0.10 0.01
0.6 0.7 0 0.3 0 0.01
0 0.7 0 0.6 0 0

0.3 0.7 0 0 0.20 0.01

 ,
and our goal is only to label these particular examples.

We don’t worry about performance on other potential test examples.

Label Propagation Coordinate Optimization

Transductive Learning

Transductive learning framework:
1 We have n labeled examples (xi, yi).
2 We have t unabeled examples x̄i that we want to label.

This arises a lot:

Usually getting unlabeled data is easy but getting labeled data is hard (t >> n).
Typically situation: small number of labeled and huge number of unlabeled.

Sometimes classifying the data is an intermediate step:

Goal is to ulimately use labeled examples to do something else.
“I can label a small number of examples, if it helps labeling them all”.

Sometimes it’s not possible to obtain labels for any xi.

Predicting gene functions is limited by what we can measure.

Label Propagation Coordinate Optimization

Transductive Learning vs. (Semi-)Supervised Learning

Transductive learning is a special case semi-supervised learning (SSL).

Learning with labeled and unlabeled examples (we’ll come back to SSL later).

But transductive SSL has an unusual measure of performance:

We don’t worry about “test error” (performance on all possible examples).
We only care about error for our “test” examples x̄i.

Any supervised or semi-supervised method can be used for transduction.

Fit model, then apply it to unlabeled examples.

But in transductive learning, we don’t need a model that can predict on new x̃i.

Some methods don’t fit a generic model for mapping from xi to yi.

Label Propagation Coordinate Optimization

Transductive Learning
Why should unlabeled data tell us anything about labels?

Usually, we assume that similar features → similar labels.

Label Propagation Coordinate Optimization

Transductive Learning
Why should unlabeled data tell us anything about labels?

Usually, we assume that similar features → similar labels.

Label Propagation Coordinate Optimization

Digression: Transductive vs. Inductive SSL
In transductive learning we don’t need to be able to predict on new examples.

In inductive semi-supervised learning goal is to predict well on new examples.

Label Propagation Coordinate Optimization

Label Propagation (Graph-Based SSL)

A weird idea: treat the ȳi as variables that we can optimize.

Now optimize the ȳi to encourage that “similar features have similar labels”.

Label propagation (“graph-based SSL”) method:

Define weights wij saying how similar labeled example i is to unlabled example j.
Define weights w̄ij saying how similar unlabeled example i is to unlabeled example j.
Find labels ȳi minimizing a measure of total variation on the label space:

argmin
ȳ∈Rt

n∑
i=1

t∑
j=1

wij(y
i − ȳj)2 +

1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2.

First term: unlabeled example should get similar labels to “close” labeled examples.

“If xi and x̄j are similar, then ȳj should be similar to yi.”

Second term: similar unlabeled examples should have similar labels.

“Label information ’propagates’ through the graph of ȳi values”.

Label Propagation Coordinate Optimization

Label Propagation (Graph-Based SSL)

Label propagation is often surprisingly effective (even with few labeled examples).

A common choice of the weights (many variations exist):

Find the k-nearest neighbours of each example (among labeled and unlabeled).
Set wij and w̄ij to 0 if nodes i and j aren’t neighbours.
Otherwise, set these to some measure of similarity between features.

http://www.ee.columbia.edu/ln/dvmm/pubs/publications.html

http://www.ee.columbia.edu/ln/dvmm/pubs/publications.html

Label Propagation Coordinate Optimization

Label Propagation for YouTube Tagging and Bioinformatics

Label propagation doesn’t necessarily need features.

Consider assigning “tags” to YouTube vidoes (e.g., “cat”).

www.youtube.com

Construct a graph based on sequence of videos that people watch.

Give high weight if video ‘A’ is often followed/preceded by video ‘B’.

Use label propagation to tag all videos.

Becoming popular in bioinformatics:

Label a subset of genes using manual experiments.
Find out which genes interact using more manual experiments.
Predict function/location/etc. of genes using label propagation.

www.youtube.com

Label Propagation Coordinate Optimization

Label Propagation Variations

Many variations on label propagation exist:

Different ways to choose the graph/weights.
Multi-class versions,

argmin
Ȳ ∈Rt×k

n∑
i=1

t∑
j=1

wij‖yi − ȳj‖2 +
1

2

t∑
i=1

t∑
j=1

w̄ij‖ȳi − ȳj‖2.

Other measures of similarity/distance,

argmin
ȳ∈Rt

n∑
i=1

t∑
j=1

fij(y
i, ȳj) +

t∑
i=1

t∑
j=1

fij(ȳ
i, ȳj).

Variants where the given labels yi are also variables (as they might be wrong).

Weight gives how much you trust original label.

Variants where the unlabeled ȳi are regularized towards a default value.

Can reflect that example is really far from any labeled examples.

Label Propagation Coordinate Optimization

Outline

1 Label Propagation

2 Coordinate Optimization

Label Propagation Coordinate Optimization

Beyond Gradient Descent

For high-dimensional problems we often prefer gradient descent over Newton.

Gradient descent requires far more iterations.
But iteration cost is only linear in d.

For very large datasets, even gradient descent iterations can be too slow.

If iteration cost is O(nd), we may only be able to do a small number of iterations.

Two common strategies for yielding even cheaper iterations:

Coordinate optimization (today).
Stochastic gradient (next time).

Label Propagation Coordinate Optimization

Coordinate Optimization

Each iteration of coordinate optimization only updates on variable:

For example, on iteration k we select a variable jk and set

wk+1
jk

= wkjk − αk∇jkf(wk),

a gradient descent step on coordinate jk (other wj stay the same).
This variation is called coordinate descent (many variations exist).

Label Propagation Coordinate Optimization

Why use Coordinate Descent?

Theoretically, coordinate descent is a provably bad algorithm:

The convergence rate is slower than gradient descent.
The iteration cost can be similar to gradient descent.

Computing 1 partial derivative may have same cost as computing gradient.

But it is widely-used in practice:

Nothing works better for certain problems.
Certain fields think it is the “ultimate” algorithm.

???

Renewed theoretical interest began with a paper by Nesterov in 2010:

Showed global convergence rate for randomized coordinate selection.
Coordinate descent is faster than gradient descent if iterations are d times cheaper.

Label Propagation Coordinate Optimization

Problems Suitable for Coordinate Optimization

For what functions is coordinate descent d times faster than gradient descent?

The simplest example is separable functions,

f(w) =

d∑
j=1

fj(wj),

Here f is the sum of an fj applied to each wj , like

f(x) = ‖w − v‖2 =
∑d

j=1(wj − vj)2.

Cost of gradient descent vs. coordinate descent:
Gradient descent costs O(d) to compute each f ′(wk

j).

Coordinate descent costs O(1) to compute the one f ′jk(wk
jk

).

In fact, for separable functions you should only use coordinate optimization.
The variables wj have “separate” effects, so can be minimized independently.

Label Propagation Coordinate Optimization

Problems Suitable for Coordinate Optimization

A more interesting example is pairwise-separable functions,

f(w) =

d∑
i=1

d∑
j=1

fij(wi, wj),

which depend on a function of each pair of variables.

An example is label propagation.

Also includes any quadratic function.

Cost of gradient descent vs. coordinate descent:

Gradient descent costs O(d2) to compute each f ′ij .
Coordinate descent costs O(d) to compute d values of f ′ij .

Label Propagation Coordinate Optimization

Problems Suitable for Coordinate Optimization
Our label propagation example looked a bit more like this:

f(w) =

d∑
j=1

fj(wj) +
∑

(i,j)∈E

fij(wi, wj),

where E is a set of (i, j) pairs (“edges” in a graph).

Adding a separable function doesn’t change costs.
We could just combine the fj with one fij .

Restricting (i, j) to E makes gradient descent cheaper:
Now costs O(|E|) to compute gradient.
Coordinate descent could also cost O(|E|) if degree of jk is O(|E|).

Coordinate descent is still d times faster in expectation if you randomly pick jk.
Each f ′ij is needed with probability 2/d.
So expected cost of O(|E|/d) to compute one partial derivative.

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

For the binary label propagation objective,

argmin
ȳ∈Rt

n∑
i=1

t∑
j=1

wij(y
i − ȳj)2 +

1

2

t∑
i=1

t∑
j=1

w̄ij(ȳ
i − ȳj)2,

we can exactly optimize one coordinate given the others.

Taking the derivative and setting it to 0 gives:

ȳi =

∑n
j=1wijy

j +
∑

j 6=i w̄ij ȳ
j∑n

j=1wij +
∑

j 6=i w̄ij
,

where I’m assuming w̄ij = w̄ji (otherwise, you replace both by their average).

So coordinate optimization takes weighted average of neighbours.

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:

Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

Label propagation with coordinate optimization in action:

Label Propagation Coordinate Optimization

Analyzing Coordinate Descent

To analyze coordinate descent, we can write it as

wk+1 = wk − αkejk∇jkf(wk),

where “elementary vector” ej has a zero in every position except j,

e>3 =
[
0 0 1 0 0 0 0

]
We usually assume that each ∇jf is L-Lipshitz (“coordinate-wise Lipschitz”),

|∇jf(w + γej)−∇jf(w)| ≤ L|γ|,

which for C2 functions is equivalent to |∇2
jjf(w)| ≤ L for all i.

(diagonals of Hessian are bounded)

This is not a stronger assumption:

If the gradient is L-Lipschitz then it’s also coordiante-wise L-Lipschitz.

Label Propagation Coordinate Optimization

Convergence Rate of Coordinate Optimization

Coordinate-wise Lipschitz assumption implies a coordinate-wise descent lemma,

f(wk+1) ≤ f(wk) +∇jf(wk)(wk+1 − wk)j +
L

2
(wk+1 − wk)2

j ,

for any wk+1 and wk that only differ in coordinate j.

With αk = 1/L (for simplicity), plugging in (wk+1 − wk) = −(1/L)ejk∇jkf(wk)
gives

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2,

a progress bound based on only updating coordinate jk.

If we did optimal update (as in label propagation), this bound would still hold.

Optimal update decreases f by at least as much as any other update.

Label Propagation Coordinate Optimization

Convergence Rate of Randomized Coordinate Optimization

Our bound for updating coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2,

so progress depends on which jk that we choose.

Let’s consider expected progress with random selection of jk,

E[f(wk+1)] ≤ E
[
f(wk)− 1

2L
|∇jkf(wk)|2

]
(expectation wrt jk given wk)

= E[f(wk)]− 1

2L
E[|∇jkf(wk)|2] (linearity of expectation)

= f(wk)− 1

2L

d∑
j=1

p(jk = j)|∇jf(wk)|2 (definition of expectation)

Label Propagation Coordinate Optimization

Convergence Rate of Randomized Coordinate Optimization

The bound from the previous slide is

E[f(wk+1)] ≤ f(wk)− 1

2L

d∑
j=1

p(jk = j)|∇jf(wk)|2.

Let’s choose jk uniformly in this bound, p(jk = j) = 1/d.

E[f(wk+1)] ≤ f(wk)− 1

2L

d∑
j=1

1

d
|∇jf(wk)|2

= f(wk)− 1

2dL

d∑
j=1

|∇jf(wk)|2

= f(wk)− 1

2dL
‖∇f(wk)‖2.

Label Propagation Coordinate Optimization

Convergence Rate of Randomized Coordinate Optimization

Our guaranteed progress bound for randomized coordinate optimization,

E[f(wk+1))] ≤ f(wk)− 1

2dL
‖∇f(wk)‖2.

If we use strongly convexity or PL and recurse carefully (see bonus) we get

E[f(wk)]− f∗ ≤
(

1− µ

dL

)k
[f(w0)− f∗].

which means we expect to need O
(
dLµ log(1/ε)

)
iterations.

Remember that gradient descent needs O
(
L
µ log(1/ε)

)
iterations.

So coordinate optimization needs d-times as many iterations?

Label Propagation Coordinate Optimization

Randomized Coordinate Optimization vs. Gradient Descent

If coordinate descent step are d-times cheaper then both algorithms need

O

(
L

µ
log(1/ε)

)
,

in terms of gradient descent iteration costs.

So why prefer coordinate optimization?

The Lipschitz constants L are different.
Gradient descent uses Lf and coordinate optimization uses Lc.
Lc is maximum gradient changes if you change one coordinate.
Lf is maximum gradient changes if you change all coordinates.

Since Lc ≤ Lf , coordinate optimization is faster.
By a factor that could be as large as d.
The gain is because coordinate descent allows bigger step-sizes.

Label Propagation Coordinate Optimization

Summary

Transductive learning:

Given labeled and unlabeled examples, label the unlabeled examples.

Label propagation:

Transductive learning method minimizing variation in the label space.

Coordinate optimization: updating one variable at a time.

Efficient if updates are d-times cheaper than gradient descent.

Next time: the most important algorithm in machine learning.

Label Propagation Coordinate Optimization

Applying Expected Bound Recursively

Our guaranteed progress bound for randomized coordinate optimization,

E[f(wk+1))] ≤ f(wk)− 1

2dL
‖∇f(wk)‖2.

If we subtract f∗ and use strong-convexity or PL (as before),

E[f(wk+1)]− f∗ ≤
(

1− µ

dL

)
[f(wk)− f∗].

By recursing we get linear convergence rate,

E[E[f(wk+1)]]− f∗ ≤ E
[(

1− µ

dL

)
[f(wk)− f∗]

]
(expectation wrt jk−1)

E[f(wk+1)]− f(w∗) ≤
(

1− µ

dL

)
[E[f(wk)]− f∗] (iterated expectations)

≤
(

1− µ

dL

)2
[f(wk−1)− f∗]

You keep alternating between taking an expectation back in time and recursing.

	Label Propagation
	Coordinate Optimization

