
Proximal-Gradient Group Sparsity

CPSC 540: Machine Learning
Proximal-Gradient

Mark Schmidt

University of British Columbia

Winter 2019

Proximal-Gradient Group Sparsity

Last Time: Projected-Gradient

We discussed minimizing smooth functions with simple convex constraints,

argmin
w∈C

f(w).

For example, we could be solving a non-negative least squares problem,

argmin
w≥0

1

2
‖Xw − y‖2.

With “simple” constraints like this, we can use projected-gradient:

wk+
1
2 = wk − αk∇f(wk) (gradient step)

wk+1 = argmin
v∈C

‖v − wk+
1
2 ‖ (projection)

Proximal-Gradient Group Sparsity

Last Time: Projected-Gradient

wk+
1
2 = wk − αk∇f(wk) (gradient step based on function f)

wk+1 = argmin
v∈C

‖v − wk+
1
2 ‖ (projection onto feasible set C)

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)

Proximal-Gradient Group Sparsity

Projected-Gradient

We can view the projected-gradient algorithm as having two steps:
1 Perform an unconstrained gradient descent step,

wk+ 1
2 = wk − αk∇f(wk).

2 Compute the projection onto the set C,

wk+1 ∈ argmin
v∈C

‖v − wk+ 1
2 ‖.

Projection is the closest point that satisfies the constraints.

Generalizes “projection onto subspace” from linear algebra.
We’ll also write projection of w onto C as

projC [w] = argmin
v∈C

‖v − w‖,

and for convex C it’s unique.

Proximal-Gradient Group Sparsity

Convergence Rate of Projected Gradient

Projected versions have same complexity as unconstrained versions:
Assumption Proj(Grad) Proj(Subgrad) Quantity

Convex O(1/ε) O(1/ε2) f(wt)− f∗ ≤ ε
Strongly-Convex O(log(1/ε)) O(1/ε) f(wt)− f∗ ≤ ε

Nice properties in the smooth case:
With αt < 2/L, guaranteed to decrease objective.
There exist practical step-size strategies as with gradient descent (bonus).
For convex f a w∗ is optimal iff it’s a “fixed point” of the update,

w∗ = projC [w
∗ − α∇f(w∗)],

for any step-size α > 0.

There exist accelerated versions and Newton-like versions (bonus slides).
Acceleration is an obvious modification, Newton is more complicated.

Proximal-Gradient Group Sparsity

Why the Projected Gradient?

We want to optimize f (smooth but possibly non-convex) over some convex set C,

argmin
w∈C

f(w).

Recall that we can view gradient descent as minimizing quadratic approximation

wk+1 ∈ argmin
v

{
f(wk) +∇f(wk)(v − wk) + 1

2αk
‖v − wk‖2

}
,

where we’ve written it with a general step-size αk instead of 1/L.
Solving the convex quadratic argmin gives wk+1 = wk − αk∇f(wk).

We could minimize quadratic approximation to f subject to the constraints,

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2

}
,

Proximal-Gradient Group Sparsity

Why the Projected Gradient?

We write this “minimize quadratic approximation over the set C” iteration as

wk+1 ∈ argmin
v∈C

{
f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2

}
≡ argmin

v∈C

{
αkf(w

k) + αk∇f(wk)>(v − wk) +
1

2
‖v − wk‖2

}
(multiply by αk)

≡ argmin
v∈C

{
α2
k

2
‖∇f(wk)‖2 + αk∇f(wk)>(v − wk) +

1

2
‖v − wk‖2

}
(± const.)

≡ argmin
v∈C

{
‖(v − wk) + αk∇f(wk)‖2

}
(complete the square)

≡ argmin
v∈C

‖v − (wk − αk∇f(wk))︸ ︷︷ ︸
gradient descent

‖

 ,

which gives the projected-gradient algorithm: wk+1 = projC [w
k − αk∇f(wk)].

Proximal-Gradient Group Sparsity

Simple Convex Sets

Projected-gradient is only efficient if the projection is cheap.

We say that C is simple if the projection is cheap.

For example, if it costs O(d) then it adds no cost to the algorithm.

For example, if we want w ≥ 0 then projection sets negative values to 0.

Non-negative constraints are “simple”.

Another example is w ≥ 0 and w>1 = 1, the probability simplex.

There are O(d) algorithm to compute this projection (similar to “select” algorithm)

Proximal-Gradient Group Sparsity

Simple Convex Sets

Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB ≤ x ≤ UB.

Having a linear equality constraint, a>x = b, or a small number of them.

Having a half-space constraint, a>x ≤ b, or a small number of them.

Having a norm-ball constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (fixed τ).

Having a norm-cone constraint, ‖x‖p ≤ τ , for p = 1, 2,∞ (variable τ).

It’s easy to minimize smooth functions with these constraints.

Proximal-Gradient Group Sparsity

Intersection of Simple Convex Sets: Dykstra’s Algorithm

Often our set C is the intersection of simple convex set,

C ≡ ∩iCi.

For example, we could have a large number linear constraints:

C ≡ {w | aTi w ≤ bi,∀i}.

Dykstra’s algorithm can compute the projection in this case.

On each iteration, it projects a vector onto one of the sets Ci.
Requires O(log(1/ε)) such projections to get within ε.

(This is not the shortest path algorithm of “Dijkstra”.)

Proximal-Gradient Group Sparsity

Outline

1 Proximal-Gradient

2 Group Sparsity

Proximal-Gradient Group Sparsity

Solving Problems with Simple Regularizers

We were discussing how to solve non-smooth L1-regularized objectives like

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1.

Use our trick to formulate as a quadratic program?

O(d2) or worse.

Make a smooth approximation to the L1-norm?

Destroys sparsity (we’ll again just have one subgradient at zero).

Use a subgradient method?

Needs O(1/ε) iterations even in the strongly-convex case.

Transform to “smooth f with simple constraints” and use projected-gradient?

Works well (bonus), but increases problem size and destroys strong-convexity.

For “simple” regularizers, proximal-gradient methods don’t have these drawbacks

Proximal-Gradient Group Sparsity

Quadratic Approximation View of Gradient Method
We want to solve a smooth optimization problem:

argmin
w∈Rd

f(w).

Iteration wk works with a quadratic approximation to f :

f(v) ≈ f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2,

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2

}
.

We can equivalently write this as the quadratic optimization:

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − (wk − αk∇f(wk))‖2

}
,

and the solution is the gradient algorithm:

wk+1 = wk − αk∇f(wk).

Proximal-Gradient Group Sparsity

Quadratic Approximation View of Proximal-Gradient Method
We want to solve a smooth plus non-smooth optimization problem:

argmin
w∈Rd

f(w)+r(w).

Iteration wk works with a quadratic approximation to f :

f(v)+r(v) ≈ f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2+r(v),

wk+1 ∈ argmin
v∈Rd

{
f(wk) +∇f(wk)>(v − wk) + 1

2αk
‖v − wk‖2+r(v)

}
.

We can equivalently write this as the proximal optimization:

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − (wk − αk∇f(wk))‖2+αkr(v)

}
,

and the solution is the proximal-gradient algorithm:

wk+1 = proxαkr
[wk − αk∇f(wk)].

Proximal-Gradient Group Sparsity

Proximal-Gradient for L1-Regularization

The proximal operator for L1-regularization when using step-size αk,

proxαkλ‖·‖1 [w
k+ 1

2] ∈ argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkλ‖v‖1

}
,

involves solving a simple (strongly-convex) 1D problem for each variable j:

wk+1
j ∈ argmin

vj∈R

{
1

2
(vj − w

k+ 1
2

j)2 + αkλ|vj |
}
.

We can find the argmin by finding the unique vj with 0 in the sub-differential.

The solution is given by applying “soft-threshold” operation:

1 If |wk+ 1
2

j | ≤ αkλ, set wk+1
j = 0.

2 Otherwise, shrink |wk+ 1
2

j | by αkλ.

Proximal-Gradient Group Sparsity

Proximal-Gradient for L1-Regularization

An example sof-threshold operator with αkλ = 1:
Input Threshold Soft-Threshold
0.6715
−1.2075
0.7172
1.6302
0.4889




0
−1.2075

0
1.6302

0




0
−0.2075

0
0.6302

0


Symbolically, the soft-threshold operation computes

wk+1
j = sign(wk+

1
2)︸ ︷︷ ︸

−1 or +1

max

{
0, |wk+

1
2

j | − αkλ
}
.

Has the nice property that iterations wk are sparse.
Compared to subgradient method which wouldn’t give exact zeroes.

Proximal-Gradient Group Sparsity

Proximal-Gradient Method

So proximal-gradient step takes the form:

wk+
1
2 = wk − αk∇f(wk)

wk+1 = argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
.

Second part is called the proximal operator with respect to a convex αkr.
We say that r is simple if you can efficiently compute proximal operator.

Very similar properties to projected-gradient when ∇f is Lipschitz-continuous:
Guaranteed improvement for α < 2/L, practical backtracking methods work better.
Solution is a fixed point, w∗ = proxr[w

∗ −∇f(w∗)].
If f is strongly-convex then

F (wk)− F ∗ ≤
(
1− µ

L

)k [
F (w0)− F ∗

]
,

where F (w) = f(w) + r(w).

Proximal-Gradient Group Sparsity

Projected-Gradient is Special case of Proximal-Gradient
Projected-gradient methods are a special case:

r(w) =

{
0 if w ∈ C
∞ if w /∈ C

, (indicator function for convex set C)

gives

wk+1 ∈ argmin
v∈Rd

1

2
‖v − wk+

1
2 ‖2 + r(v)︸ ︷︷ ︸

proximal operator

≡ argmin
v∈C

1

2
‖v − wk+

1
2 ‖2 ≡ argmin

v∈C
‖v − wk+

1
2 ‖︸ ︷︷ ︸

projection

.

Feasible Set

x+

f(x)

x

x - !f’(x)

Proximal-Gradient Group Sparsity

Proximal-Gradient Linear Convergence Rate

Simplest linear convergence proofs are based on the proximal-PL inequality,

1

2
Dr(w,L) ≥ µ(F (w)− F ∗),

where compared to PL inequality we’ve replaced ‖∇f(w)‖2 with

Dr(w,α) = −2αmin
v

[
∇g(w)>(v − w) + α

2
‖v − w‖2 + r(v)− r(w)

]
,

and recall that F (w) = f(w) + r(w) (bonus).

This non-intuitive property holds for many important problems:
L1-regularized least squares.
Any time f is strong-convex (i.e., add an L2-regularizer as part of f).
Any f = g(Ax) for strongly-convex g and r being indicator for polyhedral set.

But it can be painful to show that functions satisfy this property.

Proximal-Gradient Group Sparsity

Outline

1 Proximal-Gradient

2 Group Sparsity

Proximal-Gradient Group Sparsity

Motivation for Group Sparsity

Recall that multi-class logistic regression uses

ŷi = argmax
c
{w>c xi},

where we have a parameter vector wc for each class c.

We typically use softmax loss and write our parameters as a matrix,

W =

w1 w2 w3 · · · wk


Suppose we want to use L1-regularization for feature selection,

argmin
W∈Rd×k

f(W)︸ ︷︷ ︸
softmax loss

+ λ
k∑
c=1

‖wc‖1︸ ︷︷ ︸
L1-regularization

.

Unfortunately, setting elements of W to zero may not select features.

Proximal-Gradient Group Sparsity

Motivation for Group Sparsity

Suppose L1-regularizationgives a sparse W with a non-zero in each row:

W =


−0.83 0 0 0

0 0 0.62 0
0 0 0 −0.06
0 0.72 0 0

 .
Even though it’s very sparse, it uses all features.

Remember that classifier multiplies feature j by each value in row j.
Feature 1 is used in w1.
Feature 2 is used in w3.
Feature 3 is used in w4.
Feature 4 is used in w2.

In order to remove a feature, we need its entire row to be zero.

Proximal-Gradient Group Sparsity

Motivation for Group Sparsity

What we want is group sparsity:

W =


−0.77 0.04 −0.03 −0.09

0 0 0 0
0.04 −0.08 0.01 −0.06
0 0 0 0

 .
Each row is a group, and we want groups (rows) of variables that have all zeroes.

If row j is zero, then xj is not used by the model.

Pattern arises in other settings where each row gives parameters for one feature:

Multiple regression, multi-label classification, and multi-task classification.

Proximal-Gradient Group Sparsity

Motivation for Group Sparsiy

Categorical features are another setting where group sparsity is needed.

Consider categorical features encoded as binary indicator features (“1 of k”):

A linear model would use

ŷi = w1xvan + w2xbur + w3xsur + w4x≤20 + w5x21−30 + w6x>30.

If we want feature selection of original categorical variables, we have 2 groups:

{w1, w2, w3} correspond to “City” and {w4, w5, w6} correspond to “Age”.

Proximal-Gradient Group Sparsity

Group L1-Regularization

Consider a problem with a set of disjoint groups G.

For example, G = {{1, 2}, {3, 4}}.

Minimizing a function f with group L1-regularization:

argmin
w∈Rd

f(w) + λ
∑
g∈G
‖wg‖p,

where g refers to individual group indices and ‖ · ‖p is some norm.

For certain norms, it encourages sparsity in terms of groups g.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

Proximal-Gradient Group Sparsity

Group L1-Regularization

Why is it called group L1-regularization?

Consider G = {{1, 2}, {3, 4}} and using L2-norm,∑
g∈G
‖wg‖2 =

√
w2
1 + w2

2 +
√
w2
3 + w2

4.

If vector v contains the group norms, it’s the L1-norm of v:

If v ,

[
‖w12‖2
‖w34‖2

]
then

∑
g∈G
‖wg‖2 = ‖w12‖2+‖w34‖2 = v1+v2 = |v1|+|v2| = ‖v‖1.

So groups L1-regularization encourages sparsity in the group norms.

When the norm of the group is 0, all group elements are 0.

Proximal-Gradient Group Sparsity

Group L1-Regularization: Choice of Norm

The group L1-regularizer is sometimes written as a “mixed” norm,

‖w‖1,p ,
∑
g∈G
‖wg‖p.

The most common choice for the norm is the L2-norm:
If G = {{1, 2}, {3, 4}} we obtain

‖w‖1,2 =
√
w2

1 + w2
2 +

√
w2

3 + w2
4.

Another common choice is the L∞-norm,

‖w‖1,∞ = max{|w1|, |w2|}+max{|w3|, |w4|}.

But note that the L1-norm does not give group sparsity,

‖w‖1,1 = |w1|+ |w2|+ |w3|+ |w4| = ‖w‖1,

as it’s equivalent to non-group L1-regularization.

Proximal-Gradient Group Sparsity

Sparsity from the L2-Norm?

Didn’t we say sparsity comes from the L1-norm and not the L2-norm?

Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Non-squared L2-norm is absolute value.

Non-squared L2-regularizer will set w = 0 for some finite λ.

Squaring the L2-norm gives a smooth function but destroys sparsity.

Proximal-Gradient Group Sparsity

Sparsity from the L2-Norm?

Squared vs. non-squared L2-norm in 2D:

The squared L2-norm is smooth and has no sparsity.

Non-squared L2-norm is non-smooth at the zero vector.

It doesn’t encourage us to set any wj = 0 as long as one wj′ 6= 0.
But if λ is large enough it encourages all wj to be set to 0.

Proximal-Gradient Group Sparsity

Sub-differential of Group L1-Regularization

For our group L1-regularization objective with the 2-norm,

F (w) = f(w) + λ
∑
g∈G
‖wg‖2,

the indices g in the sub-differential are given by

∂gF (w) ≡ ∇gf(w) + λ∂‖wg‖2.

In order to have 0 ∈ ∂F (w), we thus need for each group that

0 ∈ ∇gf(w) + λ∂‖wg‖2,

and subtracting ∇gf(w) from both sides gives

−∇gf(w) ∈ λ∂‖wg‖2.

Proximal-Gradient Group Sparsity

Sub-differential of Group L1-Regularization

So at minimizer w∗ we must have for all groups that

−∇gf(w∗) ∈ λ∂‖w∗g‖2.

The sub-differential of the scaled L2-norm is given by

∂‖w‖2 =

{{
w
‖w‖2

}
w 6= 0

{v | ‖v‖2 ≤ 1} w = 0.

So at a solution w∗ we have for each group that{
−∇gf(w∗) = λ

w∗g
‖w∗g‖2

wg 6= 0,

‖∇gf(w∗)‖ ≤ λ w∗g = 0.

For sufficiently-large λ we’ll set the group to zero.
With squared group norms we would need ∇gf(w

∗) = 0 with w∗g = 0 (unlikely).

Proximal-Gradient Group Sparsity

Summary

Simple convex sets are those that allow efficient projection.

Simple regularizers are those that allow efficient proximal operator.

Proximal-gradient: linear rates for sum of smooth and simple non-smooth.

Group L1-regularization encourages sparsity in variable groups.

Next time: going beyond L1-regularization to “structured sparsity”.

Proximal-Gradient Group Sparsity

Line-Search for Projected Gradient

There are two ways to do line-search for the projected gradient:

Backtrack along the line between x+ and x (search interior).
“Backtracking along the feasible direction”, costs 1 projection per iteration.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)

Backtrack by decreasing α and re-projecting (search boundary).
“Backtracking along the projection arc”, costs 1 projection per backtrack.
More expensive but (under weak conditions) we reach boundary in finite time.

Proximal-Gradient Group Sparsity

Faster Projected-Gradient Methods

Accelerated projected-gradient method has the form

xk+1 = projC [y
k − αk∇f(xk)]

yk+1 = xk + βk(x
k+1 − xk).

We could alternately use the Barzilai-Borwein step-size.

Known as spectral projected-gradient.

The naive Newton-like methods with Hessian approximation Ht,

xk+1 = projC [x
k − αk[Hk]

−1∇f(xk)],

does NOT work.

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)

x1

x2

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

x - !f’(x)

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x

x1

x2

x - !f’(x)

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x+

x1

x2

x

x - !f’(x)

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2
Q(x)

x

x - !f’(x) x+

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

xk - !H-1f’(x)
x

x - !f’(x) x+

Q(x)

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)

Proximal-Gradient Group Sparsity

Naive Projected-Newton
Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x1

x2

x+

x

x - !f’(x) x+

Q(x)

xk - !H-1f’(x)

Proximal-Gradient Group Sparsity

Should we use projected-gradient for non-smooth problems?

Some non-smooth problems can be turned into smooth problems with simple
constraints.

But transforming might make problem harder:

For L1-regularization least squares,

argmin
w∈Rd

1

2
‖Xw − y‖2 + λ‖w‖1,

we can re-write as a smooth problem with bound constraints,

argmin
w+≥0, w−≥0

‖X(w+ − w−)− y‖2 + λ

d∑
j=1

(w+ + w−).

Doubles the number of variables.
Transformed problem is not strongly convex even if the original was.

Proximal-Gradient Group Sparsity

Projected-Newton Method

We discussed how the naive projected-Newton method,

xk+
1
2 = xk − αk[Hk]

−1∇f(xk) (Newton-like step)

xk+1 = argmin
y∈C

‖y − xk+
1
2 ‖ (projection)

will not work.

The correct projected-Newton method uses

xk+
1
2 = xk − αk[Hk]

−1∇f(xk) (Newton-like step)

xk+1 = argmin
y∈C

‖y − xk+
1
2 ‖Hk

(projection under Hessian metric)

Proximal-Gradient Group Sparsity

Projected-Newton Method
Projected-gradient minimizes quadratic approximation,

xk+1 = argmin
y∈C

{
f(xk) +∇f(xk)(y − xk) + 1

2αk
‖y − xk‖2

}
.

Newton’s method can be viewed as quadratic approximation (Hk ≈ ∇2f(xk)):

xk+1 = argmin
y∈Rd

{
f(xk) +∇f(xk)(y − xk) + 1

2αk
(y − xk)Hk(y − xk)

}
.

Projected Newton minimizes constrained quadratic approximation:

xk+1 = argmin
y∈C

{
f(xk) +∇f(xk)(y − xk) + 1

2αk
(y − xk)Hk(y − xk)

}
.

Equivalently, we project Newton step under different Hessian-defined norm,

xk+1 = argmin
y∈C

‖y − (xk − αtH−1k ∇f(x
k))‖Hk

,

where general “quadratic norm” is ‖z‖A =
√
z>Az for A � 0.

Proximal-Gradient Group Sparsity

Discussion of Projected-Newton

Projected-Newton iteration is given by

xk+1 = argmin
y∈C

{
f(xk) +∇f(xk)(y − xk) + 1

2αk
(y − xk)Hk(y − xk)

}
.

But this is expensive even when C is simple.

There are a variety of practical alternatives:

If Hk is diagonal then this is typically simple to solve.

Two-metric projection methods are special algorithms for upper/lower bounds.

Fix problem of naive method in this case by making Hk partially diagonal.

Inexact projected-Newton: solve the above approximately.

Useful when f is very expensive but Hk and C are simple.
“Costly functions with simple constraints”.

Proximal-Gradient Group Sparsity

Indicator Function for Convex Sets

The indicator function for a convex set is

r(w) =

{
0 if w ∈ C
∞ if w /∈ C

.

This is a function with “extended-real-valued” output: r : Rd → {R,∞}.

The convention for convexity of such functions:

The “domain” is defined as the w values where r(w) 6=∞ (in this case C).
We need this domain to be convex.
And the function should to be convex on this domain.

Proximal-Gradient Group Sparsity

Properties of Proximal-Gradient

Two convenient properties of proximal-gradient:

Proximal operators are non-expansive,

‖proxr(x)− proxr(y)‖ ≤ ‖x− y‖,

it only moves points closer together.
(including xk and x∗)

For convex f , only fixed points are global optima,

x∗ = proxr(x
∗ − α∇f(x∗)),

for any α > 0.
(can test ‖xk − proxr(x

k −∇f(xk))‖ for convergence)

Proximal gradient/Newton has two line-searches (generalized projected variants):

Fix αk and search along direction to xk+1 (1 proximal operator, non-sparse iterates).
Vary αk values (multiple proximal operators per iteration, gives sparse iterations).

Proximal-Gradient Group Sparsity

Implicit subgradient viewpoint of proximal-gradient

The proximal-gradient iteration is

wk+1 ∈ argmin
v∈Rd

1

2
‖v − (wk − αk∇f(wk))‖2 + αkr(v).

By non-smooth optimality conditions that 0 is in subdifferential, we have that

0 ∈ (wk+1 − (wk − αk∇f(wk)) + αk∂r(w
k+1),

which we can re-write as

wk+1 = wk − αk(∇f(wk) + ∂r(wk+1)).

So proximal-gradient is like doing a subgradient step, with
1 Gradient of the smooth term at wk.
2 A particular subgradient of the non-smooth term at wk+1.

“Implicit” subgradient.

Proximal-Gradient Group Sparsity

Proximal-Gradient Convergence under Proximal-PL

By Lipschitz continuity of g we have

F (xk+1) = g(xk+1) + r(xk) + r(xk+1)− r(xk)

≤ F (xk) + 〈∇g(xk), xk+1 − xk〉+
L

2
||xk+1 − xk||2 + r(xk+1)− r(xk)

≤ F (xk)−
1

2L
Dr(xk, L)

≤ F (xk)−
µ

L
[F (xk)− F ∗],

and then we can take our usual steps.

Proximal-Gradient Group Sparsity

Faster Rate for Proximal-Gradient

It’s possible to show a slightly faster rate for proximal-gradient using
αt = 2/(µ+ L).

See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_

ProximalGradient.pdf

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf

Proximal-Gradient Group Sparsity

Debugging a Proximal-Gradient Code

In general, debugging optimization codes can be difficult.

The code can appear to work even if it’s wrong.

A reasonable strategy is to test things you expect to be true.

And keep a set of tests that should remain true if you update the code.

For example, for proximal-gradient methods you could check:

Does it decrease the objective function for a small enough step-size?
Are the step-sizes sensible (are they much smaller than 1/L)?
Is the optimality condition going to zero as you run the algorithm?

For group L1-regularization, some other checks that you can do:

Set λ = 0 and see if you get the unconstrained solution.
Assign each variable to its own group and see if you get the L1-regularized solution.
Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough λ).

Proximal-Gradient Group Sparsity

Proximal-Newton

We can define proximal-Newton methods using

xk+
1
2 = xk − αk[Hk]

−1∇f(xk) (gradient step)

xk+1 = argmin
y∈Rd

{
1

2
‖y − xk+

1
2 ‖2Hk

+ αkr(y)

}
(proximal step)

This is expensive even for simple r like L1-regularization.

But there are analogous tricks to projected-Newton methods:

Diagonal or Barzilai-Borwein Hessian approximation.
“Orthant-wise” methods are analogues of two-metric projection.
Inexact methods use approximate proximal operator.

Proximal-Gradient Group Sparsity

L1-Regularization vs. L2-Regularization

Last time we looked at sparsity using our constraint trick,

argmin
w∈Rd

f(w) + λ‖w‖p ⇔ argmin
w∈Rd,τ∈R

f(w) + λτ with τ ≥ ‖w‖p.

Note that we’re also minimizing the radius τ .
If τ shrinks to zero, all w are set to zero.
But if τ is squared there is virtually no penalty for having τ non-zero.

Proximal-Gradient Group Sparsity

Group L1-Regularization

Minimizing a function f with group L1-regularization,

argmin
w∈Rd

f(w) + λ‖w‖1,p ⇔ argmin
w∈Rd,τ∈R|G|

f(w) + λ

|G|∑
g=1

τg with τg ≥ ‖w‖p.

We’re minimizing f(w) plus the radiuses τg for each group g.
If τg shrinks to zero, all wg are set to zero.

Proximal-Gradient Group Sparsity

Group L1-Regularization

We can convert the non-smooth group L1-regularization problem,

argmin
x∈Rd

g(x) + λ
∑
g∈G
‖xg‖2,

into a smooth problem with simple constraints:

argmin
x∈Rd

g(x) + λ
∑
g∈G

rg︸ ︷︷ ︸
f

, subject to rg ≥ ‖xg‖2 for all g.

Here the constraitnts are separable:
We can project onto each norm-cone separately.

Since norm-cones are simple we can solve this with projected-gradient.
But we have more variables in the transformed problem and lose strong-convexity.

Proximal-Gradient Group Sparsity

Proximal-Gradient for L0-Regularization

There are some results on proximal-gradient for non-convex r.

Most common case is L0-regularization,

f(w) + λ‖w‖0,

where ‖w‖0 is the number of non-zeroes.

Includes AIC and BIC from 340.

The proximal operator for αkλ‖w‖0 is simple:

Set wj = 0 wihenever |wj | ≤ αkλ (“hard” thresholding).

Analysis is complicated a bit because discontinuity of prox as function of αk.

	Proximal-Gradient
	Group Sparsity

