Proximal-Gradient

CPSC 540: Machine Learning

Proximal-Gradient

Mark Schmidt

University of British Columbia

Winter 2019

Group Sparsity

Proximal-Gradient

Last Time: Projected-Gradient
@ We discussed minimizing smooth functions with simple convex constraints,

argmin f(w).
wel

@ For example, we could be solving a non-negative least squares problem,
1 9
argmin —|| Xw — y||*.
w>0 2
@ With “simple” constraints like this, we can use projected-gradient:

whtE =k — iV f(w”) (gradient step)

wht = argmin |Jv — whte I (projection)

vel

Group Sparsity

Proximal-Gradient Group Sparsity

Last Time: Projected-Gradient

whts = b — oV f (w”) (gradient step based on function f)

FHL = argmin [|lv — wkt 2| (projection onto feasible set C)

veC

w

Feasible Set

Proximal-Gradient Group Sparsity

Projected-Gradient

@ We can view the projected-gradient algorithm as having two steps:
@ Perform an unconstrained gradient descent step,

whtE =k - arV f(wh).
@ Compute the projection onto the set C,

w1 € argmin |jv — whtz .
veC

@ Projection is the closest point that satisfies the constraints.

o Generalizes “projection onto subspace” from linear algebra.
o We'll also write projection of w onto C as

projc[w] = argmin [|v — wl,
veC

and for convex C it's unique.

Proximal-Gradient

Convergence Rate of Projected Gradient

@ Projected versions have same complexity as unconstrained versions:
Assumption Proj(Grad) Proj(Subgrad) Quantity

Convex O(1/e¢) O(1/€?) flwh) — f*<e
Strongly-Convex O(log(1/¢)) O(1/e) fwh) — f*<e

@ Nice properties in the smooth case:
e With oy < 2/L, guaranteed to decrease objective.

o There exist practical step-size strategies as with gradient descent (bonus).

e For convex f a w* is optimal iff it's a “fixed point” of the update,
w* = proje[w” — aV f(w")],

for any step-size a > 0.

@ There exist accelerated versions and Newton-like versions (bonus slides).

o Acceleration is an obvious modification, Newton is more complicated.

Group Sparsity

Proximal-Gradient Group Sparsity

Why the Projected Gradient?

e We want to optimize f (smooth but possibly non-convex) over some convex set C,
argmin f(w).
weC

@ Recall that we can view gradient descent as minimizing quadratic approximation
. 1
w* ! € argmin {f(wk) + Vf(w*) (v —wh) + Ton |lv — wkHQ} ,
v k

where we've written it with a general step-size «y instead of 1/L.
o Solving the convex quadratic argmin gives w**! = w* — a;, V f(w").

@ We could minimize quadratic approximation to f subject to the constraints,

w**! € argmin {f(wk) + V)T (v —wk) + L”'U - wk”Q} ;
veC 2a,

Why the Projected Gradient?

@ We write this “minimize quadratic approximation over the set C" iteration as

veC

wh € argmin {f(wk) + V(T (v —w") + %Hv - wk||2}
k

1
= argmin {akf(wk) + o V() T (v —w®) + §HU - wk]2} (multiply by ay)
vel

Eargmin{zHVf()||2+oszf(wk)T(v—wk)+1Hv—wk]2} (% const.)

velC 2 2
= argmin {H()+ oV f(w)H?} (complete the square)
vel

= argnéin v — (w* — gV f (")) || ¢,
ve

gradient descent

k+1

which gives the projected-gradient algorithm: w**! = proj.[w* — a; V f(w")].

Proximal-Gradient Group Sparsity

Simple Convex Sets

@ Projected-gradient is only efficient if the projection is cheap.

@ We say that C is simple if the projection is cheap.
o For example, if it costs O(d) then it adds no cost to the algorithm.

@ For example, if we want w > 0 then projection sets negative values to 0.
e Non-negative constraints are “simple”.

@ Another example is w > 0 and w' 1 = 1, the probability simplex.
o There are O(d) algorithm to compute this projection (similar to “select” algorithm)

Proximal-Gradient Group Sparsity

Simple Convex Sets

@ Other examples of simple convex sets:

Having upper and lower bounds on the variables, LB <z < UB.

o Having a linear equality constraint, "z = b, or a small number of them.
o Having a half-space constraint, a2 < b, or a small number of them.

e Having a norm-ball constraint, ||z||, < 7, for p = 1,2, 00 (fixed 7).

e Having a norm-cone constraint, ||z||, < 7, for p = 1,2, 0o (variable 7).

@ It's easy to minimize smooth functions with these constraints.

Intersection of Simple Convex Sets: Dykstra's Algorithm

@ Often our set C is the intersection of simple convex set,
C = n;C;.
@ For example, we could have a large number linear constraints:
C={w|alw< bV}
@ Dykstra's algorithm can compute the projection in this case.

e On each iteration, it projects a vector onto one of the sets C;.
o Requires O(log(1/€)) such projections to get within .

(This is not the shortest path algorithm of “Dijkstra”.)

Outline

@ Proximal-Gradient

© Group Sparsity

Proximal-Gradient Group Sparsity

Solving Problems with Simple Regularizers

@ We were discussing how to solve non-smooth L1-regularized objectives like
1 9
argmin iHXw —y|* + Allwl:-
weR?

@ Use our trick to formulate as a quadratic program?
o O(d?) or worse.

@ Make a smooth approximation to the L1-norm?
o Destroys sparsity (we'll again just have one subgradient at zero).
@ Use a subgradient method?
o Needs O(1/¢) iterations even in the strongly-convex case.
@ Transform to “smooth f with simple constraints” and use projected-gradient?
o Works well (bonus), but increases problem size and destroys strong-convexity.
@ For “simple” regularizers, proximal-gradient methods don’t have these drawbacks

Proximal-Gradient

Quadratic Approximation View of Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(w).

weRY

o lteration w* works with a quadratic approximation to f:

F(0) & Fh) + V()T (0 — wh) + Q;rrv — w2,

w**! € argmin {f(wk) + V) (v —w) + %HU - wk||2} .
k

veRA
We can equivalently write this as the quadratic optimization:

1
W+ € argmin {|v (k= aﬁf(w'fm?} ,
vERY 2

and the solution is the gradient algorithm:

Wit = wk — o V f (wh).

Group Sparsity

Proximal-Gradient Group Sparsity

Quadratic Approximation View of Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(w)+r(w).
weR?

o lteration w* works with a quadratic approximation to f:

F)r(v) = f(wh) + V()T (0 —w) + Qikllv — w¥|*4r(v),

1
wh T € argmin {f(wk) + V() (v —w*) + —]v - wk||2+r(v)} .
vERL 20y,

We can equivalently write this as the proximal optimization:
(1
whtL € argmin {Hv — (wh - aka(wk))H2+akr(v)} :
veERE 2
and the solution is the proximal-gradient algorithm:

wht = prox,, . [w* — @,V f(w")].

Proximal-Gradient Group Sparsity

Proximal-Gradient for L1-Regularization

@ The proximal operator for L1-regularization when using step-size ay,

1
k+%] € argmin {2H’U —whts 1>+ Oék)\HUHI})

ProXa Al [w
veERA

involves solving a simple (strongly-convex) 1D problem for each variable j:

.1 k+3

k41

ijr Eargmln{Q(vj—w 2)2 —|—ak)\|vj|}
v;€ER

@ We can find the argmin by finding the unique v; with 0 in the sub-differential.
@ The solution is given by applying “soft-threshold” operation:

k+L1
o If |wj+2| < ap)\, set wf“ =0.
) . k+1
@ Otherwise, shrink \wj+2| by agA\.

Proximal-Gradient

Proximal-Gradient for L1-Regularization

@ An example sof-threshold operator with apA = 1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302
0.4889 0 0

@ Symbolically, the soft-threshold operation computes

1
wf“ = sign(w’”%) max {0, \wf+2] — ak)\} .

—1or +1

@ Has the nice property that iterations w” are sparse.

o Compared to subgradient method which wouldn't give exact zeroes.

Group Sparsity

Proximal-Gradient Group Sparsity

Proximal-Gradient Method
@ So proximal-gradient step takes the form:
whte =k — oV f (w”)
1
wht = argmin {|v — wh 2|2 + akr(v)} :
veERd 2

@ Second part is called the proximal operator with respect to a convex ayr.
o We say that 7 is simple if you can efficiently compute proximal operator.

@ Very similar properties to projected-gradient when V f is Lipschitz-continuous:
o Guaranteed improvement for o < 2/L, practical backtracking methods work better.
e Solution is a fixed point, w* = prox, [w* — V f(w*)].
o If f is strongly-convex then

F(w*) — F* < (1 -)k [F(w®) - F7],

where F(w) = f(w) + r(w).

Proximal-Gradient Group Sparsity

Projected-Gradient is Special case of Proximal-Gradient

@ Projected-gradient methods are a special case:

0 ifweC
r(w) = 1 v , (indicator function for convex set C)
oo ifwégC
gives 1 1
wh*! € argmin §||v — whts 12 + r(v) = argmin §||v — whts |? = argmin |jv — wk+%|| .

vERY veC veC

TV
proximal operator projection

Feasible Set

Proximal-Gradient

Proximal-Gradient Linear Convergence Rate

@ Simplest linear convergence proofs are based on the proximal-PL inequality,
SDrw, L) 2 p(F(w) — F),
where compared to PL inequality we've replaced ||V f(w)]||? with
D (w,a) = —2«a min Vg(w) (v —w) + %Hv —wl|? +r(v) - r(w)],
and recall that F(w) = f(w) + r(w) (bonus).
@ This non-intuitive property holds for many important problems:
o L1-regularized least squares.

e Any time f is strong-convex (i.e., add an L2-regularizer as part of f).
o Any f = g(Az) for strongly-convex g and 7 being indicator for polyhedral set.

@ But it can be painful to show that functions satisfy this property.

Outline

@ Proximal-Gradient

© Group Sparsity

Proximal-Gradient

Motivation for Group Sparsity
@ Recall that multi-class logistic regression uses
gt = argmax{w, '},
C

where we have a parameter vector w, for each class c.
@ We typically use softmax loss and write our parameters as a matrix,

|
W= |w wy ws --- wg
|

@ Suppose we want to use L1-regularization for feature selection,

k
argmin f(W) +)\ZHwCHl .
WeRdxk S~~~ 1

softmax loss

L1-regularization

@ Unfortunately, setting elements of W to zero may not select features.

Group Sparsity

Proximal-Gradient Group Sparsity

Motivation for Group Sparsity

@ Suppose L1-regularizationgives a sparse W with a non-zero in each row:

-083 O 0 0
0 0 0.62 0

W= 0 0 0 —0.06
0 0.72 0 0

@ Even though it's very sparse, it uses all features.
e Remember that classifier multiplies feature j by each value in row j.
o Feature 1 is used in w;.
o Feature 2 is used in ws.
o Feature 3 is used in wy.
o Feature 4 is used in ws.

@ In order to remove a feature, we need its entire row to be zero.

Proximal-Gradient Group Sparsity

Motivation for Group Sparsity

@ What we want is group sparsity:

-0.77 0.04 -0.03 —-0.09

0 0 0 0
W= 0.04 -0.08 0.01 -0.06
0 0 0 0

@ Each row is a group, and we want groups (rows) of variables that have all zeroes.
o If row j is zero, then z; is not used by the model.

@ Pattern arises in other settings where each row gives parameters for one feature:
e Multiple regression, multi-label classification, and multi-task classification.

Group Sparsity

Motivation for Group Sparsiy
Categorical features are another setting where group sparsity is needed.

Consider categorical features encoded as binary indicator features ("1 of £"):

Vancouver 22 1 0 0 0 1 0
Burnaby 35 0 1 0 0 0 1
Vancouver 28 1 0 0 0 1 0

A linear model would use

U = WiTyan + Walpur + W3Tsur + WaT<20 + W5221-30 + WeL>30-

If we want feature selection of original categorical variables, we have 2 groups:
o {wy,ws, w3} correspond to “City” and {w4,ws,ws} correspond to “Age”.

Proximal-Gradient Group Sparsity

Group L1-Regularization

@ Consider a problem with a set of disjoint groups G.
o For example, G = {{1,2},{3,4}}.

@ Minimizing a function f with group L1-regularization:

argmin f(w) +)\Z |wgllp,

d
weR geg

where g refers to individual group indices and || - ||, is some norm.

@ For certain norms, it encourages sparsity in terms of groups g.

o Variables 1 and x5 will either be both zero or both non-zero.
e Variables x3 and x4 will either be both zero or both non-zero.

Proximal-Gradient Group Sparsity

Group L1-Regularization

@ Why is it called group L1-regularization?

e Consider G = {{1,2},{3,4}} and using L2-norm,

Z llwgll2 = \/w%+w§+\/w§+wz.

geG

@ If vector v contains the group norms, it's the L1-norm of v:

w
Ity 2 [’ ””2} then 3" flwglls = lwnala+lwsall2 = vi--va = o1 +ual = .
w34 |2 =

@ So groups L1-regularization encourages sparsity in the group norms.
e When the norm of the group is 0, all group elements are 0.

Proximal-Gradient Group Sparsity

Group L1-Regularization: Choice of Norm

@ The group L1-regularizer is sometimes written as a “mixed” norm,
A
Jwll1,p = Z [[wgllp-
g€eg
@ The most common choice for the norm is the L2-norm:
o If G ={{1,2},{3,4}} we obtain
ol = /2 +wd + \fud +wd.

@ Another common choice is the Loo-norm,

[wll1,00 = max{|wi], [wo|} + max{|ws|, |wal}.
@ But note that the L1-norm does not give group sparsity,
[wlli, = [wi| + [wa| + [ws| + [wa| = [Jwl}1,

as it's equivalent to non-group L1-regularization.

Proximal-Gradient Group Sparsity

Sparsity from the L2-Norm?

@ Didn’t we say sparsity comes from the L1-norm and not the L2-norm?
e Yes, but we were using the squared L2-norm.

Squared vs. non-squared L2-norm in 1D:

Il I

Non-squared L2-norm is absolute value.
o Non-squared L2-regularizer will set w = 0 for some finite \.

Squaring the L2-norm gives a smooth function but destroys sparsity.

Sparsity from the L2-Norm?

@ Squared vs. non-squared L2-norm in 2D:

lwll* V W’[z

@ The squared L2-norm is smooth and has no sparsity.

@ Non-squared L2-norm is non-smooth at the zero vector.

o It doesn’t encourage us to set any w; = 0 as long as one w;s # 0.
o But if A is large enough it encourages all w; to be set to 0.

Group Sparsity

Proximal-Gradient Group Sparsity

Sub-differential of Group L1-Regularization

@ For our group L1-regularization objective with the 2-norm,

F(w) = f(w) + A [lwglle,

geg

the indices g in the sub-differential are given by
IgF'(w) = Vg f(w) + Ad[Jwgl|2-
@ In order to have 0 € 9F (w), we thus need for each group that
0 € Vyf(w) + Adwglf2,
and subtracting V, f(w) from both sides gives

V() € Mg o

Proximal-Gradient Group Sparsity
Sub-differential of Group L1-Regularization

@ So at minimizer w* we must have for all groups that
Vol () € 20w}
@ The sub-differential of the scaled L2-norm is given by

w w0

Ollwllz = {{) 7
{v[lvll <1} w=0.
@ So at a solution w* we have for each group that

{ () ;;2 w‘(]%oa
Vg f (w?)|| < wy = 0.

g

o For sufficiently-large A we'll set the group to zero.
o With squared group norms we would need V, f(w*) = 0 with w; = 0 (unlikely).

Summary

Simple convex sets are those that allow efficient projection.
Simple regularizers are those that allow efficient proximal operator.
Proximal-gradient: linear rates for sum of smooth and simple non-smooth.

Group L1-regularization encourages sparsity in variable groups.

Next time: going beyond L1-regularization to “structured sparsity”.

Group Sparsity

Group Sparsity

Line-Search for Projected Gradient
@ There are two ways to do line-search for the projected gradient:

o Backtrack along the line between 2™ and « (search interior).
o “Backtracking along the feasible direction”, costs 1 projection per iteration.

o Backtrack by decreasing a and re-projecting (search boundary).

e “Backtracking along the projection arc”, costs 1 projection per backtrack.
e More expensive but (under weak conditions) we reach boundary in finite time.

Faster Projected-Gradient Methods

@ Accelerated projected-gradient method has the form

2" = proje[y* — axV f(2¥)]

yk—l-l _ :L‘k + Bk($k+1 _ l'k)

@ We could alternately use the Barzilai-Borwein step-size.
e Known as spectral projected-gradient.

@ The naive Newton-like methods with Hessian approximation H;,
ot = proje[a® — o [Hy 1V f(2F)],

does NOT work.

Group Sparsity

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

f(x)

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

f(x)

Feasible Set

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x - of’(x)

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

f(x)
Feasible Set

x - of’(x)

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

x - af’(x)

Feasible Set

Group Sparsity

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Group Sparsity

Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

Feasible Set

Group Sparsity

Should we use projected-gradient for non-smooth problems?

@ Some non-smooth problems can be turned into smooth problems with simple
constraints.

@ But transforming might make problem harder:
o For L1-regularization least squares,

o1
argmin || Xw — y[|* + A|w]|,
weRY 2

we can re-write as a smooth problem with bound constraints,

d
argmin || X (wy —w_) —y|> + A (wy +w-).

w4 >0, w_>0 =1
e Doubles the number of variables.
e Transformed problem is not strongly convex even if the original was.

Group Sparsity

Projected-Newton Method

@ We discussed how the naive projected-Newton method,

ks = gk o [Hy] IV f (%) (Newton-like step)
ghtl — argmin |ly — xk+% I (projection)
yeC

will not work.

@ The correct projected-Newton method uses

ghte = gk - o [Hy 'V f(2F) (Newton-like step)
R+l — argmin ||y — z*t2 | 2, (projection under Hessian metric)
yel

X

Group Sparsity

Projected-Newton Method

@ Projected-gradient minimizes quadratic approximation,

. 1
41 = argmin { 7(a) + V)5~ 24) + 5oy — 2P}
yeC (073

o Newton's method can be viewed as quadratic approximation (Hj ~ V2 f(z¥)):

—argmin { 1(e) + V@)~ 24) + o~)y -)}

k+1 +
yeRd 20y,

T

@ Projected Newton minimizes constrained quadratic approximation:

P41 = argmin { 70 + V)0 - 24) + 5o~)y - o)}
yeC (073

@ Equivalently, we project Newton step under different Hessian-defined norm,

k+

¥ = argmin |y — (2F — OétHEIVf@k))HHkv
yeC

where general “quadratic norm” is ||z||4 = V2T Az for A = 0.

Group Sparsity

Discussion of Projected-Newton

@ Projected-Newton iteration is given by

P41 = argmin { 70 + V)0~ 24) + 5o~ SVl — o)}
yeC (073

@ But this is expensive even when C is simple.

@ There are a variety of practical alternatives:
o If Hy is diagonal then this is typically simple to solve.

e Two-metric projection methods are special algorithms for upper/lower bounds.
o Fix problem of naive method in this case by making Hj partially diagonal.

e Inexact projected-Newton: solve the above approximately.

@ Useful when f is very expensive but Hy and C are simple.
o “Costly functions with simple constraints”.

Group Sparsity

Indicator Function for Convex Sets

@ The indicator function for a convex set is

0 ifweC
r(w) = : :
oo ifwégC

o This is a function with “extended-real-valued” output: r : R? — {R, cc}.

@ The convention for convexity of such functions:
o The “domain” is defined as the w values where 7(w) # oo (in this case C).
o We need this domain to be convex.
o And the function should to be convex on this domain.

Group Sparsity

Properties of Proximal-Gradient

@ Two convenient properties of proximal-gradient:
e Proximal operators are non-expansive,

[[prox,.(z) — prox,.(y)[| <[l =yl

it only moves points closer together.
(including z* and z*)
e For convex f, only fixed points are global optima,

x* = prox,.(z* — aV f(z")),

for any a > 0.
(can test ||z* — prox,.(zF — V f(x*))|| for convergence)
@ Proximal gradient/Newton has two line-searches (generalized projected variants):

o Fix oy, and search along direction to 2**! (1 proximal operator, non-sparse iterates).
o Vary ay values (multiple proximal operators per iteration, gives sparse iterations).

Group Sparsity

Implicit subgradient viewpoint of proximal-gradient

@ The proximal-gradient iteration is

1
whtl ¢ argmin = ||v — (wk _ aka(wk))HQ + ayr(v).
veERd 2

@ By non-smooth optimality conditions that 0 is in subdifferential, we have that
0 e (Wt — (W — ap Vf(w")) + apdr(w* 1),
which we can re-write as
W = wP — g (Vf(wF) 4 ar(w*h)).

@ So proximal-gradient is like doing a subgradient step, with

@ Gradient of the smooth term at w*.
@ A particular subgradient of the non-smooth term at wktl,

e ‘“Implicit” subgradient.

Group Sparsity

Proximal-Gradient Convergence under Proximal-PL

@ By Lipschitz continuity of g we have
F(xpy1) = g(@p41) + r(zp) + r(Tpgr) — 7(zk)
< Flzr) +(Vg(@r), os1 — o) + ngﬁkH = ap|? + r(@pr) — r(zx)
LD (ar, L)

2L
< Flow) = £[F(ox) — 7],

< F(xy) -

and then we can take our usual steps.

Group Sparsity

Faster Rate for Proximal-Gradient

@ It's possible to show a slightly faster rate for proximal-gradient using
ar=2/(u+L).

@ See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_
ProximalGradient.pdf

http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf
http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ProximalGradient.pdf

Group Sparsity
Debugging a Proximal-Gradient Code

In general, debugging optimization codes can be difficult.
o The code can appear to work even if it's wrong.

A reasonable strategy is to test things you expect to be true.
o And keep a set of tests that should remain true if you update the code.
For example, for proximal-gradient methods you could check:

e Does it decrease the objective function for a small enough step-size?
o Are the step-sizes sensible (are they much smaller than 1/L)?
e Is the optimality condition going to zero as you run the algorithm?
For group L1-regularization, some other checks that you can do:
e Set A = 0 and see if you get the unconstrained solution.
o Assign each variable to its own group and see if you get the L1-regularized solution.
e Assign all variables to the same group and see if you get an L2-regularization
solution (and 0 for large-enough \).

Group Sparsity

Proximal-Newton

@ We can define proximal-Newton methods using

an S o [Hy) IV f (%) (gradient step)
.1 :
. argmin {Hy _ xk-*-%H%Ik + akr(y)} (proximal step)
yeR4 2

@ This is expensive even for simple r like L1-regularization.
@ But there are analogous tricks to projected-Newton methods:

e Diagonal or Barzilai-Borwein Hessian approximation.
e “Orthant-wise” methods are analogues of two-metric projection.
e Inexact methods use approximate proximal operator.

Proximal-Gradient Group Sparsity

L1-Regularization vs. L2-Regularization

@ Last time we looked at sparsity using our constraint trick,

argmin f(w) + A|w|l, << argmin f(w)+ A7 with 7 > [Jw]|,.

wER4 wERE,7ER
e} .. | @Unconstrained Solution '"'-.7. - .. | @Unconstrained Solution
1] ©L2-Regularized Solution .| | %~ % . | OL1-Regularized Solution|.

@ Note that we're also minimizing the radius 7.
o If 7 shrinks to zero, all w are set to zero.
e But if 7 is squared there is virtually no penalty for having 7 non-zero.

Proximal-Gradient Group Sparsity

Group L1-Regularization

@ Minimizing a function f with group L1-regularization,

4
argmin f(w) + Mjw|1, < argmin f(w) +)\ZTQ with 7, > ||w]|p.
weRY weR?,reRIY| g=1
P=2 W2 W3 Il amﬁ:ﬂ'
. ®
Wi A] ‘T‘m: | o \ * il \\
g S 3
p=e b . ==
wi e Wy M’ ‘ * e
= Y
i

e We're minimizing f(w) plus the radiuses 7, for each group g.
o If 74 shrinks to zero, all w, are set to zero.

Group Sparsity

Group L1-Regularization

@ We can convert the non-smooth group L1-regularization problem,

argmin g(x —i—)\z l|lzqll2,
z€R4 geqG

into a smooth problem with simple constraints:

argmin g(x) + A Z g, subject to ry > [|a4||2 for all g.
z€R4 geqG

f

@ Here the constraitnts are separable:
o We can project onto each norm-cone separately.

@ Since norm-cones are simple we can solve this with projected-gradient.
o But we have more variables in the transformed problem and lose strong-convexity.

Group Sparsity

Proximal-Gradient for LO-Regularization
@ There are some results on proximal-gradient for non-convex r.

@ Most common case is LO-regularization,

f(w) + Allwllo,

where ||wl|g is the number of non-zeroes.
e Includes AIC and BIC from 340.

@ The proximal operator for axA||w||o is simple:
o Set w; = 0 wihenever |w;| < agxA (“hard” thresholding).

@ Analysis is complicated a bit because discontinuity of prox as function of ag.

	Proximal-Gradient
	Group Sparsity

