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Last Time: Group L1-Regularization

@ Last time we discussed group L1-regularization:

argmin f(w) + A Z lwgl|2-

d
weR geG

@ Encourages sparsity in terms of groups g.
o For example, if G = {{1,2},{3,4}} then we have:

S llwglle = \fwd + w3+ y/wd + i

geG

Variables 1 and x5 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

@ Relevant for feature selection when each feature affects multiple parameters.

@ It's important that we are using non-squared L2-norm.
e Non-squared L2-norm is non-differentiable at zero.
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L2 and L1 Regularization Paths

@ The regularization path is the set of w values as A varies,
w = argmin f(w) 4+ M (w),
weR

@ Squared L2-regularization path vs. L1-regularization path:
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o With r(w) = ||w||?, each w; gets close to 0 but is never exactly 0.
e With r(w) = ||wl|1, each w; gets set to exactly zero for a finite .
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L22 and L2 Regularization Paths

@ The regularization path is the set of w values as A varies,

w = argmin f(w) 4+ M (w),

weR
@ Squared L2-regularization path vs. non-squared path:
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o With r(w) = ||w||?, each w; gets close to 0 but is never exactly 0.
e With r(w) = ||wl|2, all w; get set to exactly zero for same finite A.
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Group L1-Regularization Paths

@ The regularization path for group L1-regularizaiton for different p values:
(p=2) path

(p=1) path
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@ With p =1 there is no grouping effect.

@ With p = 2 the groups become zero at the same time.
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Group L1-Regularization Paths

@ The regularization path for group L1-regularizaiton for different p values:
{p=inf) path

(p=2) path
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e With p =1 there is no grouping effect.

@ With p = 2 the groups become zero at the same time.
@ With p = oo the groups converge to same magnitude which then goes to 0.



Last Time: Proximal-Gradient

@ We discussed proximal-gradient methods for problems of the form

argmin f(w) +r(w),
WERE S~~~ N~
smooth  simple

where specifically f € C! and r is convex.
@ These methods use the iteration

whts = wk — 0,V (wh) (gradient step)
1

w1 € argmin {Hv — whte 12 + akr(v)} (proximal step)
vER 2

@ Examples of simple functions include:
o L1-regularization.
o Group L1-regularization.

e Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for group L1-regularization,

. 1
argmin §||v—w||2+ak>\z [oll2 ¢
veRd geG

applies a soft-threshold group-wise,
Wy
[[wgll2

Wy max{0, [|wg|l2 — carA}.
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@ So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
@ The proximal operator for group L1-regularization,
)1 2
argmin §||v—w|] —i—ak)\z lvll2 ¢,
vERY geG

applies a soft-threshold group-wise,

Wy

Wy max{0, ||wg|l2 — axA}.

[[ewg 12

Wy

@ So we can solve group L1-regularization problems as fast as smooth problems.
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Proximal-Gradient for Group L1-Regularization
@ The proximal operator for group L1-regularization,
)1 2
argmin §||v—w|] —i—ak)\z lvll2 ¢,
vERY geG

applies a soft-threshold group-wise,

Wy

Wy max{0, ||wg|l2 — axA}.

[[ewg 12
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@ So we can solve group L1-regularization problems as fast as smooth problems.
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Structured Reguarization

Structured Regularization

@ There are many other patterns that regularization can encourage.
o We'll call this structured regularization.

@ The three most common cases:
o Total-variation regularization encourages slow/sparse changes in w.
o Nuclear-norm regularization encourages sparsity in rank of matrices.
e Structured sparsity encourages sparsity in variable patterns.
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Total-Variation Regularization
e 1D total-variation regularization (“fused LASSO") takes the form

d—1
argmin f(w) + )\Z lwj — wjq1].
weR =1

@ Encourages consecutive parameters to have same value.
@ Often used for time-series or sequence data.
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http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here we're trying to estimate de-noised w; of ' at each time z'.


http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html
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Total-Variation Regularization

@ More generally, we could penalizes differences on general graph between variables.

@ An example is social regularization in recommeder systems:
e Penalizing the difference between your parameters and your friends’ parameters.

argmin f(W) 4+ A Z l|w; — w;l?.
WeRdx* (4,5) EFriends

o Typically use L2-regularization (we aren’t aiming for identical parameters).
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http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html


http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html
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Total-Variation Regularization

e Consider applying latent factor models (from 340) on image patches.
e Similar to learning first layer of convolutional neural networks.

@ Latent-factors discovered on patches with/without TV regularization.
e Encouraging neighbours in a spatial grid to have similar filters.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

@ Similar to “cortical columns” theory of visual cortex.


http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Total-Variation Regularization

@ Another application is inceptionism.

optimize
with prior

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

e Find image x that causes strongest activation of class ¢ in neural network.

argmin f(v] AW (W=D op(WPg) 4 A Z (z; — x5)%,
r (z4,2;)€Eneigh.

o Total variation based on neighbours in image (needed to get interpretable images).


https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Structured Reguarization

Nuclear Norm Regularization

o With matrix parameters an alternative is nuclear norm regularization,

argmin f(W) + \|W ]|,
W eRdxk

where ||W ||, is the sum of singular values.

@ “Ll-regularization of the singular values”.
e Encourages parameter matrix to have low-rank.

o Consider a multi-class logistic regression with a huge number of features/labels,

|
W= |w wy --- wi| = UVT, with U= |u; us|,V = |v1 v
| | | |

U and V can be much smaller, and XW = (XU)V " can be computed faster:
o O(ndk) cost reduced to O(ndr + nkr) for rank r, much faster if r < min{d, k}.

)
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Structured Sparsity

@ Structured sparsity is variation on group L1-regularization,

argmin f(w) + Z Agllwgllp,

d
weR geg

where now the groups g can overlap.

@ Why is this interesting?
o Consider the case of two groups, {1} and {1, 2},

argmin f(w) + A |wi| + Aoy /w? + w3.

weRd

This encourages 3 non-zero “patterns”: {}, {wa}, {w1, w2}
@ "“You can only take w; if you've already taken ws."

If wy # 0, the third term is smooth and doesn't encourage ws to be zero.
If wy # 0, we still pay a Ay penalty for making w; non-zero.
We can use this type of “ordering” to impose patterns on our sparsity.
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Structured Sparsity

o Consider a problem with matrix parameters W.

@ We want W to be “band-limited”:

o Non-zeroes only on the main diagonals.

w11 Wi2

W21 W22

w31 W32

W = 0 W42
0 0
0 0
0 0

w13
w23
w33
W43
Ws3
0
0

0
Wa4
W34
W44
W54

We4
0

e This makes many computations much faster.
@ We can enforce this with structured sparsity:

e Only allow non-zeroes on £1 diagonal if you are non-zero on main diagonal.
e Only allow non-zeroes on £2 diagonal if you are non-zero on £1 diagonal.
e Only allow non-zeroes on +3 diagonal if you are non-zero on +2 diagonal.

o

W35
Wy5
Ws5
Wes
wrs

o o oo

Ws7
We7

w7 |

Non-Smooth Optimization Wrap-Up
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Structured Sparsity

o Consider a linear model with higher-order terms,

9" = wo + wi1z] + wazy + waxy + wiar]xh + Wik Ty + WasTHTh + W123T THTS.
e If d is non-trivial, then the number of higher-order terms is too large.

@ We can use structured sparsity to enforce a hierarchy.
e We only allow wis # 0 if wy # 0 and we # 0.

@ You can enforce this using the groups {{wi2}, {w1, w12}, {w2, wi2}}:

argmin f(w) + Ai2|wiz| + A\ \/w% +w?, + )\2\/’[}.}% + wi,.
w
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Structured Sparsity

@ We can use structured sparsity to enforce a hierarchy.

e We only allow wis # 0 if w1 # 0 and we # 0.
o We onIy allow w123 75 0if w12 7é 0, w13 7é O, and w23 7é 0.
e We only allow wia34 # 0 if all threeway interactions are present.

Fig 9: Power set of the set {1,. .., 4} in blue, an anthorized set of selected subsets.
In red, an example of a group used within the norm (a subset and all of its
descendants in the DAG).

http://arxiv.org/pdf/1109.2397v2.pdf
e For certain bases, you can work with the full hierarchy in polynomial time.
o Otherwise, a heuristic is to gradually “grow” the set of allowed bases.


http://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
o Possible non-zeroes are given by Nyegg© for all G' C G.
e Equivalently, the set of zeroes is any Ugycgrg.
o Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1, 2}.
o Eg., {2}is {1,2} n{1}° = {1,2} N {2}.
@ Example is enforcing convex non-zero patterns:

11T 11T
ENTTT) (1T
-:EDI:EE-W
T (e
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Fig 3: (Left) The set of blue groups to penalize in order to select contiguous
patterns in a sequence. (Right) In red, an example of such a nonzero pattern
with its corresponding zero pattern (hatched area).

https://arxiv.org/pdf/1109.2397v2.pdf


https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
o Possible non-zeroes are given by Nyecgr g€ for all G' C G.
o Equivalently, the set of zeroes is any U,cg/g.
o Our first example used {1} and {1, 2} so possible non-zeroes {}, {2}, or {1,2}.
o Eg., {2}is {1,2} n{1}°={1,2} n{2}.
@ Example is enforcing convex non-zero patterns:
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https://arxiv.org/pdf/1109.2397v2.pdf


https://arxiv.org/pdf/1109.2397v2.pdf
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Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups.
e Possible non-zeroes are given by ﬁgeg g¢ forall G’ C G.
o Equivalently, the set of zeroes is any Ugegrg

o Our first example used {1} and {1,2} so p055|b|e non-zeroes {}, {2}, or {1,2}.
o Eg., {2}is {1,2} n{1}¢ = {1,2} n {2}.

@ Example is enforcing convex non-zero patterns:
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https://arxiv.org/pdf/1109.2397v2.pdf

o Left-to-right: data, NMF, sparse PCA, and PCA with structured sparsity.


https://arxiv.org/pdf/1109.2397v2.pdf

Structured Reguarization

Non-Smooth Optimization Wrap-Up

Structured Sparsity

@ Structured sparsity encourages zeroes to be any intersections of groups
o Possible non-zeroes are given by Nyecgr g€ for all G' C G.
o Equivalently, the set of zeroes is any U,cg/g.
o Our first example used {1} and {1,2} so possible non-zeroes {}, {2}, or {1,2}
e Eg, {2}is{1,2}n{1}*={1,2} n{2}.

@ Example is enforcing convex non-zero patterns:
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Figure 4. Example of a topic hierarchy estimated from 1714 NIPS
proceedings papers (from 1988 through 1999). Each node corre
sponds to a topic whos t important words are displayed.  Figure 3. Leamed dictionary with tree structure of depth 4. The
Single characters such are part of the vocabulary and  rootof the tree is in the middle of the figure. The branching factors
often appear in NIPS p ind their place in the hierarchy is  are pi = 10, py = 2, p = 2. The dictionary is learned on
semantically relevant to children topics. 50,000 pmm of size 16 x 16 pixels.

www.di.ens.fr/~fbach/icm12010a.pdf

@ There is also a variant (“over-LASSO") that considers unions of groups.


www.di.ens.fr/~fbach/icml2010a.pdf
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Outline

© Non-Smooth Optimization Wrap-Up
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Structured Reguarization

Structured Regularization

@ The three most common cases of structured regularization:
o Total-variation regularization encourages slow/sparse changes in w.
o Nuclear-norm regularization encourages sparsity in rank of matrices.
e Structure sparsity encourages sparsity in variable patterns.

@ Unfortunately, these regularizers are not “simple”.

@ But we can efficiently approximate the proximal operator in all these cases.
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Inexact Proximal-Gradient Methods

@ For total-variation and overlapping group-L1, we can use Dykstra’s algorithm
o lIterative method that computes proximal operator for sum of “simple” functions.

@ For nuclear-norm regularization, many method approximate top singular vectors.
e Krylov subspace methods, randomized SVD approximations.

@ Inexact proximal-gradient methods:

e Proximal-gradient methods with an approximation to the proximal operator.
o If approximation error decreases fast enough, same convergence rate:

o To get O(p") rate, error must be in o(p").
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Alternating Direction Method of Multipliers
ADMM is also popular for structured sparsity problems

Alternating direction method of multipliers (ADMM) solves:

AwIEiBrzl):c f(w) T T(U> ’

Alternates between proximal operators with respect to f and r.
o We usually introduce new variables and constraints to convert to this form.

We can apply ADMM to L1-regularization with an easy prox for f using
1 .1
min & [ Xw —y|> + Awli & min Sl —y|® + Afwl,
w2 v=Xw 2
For total-variation and structured sparsity we can use
min f(w) + [|Aw|1 < min f(w) + |v]]s.
w v=Aw

If prox can not be computed exactly: linearized ADMM.
e But ADMM rate depends on tuning parameter(s) and iterations aren’t sparse.
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Frank-Wolfe Method

@ In some cases the projected gradient step

1 3
whtl = argmin {f(wk) + VW) (v —w®) + —|v - 111]“2} ,
yeC 20y
may be hard to compute.
@ Frank-Wolfe step is sometimes cheaper:

wh*2 = argmin {f(wk) + V) (v - wk)} ,
veC

: . . 1
requires compact C, algorithm takes convex combination of w* and w**z.

https://www.youtube.com/watch?v=24e08AX9Eww

@ O(1/t) rate for convex objectives, some linear results for strongly-convex.


https://www.youtube.com/watch?v=24e08AX9Eww
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Summary

Structured regularization encourages more-general patterns in variables.
Total-variation penalizes differences between variables.

Structured sparsity can enforce sparsity hierarchies.

Inexact proximal-gradient methods are a common approach to solving these.

Next time: finding all the cat videos on YouTube.
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