CPSC 540: Machine Learning Proximal-Gradient

Mark Schmidt

University of British Columbia

Winter 2019

Last Time: Projected-Gradient

• We discussed minimizing smooth functions with simple convex constraints,

$$\underset{w \in \mathcal{C}}{\operatorname{argmin}} \, f(w).$$

• For example, we could be solving a non-negative least squares problem,

$$\underset{w \ge 0}{\operatorname{argmin}} \, \frac{1}{2} \|Xw - y\|^2.$$

• With "simple" constraints like this, we can use projected-gradient:

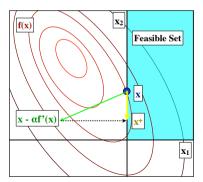
$$w^{k+\frac{1}{2}} = w^k - \alpha_k \nabla f(w^k)$$
 (gradient step)
$$w^{k+1} = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \|v - w^{k+\frac{1}{2}}\|$$
 (projection)

Last Time: Projected-Gradient

$$\begin{split} w^{k+\frac{1}{2}} &= w^k - \alpha_k \nabla f(w^k) \\ w^{k+1} &= \operatorname*{argmin}_{v \in \mathcal{C}} \|v - w^{k+\frac{1}{2}}\| \end{split}$$

(gradient step based on function f)

(projection onto feasible set C)



Projected-Gradient

- We can view the projected-gradient algorithm as having two steps:
 - Perform an unconstrained gradient descent step,

$$w^{k+\frac{1}{2}} = w^k - \alpha_k \nabla f(w^k).$$

 \bigcirc Compute the projection onto the set \mathcal{C} ,

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathcal{C}} \|v - w^{k+\frac{1}{2}}\|.$$

- Projection is the closest point that satisfies the constraints.
 - Generalizes "projection onto subspace" from linear algebra.
 - ullet We'll also write projection of w onto ${\mathcal C}$ as

$$\operatorname{proj}_{\mathcal{C}}[w] = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \|v - w\|,$$

and for convex C it's unique.

Convergence Rate of Projected Gradient

• Projected versions have same complexity as unconstrained versions:

Assumption	Proj(Grad)	Proj(Subgrad)	Quantity
Convex	$O(1/\epsilon)$	$O(1/\epsilon^2)$	$f(w^t) - f^* \le \epsilon$
Strongly-Convex	$O(\log(1/\epsilon))$	$O(1/\epsilon)$	$f(w^t) - f^* \le \epsilon$

- Nice properties in the smooth case:
 - With $\alpha_t < 2/L$, guaranteed to decrease objective.
 - There exist practical step-size strategies as with gradient descent (bonus).
 - For convex f a w^* is optimal iff it's a "fixed point" of the update,

$$w^* = \operatorname{proj}_{\mathcal{C}}[w^* - \alpha \nabla f(w^*)],$$

for any step-size $\alpha > 0$.

- There exist accelerated versions and Newton-like versions (bonus slides).
 - Acceleration is an obvious modification, Newton is more complicated.

Why the Projected Gradient?

• We want to optimize f (smooth but possibly non-convex) over some convex set C,

$$\underset{w \in \mathcal{C}}{\operatorname{argmin}} f(w).$$

• Recall that we can view gradient descent as minimizing quadratic approximation

$$w^{k+1} \in \operatorname*{argmin}_v \left\{ f(w^k) + \nabla f(w^k)(v-w^k) + \frac{1}{2\alpha_k} \|v-w^k\|^2 \right\},$$

where we've written it with a general step-size α_k instead of 1/L.

- Solving the convex quadratic argmin gives $w^{k+1} = w^k \alpha_k \nabla f(w^k)$.
- \bullet We could minimize quadratic approximation to f subject to the constraints,

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v-w^k) + \frac{1}{2\alpha_k} \|v-w^k\|^2 \right\},$$

Why the Projected Gradient?

ullet We write this "minimize quadratic approximation over the set \mathcal{C} " iteration as

$$\begin{split} w^{k+1} &\in \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\} \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \alpha_k f(w^k) + \alpha_k \nabla f(w^k)^\top (v - w^k) + \frac{1}{2} \|v - w^k\|^2 \right\} \quad \text{(multiply by } \alpha_k \text{)} \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \frac{\alpha_k^2}{2} \|\nabla f(w^k)\|^2 + \alpha_k \nabla f(w^k)^\top (v - w^k) + \frac{1}{2} \|v - w^k\|^2 \right\} \quad \text{(\pm const.)} \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \|(v - w^k) + \alpha_k \nabla f(w^k)\|^2 \right\} \quad \text{(complete the square)} \\ &\equiv \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ \|v - \underbrace{(w^k - \alpha_k \nabla f(w^k))}_{\text{gradient descent}} \right\} \,, \end{split}$$

which gives the projected-gradient algorithm: $w^{k+1} = \operatorname{proj}_{\mathcal{C}}[w^k - \alpha_k \nabla f(w^k)].$

Simple Convex Sets

- Projected-gradient is only efficient if the projection is cheap.
- We say that C is simple if the projection is cheap.
 - For example, if it costs O(d) then it adds no cost to the algorithm.
- For example, if we want $w \geq 0$ then projection sets negative values to 0.
 - Non-negative constraints are "simple".
- Another example is $w \ge 0$ and $w^{\top}1 = 1$, the probability simplex.
 - There are O(d) algorithm to compute this projection (similar to "select" algorithm)

Simple Convex Sets

- Other examples of simple convex sets:
 - Having upper and lower bounds on the variables, $LB \le x \le UB$.
 - Having a linear equality constraint, $a^{\top}x = b$, or a small number of them.
 - Having a half-space constraint, $a^{\top}x \leq b$, or a small number of them.
 - Having a norm-ball constraint, $\|x\|_p \le \tau$, for $p = 1, 2, \infty$ (fixed τ).
 - Having a norm-cone constraint, $\|x\|_p \le \tau$, for $p = 1, 2, \infty$ (variable τ).
- It's easy to minimize smooth functions with these constraints.

Intersection of Simple Convex Sets: Dykstra's Algorithm

ullet Often our set ${\mathcal C}$ is the intersection of simple convex set,

$$\mathcal{C} \equiv \cap_i \mathcal{C}_i$$
.

For example, we could have a large number linear constraints:

$$\mathcal{C} \equiv \{ w \mid a_i^T w \le b_i, \forall_i \}.$$

- Dykstra's algorithm can compute the projection in this case.
 - On each iteration, it projects a vector onto one of the sets C_i .
 - Requires $O(\log(1/\epsilon))$ such projections to get within ϵ .

(This is not the shortest path algorithm of "Dijkstra".)

Outline

- Proximal-Gradient
- @ Group Sparsity

Solving Problems with Simple Regularizers

• We were discussing how to solve non-smooth L1-regularized objectives like

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \, \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1.$$

- Use our trick to formulate as a quadratic program?
 - $O(d^2)$ or worse.
- Make a smooth approximation to the L1-norm?
 - Destroys sparsity (we'll again just have one subgradient at zero).
- Use a subgradient method?
 - Needs $O(1/\epsilon)$ iterations even in the strongly-convex case.
- Transform to "smooth f with simple constraints" and use projected-gradient?
 - Works well (bonus), but increases problem size and destroys strong-convexity.
- For "simple" regularizers, proximal-gradient methods don't have these drawbacks

Quadratic Approximation View of Gradient Method

• We want to solve a smooth optimization problem:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w).$$

• Iteration w^k works with a quadratic approximation to f:

$$\begin{split} f(v) &\approx f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2, \\ w^{k+1} &\in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ f(w^k) + \nabla f(w^k)^\top (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - (w^k - \alpha_k \nabla f(w^k))\|^2 \right\},$$

and the solution is the gradient algorithm:

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k).$$

Quadratic Approximation View of Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + r(w).$$

• Iteration w^k works with a quadratic approximation to f:

$$f(v)+r(v) \approx f(w^k) + \nabla f(w^k)^{\top} (v-w^k) + \frac{1}{2\alpha_k} ||v-w^k||^2 + r(v),$$

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ f(w^k) + \nabla f(w^k)^\top (v-w^k) + \frac{1}{2\alpha_k} \|v-w^k\|^2 + r(v) \right\}.$$

We can equivalently write this as the proximal optimization:

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - (w^k - \alpha_k \nabla f(w^k))\|^2 + \alpha_k r(v) \right\},$$

and the solution is the proximal-gradient algorithm:

$$w^{k+1} = \operatorname{prox}_{\alpha, r}[w^k - \alpha_k \nabla f(w^k)].$$

Proximal-Gradient for L1-Regularization

• The proximal operator for L1-regularization when using step-size α_k ,

$$\mathrm{prox}_{\alpha_k\lambda\|\cdot\|_1}[w^{k+\frac{1}{2}}] \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2}\|v-w^{k+\frac{1}{2}}\|^2 + \alpha_k\lambda\|v\|_1 \right\},$$

involves solving a simple (strongly-convex) 1D problem for each variable j:

$$w_j^{k+1} \in \operatorname*{argmin}_{v_j \in \mathbb{R}} \left\{ \frac{1}{2} (v_j - w_j^{k+\frac{1}{2}})^2 + \alpha_k \lambda |v_j| \right\}.$$

- We can find the argmin by finding the unique v_i with 0 in the sub-differential.
- The solution is given by applying "soft-threshold" operation:

 - ② Otherwise, shrink $|w_i^{k+\frac{1}{2}}|$ by $\alpha_k \lambda$.

Proximal-Gradient for L1-Regularization

• An example sof-threshold operator with $\alpha_k \lambda = 1$:

Input	Threshold	Soft-Threshold
$\begin{bmatrix} 0.6715 \end{bmatrix}$	[0]	[0]
-1.2075	-1.2075	-0.2075
0.7172	0	0
1.6302	1.6302	0.6302
0.4889	0	0

Symbolically, the soft-threshold operation computes

$$w_j^{k+1} = \underbrace{\operatorname{sign}(w^{k+\frac{1}{2}})}_{-1 \text{ or } +1} \max \left\{ 0, |w_j^{k+\frac{1}{2}}| - \alpha_k \lambda \right\}.$$

- Has the nice property that iterations w^k are sparse.
 - Compared to subgradient method which wouldn't give exact zeroes.

Proximal-Gradient Method

• So proximal-gradient step takes the form:

$$\begin{split} w^{k+\frac{1}{2}} &= w^k - \alpha_k \nabla f(w^k) \\ w^{k+1} &= \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 + \alpha_k r(v) \right\}. \end{split}$$

- Second part is called the proximal operator with respect to a convex $\alpha_k r$.
 - \bullet We say that r is simple if you can efficiently compute proximal operator.
- Very similar properties to projected-gradient when ∇f is Lipschitz-continuous:
 - Guaranteed improvement for $\alpha < 2/L$, practical backtracking methods work better.
 - Solution is a fixed point, $w^* = \text{prox}_r[w^* \nabla f(w^*)].$
 - \bullet If f is strongly-convex then

$$F(w^k) - F^* \leq \left(1 - \frac{\mu}{L}\right)^k \left[F(w^0) - F^*\right],$$
 where $F(w) = f(w) + r(w)$.

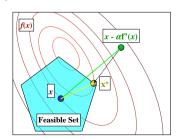
Projected-Gradient is Special case of Proximal-Gradient

• Projected-gradient methods are a special case:

$$r(w) = \begin{cases} 0 & \text{if } w \in \mathcal{C} \\ \infty & \text{if } w \notin \mathcal{C} \end{cases}, \quad \text{(indicator function for convex set } \mathcal{C}\text{)}$$

$$w^{k+1} \in \underset{v \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 + r(v) \equiv \underset{v \in \mathcal{C}}{\operatorname{argmin}} \ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 \equiv \underset{v \in \mathcal{C}}{\operatorname{argmin}} \ \|v - w^{k+\frac{1}{2}}\|.$$

proximal operator



Proximal-Gradient Linear Convergence Rate

• Simplest linear convergence proofs are based on the proximal-PL inequality,

$$\frac{1}{2}\mathcal{D}_r(w,L) \ge \mu(F(w) - F^*),$$

where compared to PL inequality we've replaced $\|\nabla f(w)\|^2$ with

$$\mathcal{D}_r(w, \alpha) = -2\alpha \min_{v} \left[\nabla g(w)^{\top} (v - w) + \frac{\alpha}{2} ||v - w||^2 + r(v) - r(w) \right],$$

and recall that F(w) = f(w) + r(w) (bonus).

- This non-intuitive property holds for many important problems:
 - L1-regularized least squares.
 - Any time f is strong-convex (i.e., add an L2-regularizer as part of f).
 - Any f = g(Ax) for strongly-convex g and r being indicator for polyhedral set.
- But it can be painful to show that functions satisfy this property.

Outline

Proximal-Gradient

Group Sparsity

Motivation for Group Sparsity

• Recall that multi-class logistic regression uses

$$\hat{y}^i = \operatorname*{argmax}_c \{w_c^\top x^i\},$$

where we have a parameter vector w_c for each class c.

• We typically use softmax loss and write our parameters as a matrix,

$$W = \begin{bmatrix} \begin{vmatrix} & & & & & \\ w_1 & w_2 & w_3 & \cdots & w_k \\ & & & & \end{vmatrix}$$

• Suppose we want to use L1-regularization for feature selection,

$$\underset{W \in \mathbb{R}^{d \times k}}{\operatorname{argmin}} \underbrace{f(W)}_{\text{softmax loss}} + \underbrace{\lambda \sum_{c=1}^{k} \|w_c\|_1}_{\text{L1-regularization}}.$$

ullet Unfortunately, setting elements of W to zero may not select features.

Motivation for Group Sparsity

ullet Suppose L1-regularization gives a sparse W with a non-zero in each row:

$$W = \begin{bmatrix} -0.83 & 0 & 0 & 0 \\ 0 & 0 & 0.62 & 0 \\ 0 & 0 & 0 & -0.06 \\ 0 & 0.72 & 0 & 0 \end{bmatrix}.$$

- Even though it's very sparse, it uses all features.
 - Remember that classifier multiplies feature j by each value in row j.
 - Feature 1 is used in w_1 .
 - Feature 2 is used in w_3 .
 - Feature 3 is used in w_4 .
 - Feature 4 is used in w_2 .
- In order to remove a feature, we need its entire row to be zero.

Motivation for Group Sparsity

• What we want is group sparsity:

$$W = \begin{bmatrix} -0.77 & 0.04 & -0.03 & -0.09 \\ 0 & 0 & 0 & 0 \\ 0.04 & -0.08 & 0.01 & -0.06 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Each row is a group, and we want groups (rows) of variables that have all zeroes.
 - If row j is zero, then x_j is not used by the model.
- Pattern arises in other settings where each row gives parameters for one feature:
 - Multiple regression, multi-label classification, and multi-task classification.

Motivation for Group Sparsiy

- Categorical features are another setting where group sparsity is needed.
- Consider categorical features encoded as binary indicator features ("1 of k"):

City	Age	Vancouver	Burnaby	Surrey	Age ≤ 20	20 < Age ≤ 30	Age > 30
Vancouver	22	1	0	0	0	1	0
Burnaby	35	0	1	0	0	0	1
Vancouver	28	1	0	0	0	1	0

A linear model would use

$$\hat{y}^i = w_1 x_{\text{van}} + w_2 x_{\text{bur}} + w_3 x_{\text{sur}} + w_4 x_{<20} + w_5 x_{21-30} + w_6 x_{>30}.$$

- If we want feature selection of original categorical variables, we have 2 groups:
 - \bullet $\{w_1, w_2, w_3\}$ correspond to "City" and $\{w_4, w_5, w_6\}$ correspond to "Age".

Group L1-Regularization

- Consider a problem with a set of disjoint groups \mathcal{G} .
 - For example, $\mathcal{G} = \{\{1, 2\}, \{3, 4\}\}.$
- Minimizing a function f with group L1-regularization:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \, f(w) + \lambda \sum_{g \in \mathcal{G}} \|w_g\|_p,$$

where g refers to individual group indices and $\|\cdot\|_p$ is some norm.

- ullet For certain norms, it encourages sparsity in terms of groups g.
 - Variables x_1 and x_2 will either be both zero or both non-zero.
 - Variables x_3 and x_4 will either be both zero or both non-zero.

Group L1-Regularization

- Why is it called group L1-regularization?
- Consider $G = \{\{1, 2\}, \{3, 4\}\}$ and using L2-norm,

$$\sum_{g \in G} \|w_g\|_2 = \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2 + w_4^2}.$$

• If vector v contains the group norms, it's the L1-norm of v:

If
$$v \triangleq \begin{bmatrix} \|w_{12}\|_2 \\ \|w_{34}\|_2 \end{bmatrix}$$
 then $\sum_{g \in C} \|w_g\|_2 = \|w_{12}\|_2 + \|w_{34}\|_2 = v_1 + v_2 = |v_1| + |v_2| = \|v\|_1$.

- So groups L1-regularization encourages sparsity in the group norms.
 - When the norm of the group is 0, all group elements are 0.

Group L1-Regularization: Choice of Norm

• The group L1-regularizer is sometimes written as a "mixed" norm,

$$||w||_{1,p} \triangleq \sum_{g \in \mathcal{G}} ||w_g||_p.$$

- The most common choice for the norm is the L2-norm:
 - If $\mathcal{G} = \{\{1, 2\}, \{3, 4\}\}$ we obtain

$$||w||_{1,2} = \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2 + w_4^2}.$$

• Another common choice is the $L\infty$ -norm,

$$||w||_{1,\infty} = \max\{|w_1|, |w_2|\} + \max\{|w_3|, |w_4|\}.$$

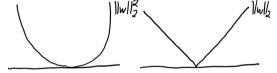
• But note that the L1-norm does not give group sparsity,

$$||w||_{1,1} = |w_1| + |w_2| + |w_3| + |w_4| = ||w||_1,$$

as it's equivalent to non-group L1-regularization.

Sparsity from the L2-Norm?

- Didn't we say sparsity comes from the L1-norm and not the L2-norm?
 - Yes, but we were using the squared L2-norm.
- Squared vs. non-squared L2-norm in 1D:



- Non-squared L2-norm is absolute value.
 - Non-squared L2-regularizer will set w=0 for some finite λ .
- Squaring the L2-norm gives a smooth function but destroys sparsity.

Sparsity from the L2-Norm?

• Squared vs. non-squared L2-norm in 2D:

- The squared L2-norm is smooth and has no sparsity.
- Non-squared L2-norm is non-smooth at the zero vector.
 - It doesn't encourage us to set any $w_i = 0$ as long as one $w_{i'} \neq 0$.
 - But if λ is large enough it encourages all w_i to be set to 0.

Sub-differential of Group L1-Regularization

• For our group L1-regularization objective with the 2-norm,

$$F(w) = f(w) + \lambda \sum_{g \in \mathcal{G}} \|w_g\|_2,$$

the indices g in the sub-differential are given by

$$\partial_g F(w) \equiv \nabla_g f(w) + \lambda \partial ||w_g||_2.$$

• In order to have $0 \in \partial F(w)$, we thus need for each group that

$$0 \in \nabla_q f(w) + \lambda \partial ||w_q||_2,$$

and subtracting $\nabla_a f(w)$ from both sides gives

$$-\nabla_q f(w) \in \lambda \partial ||w_q||_2.$$

Sub-differential of Group L1-Regularization

ullet So at minimizer w^* we must have for all groups that

$$-\nabla_g f(w^*) \in \lambda \partial ||w_g^*||_2.$$

• The sub-differential of the scaled L2-norm is given by

$$\partial ||w||_2 = \begin{cases} \left\{ \frac{w}{||w||_2} \right\} & w \neq 0 \\ \left\{ v \mid ||v||_2 \le 1 \right\} & w = 0. \end{cases}$$

• So at a solution w^* we have for each group that

$$\begin{cases} -\nabla_g f(w^*) = \lambda \frac{w_g^*}{\|w_g^*\|_2} & w_g \neq 0, \\ \|\nabla_g f(w^*)\| \leq \lambda & w_g^* = 0. \end{cases}$$

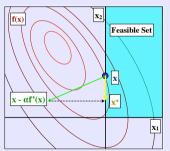
- For sufficiently-large λ we'll set the group to zero.
 - With squared group norms we would need $\nabla_q f(w^*) = 0$ with $w_q^* = 0$ (unlikely).

Summary

- Simple convex sets are those that allow efficient projection.
- Simple regularizers are those that allow efficient proximal operator.
- Proximal-gradient: linear rates for sum of smooth and simple non-smooth.
- Group L1-regularization encourages sparsity in variable groups.
- Next time: going beyond L1-regularization to "structured sparsity".

Line-Search for Projected Gradient

- There are two ways to do line-search for the projected gradient:
 - Backtrack along the line between x^+ and x (search interior).
 - "Backtracking along the feasible direction", costs 1 projection per iteration.



- Backtrack by decreasing α and re-projecting (search boundary).
 - "Backtracking along the projection arc", costs 1 projection per backtrack.
 - More expensive but (under weak conditions) we reach boundary in finite time.

Faster Projected-Gradient Methods

Accelerated projected-gradient method has the form

$$x^{k+1} = \operatorname{proj}_{\mathcal{C}}[y^k - \alpha_k \nabla f(x^k)]$$
$$y^{k+1} = x^k + \beta_k (x^{k+1} - x^k).$$

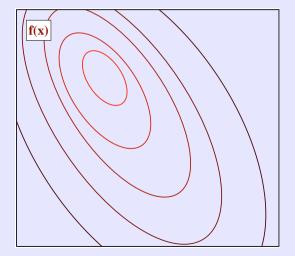
- We could alternately use the Barzilai-Borwein step-size.
 - Known as spectral projected-gradient.
- The naive Newton-like methods with Hessian approximation H_t ,

$$x^{k+1} = \operatorname{proj}_{\mathcal{C}}[x^k - \alpha_k[H_k]^{-1} \nabla f(x^k)],$$

does NOT work.

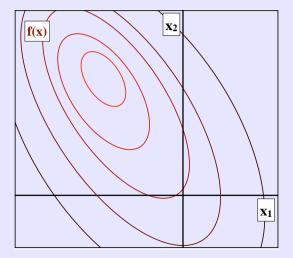
Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.

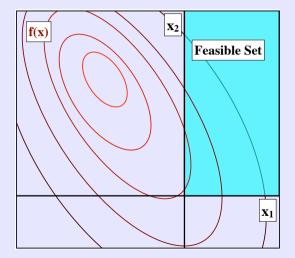


Naive Projected-Newton

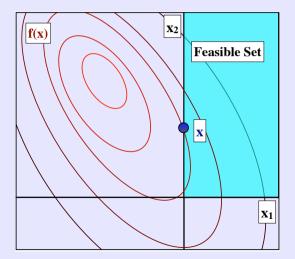
Naive projected Newton method can point in the wrong direction.



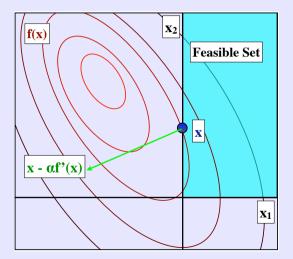
Naive Projected-Newton



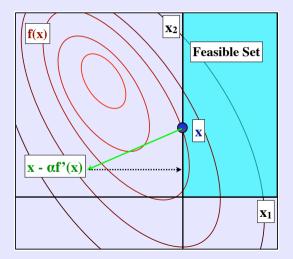
Naive Projected-Newton



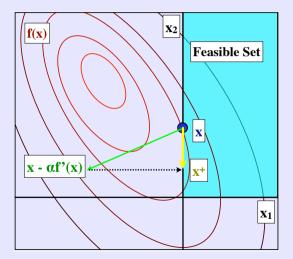
Naive Projected-Newton



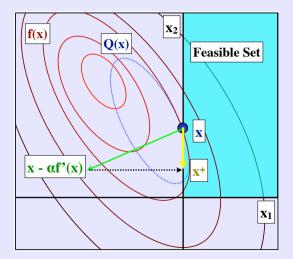
Naive Projected-Newton



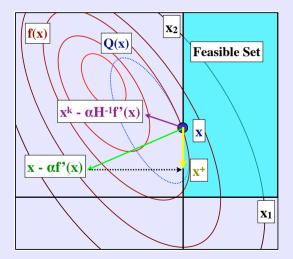
Naive Projected-Newton



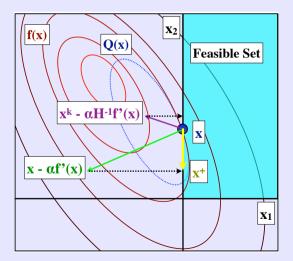
Naive Projected-Newton



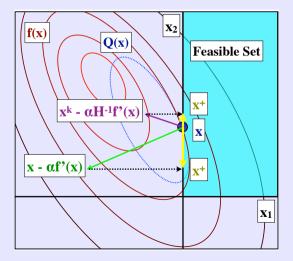
Naive Projected-Newton



Naive Projected-Newton



Naive Projected-Newton



Should we use projected-gradient for non-smooth problems?

- Some non-smooth problems can be turned into smooth problems with simple constraints.
- But transforming might make problem harder:
 - For L1-regularization least squares,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1,$$

we can re-write as a smooth problem with bound constraints,

$$\underset{w_{+} \geq 0, \ w_{-} \geq 0}{\operatorname{argmin}} \|X(w_{+} - w_{-}) - y\|^{2} + \lambda \sum_{i=1}^{d} (w_{+} + w_{-}).$$

- Doubles the number of variables.
- Transformed problem is not strongly convex even if the original was.

Projected-Newton Method

We discussed how the naive projected-Newton method,

$$x^{k+\frac{1}{2}} = x^k - \alpha_k [H_k]^{-1} \nabla f(x^k)$$
 (Newton-like step)
$$x^{k+1} = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \|y - x^{k+\frac{1}{2}}\|$$
 (projection)

will not work.

• The correct projected-Newton method uses

$$x^{k+\frac{1}{2}} = x^k - \alpha_k [H_k]^{-1} \nabla f(x^k)$$
 (Newton-like step)
$$x^{k+1} = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \|y - x^{k+\frac{1}{2}}\|_{H_k}$$
 (projection under Hessian metric)

Projected-Newton Method

• Projected-gradient minimizes quadratic approximation,

$$x^{k+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^k) + \nabla f(x^k) (y - x^k) + \frac{1}{2\alpha_k} \|y - x^k\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation $(H_k \approx \nabla^2 f(x^k))$:

$$x^{k+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^k) + \nabla f(x^k) (y - x^k) + \frac{1}{2\alpha_k} (y - x^k) H_k(y - x^k) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{k+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^k) + \nabla f(x^k)(y-x^k) + \frac{1}{2\alpha_k}(y-x^k) H_k(y-x^k) \right\}.$$

• Equivalently, we project Newton step under different Hessian-defined norm,

$$x^{k+1} = \underset{y \in C}{\operatorname{argmin}} \|y - (x^k - \alpha_t H_k^{-1} \nabla f(x^k))\|_{H_k},$$

where general "quadratic norm" is $||z||_A = \sqrt{z^T A z}$ for A > 0.

Discussion of Projected-Newton

Projected-Newton iteration is given by

$$x^{k+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^k) + \nabla f(x^k)(y - x^k) + \frac{1}{2\alpha_k}(y - x^k) H_k(y - x^k) \right\}.$$

- But this is expensive even when C is simple.
- There are a variety of practical alternatives:
 - If H_k is diagonal then this is typically simple to solve.
 - Two-metric projection methods are special algorithms for upper/lower bounds.
 - ullet Fix problem of naive method in this case by making H_k partially diagonal.
 - Inexact projected-Newton: solve the above approximately.
 - Useful when f is very expensive but H_k and $\mathcal C$ are simple.
 - "Costly functions with simple constraints".

Indicator Function for Convex Sets

• The indicator function for a convex set is

$$r(w) = \begin{cases} 0 & \text{if } w \in \mathcal{C} \\ \infty & \text{if } w \notin \mathcal{C} \end{cases}.$$

- This is a function with "extended-real-valued" output: $r: \mathbb{R}^d \to \{\mathbb{R}, \infty\}$.
- The convention for convexity of such functions:
 - The "domain" is defined as the w values where $r(w) \neq \infty$ (in this case \mathcal{C}).
 - We need this domain to be convex.
 - And the function should to be convex on this domain.

Properties of Proximal-Gradient

- Two convenient properties of proximal-gradient:
 - Proximal operators are non-expansive,

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\| \leq \|x - y\|,$$

it only moves points closer together.

(including x^k and x^*)

For convex f, only fixed points are global optima,

$$x^* = \mathsf{prox}_r(x^* - \alpha \nabla f(x^*)),$$

for any $\alpha > 0$.

(can test
$$||x^k - \operatorname{prox}_x(x^k - \nabla f(x^k))||$$
 for convergence)

- Proximal gradient/Newton has two line-searches (generalized projected variants):
 - Fix α_k and search along direction to x^{k+1} (1 proximal operator, non-sparse iterates).
 - ullet Vary $lpha_k$ values (multiple proximal operators per iteration, gives sparse iterations).

Implicit subgradient viewpoint of proximal-gradient

• The proximal-gradient iteration is

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \frac{1}{2} \|v - (w^k - \alpha_k \nabla f(w^k))\|^2 + \alpha_k r(v).$$

• By non-smooth optimality conditions that 0 is in subdifferential, we have that

$$0 \in (w^{k+1} - (w^k - \alpha_k \nabla f(w^k)) + \alpha_k \partial r(w^{k+1}),$$

which we can re-write as

$$w^{k+1} = w^k - \alpha_k(\nabla f(w^k) + \partial r(w^{k+1})).$$

- So proximal-gradient is like doing a subgradient step, with
 - Gradient of the smooth term at w^k .
 - ② A particular subgradient of the non-smooth term at w^{k+1} .
 - "Implicit" subgradient.

Proximal-Gradient Convergence under Proximal-PL

By Lipschitz continuity of q we have

$$F(x_{k+1}) = g(x_{k+1}) + r(x_k) + r(x_{k+1}) - r(x_k)$$

$$\leq F(x_k) + \langle \nabla g(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2 + r(x_{k+1}) - r(x_k)$$

$$\leq F(x_k) - \frac{1}{2L} \mathcal{D}_r(x_k, L)$$

$$\leq F(x_k) - \frac{\mu}{L} [F(x_k) - F^*],$$

and then we can take our usual steps.

Faster Rate for Proximal-Gradient

- It's possible to show a slightly faster rate for proximal-gradient using $\alpha_t = 2/(\mu + L)$.
- See http://www.cs.ubc.ca/~schmidtm/Documents/2014_Notes_ ProximalGradient.pdf

Debugging a Proximal-Gradient Code

- In general, debugging optimization codes can be difficult.
 - The code can appear to work even if it's wrong.
- A reasonable strategy is to test things you expect to be true.
 - And keep a set of tests that should remain true if you update the code.
- For example, for proximal-gradient methods you could check:
 - Does it decrease the objective function for a small enough step-size?
 - Are the step-sizes sensible (are they much smaller than 1/L)?
 - Is the optimality condition going to zero as you run the algorithm?
- For group L1-regularization, some other checks that you can do:
 - Set $\lambda = 0$ and see if you get the unconstrained solution.
 - Assign each variable to its own group and see if you get the L1-regularized solution.
 - Assign all variables to the same group and see if you get an L2-regularization solution (and 0 for large-enough λ).

Proximal-Newton

We can define proximal-Newton methods using

$$x^{k+\frac{1}{2}} = x^k - \alpha_k [H_k]^{-1} \nabla f(x^k) \qquad \text{(gradient step)}$$

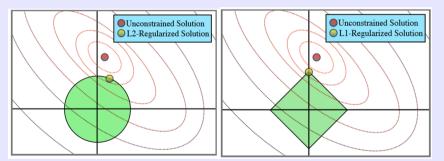
$$x^{k+1} = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x^{k+\frac{1}{2}}\|_{H_k}^2 + \alpha_k r(y) \right\} \qquad \text{(proximal step)}$$

- This is expensive even for simple r like L1-regularization.
- But there are analogous tricks to projected-Newton methods:
 - Diagonal or Barzilai-Borwein Hessian approximation.
 - "Orthant-wise" methods are analogues of two-metric projection.
 - Inexact methods use approximate proximal operator.

L1-Regularization vs. L2-Regularization

• Last time we looked at sparsity using our constraint trick,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \, f(w) + \lambda \|w\|_p \quad \Leftrightarrow \quad \underset{w \in \mathbb{R}^d, \tau \in \mathbb{R}}{\operatorname{argmin}} \, f(w) + \lambda \tau \text{ with } \tau \geq \|w\|_p.$$

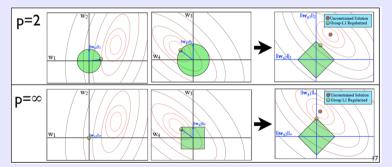


- Note that we're also minimizing the radius τ .
 - \bullet If au shrinks to zero, all w are set to zero.
 - But if τ is squared there is virtually no penalty for having τ non-zero.

Group L1-Regularization

• Minimizing a function f with group L1-regularization,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \, f(w) + \lambda \|w\|_{1,p} \quad \Leftrightarrow \quad \underset{w \in \mathbb{R}^d, \tau \in \mathbb{R}^{|\mathcal{G}|}}{\operatorname{argmin}} \, f(w) + \lambda \sum_{g=1}^{|\mathcal{G}|} \tau_g \, \operatorname{with} \, \tau_g \geq \|w\|_p.$$



- We're minimizing f(w) plus the radiuses τ_q for each group g.
 - If τ_a shrinks to zero, all w_a are set to zero.

Group L1-Regularization

• We can convert the non-smooth group L1-regularization problem,

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \, g(x) + \lambda \sum_{g \in G} \|x_g\|_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \, \underbrace{g(x) + \lambda \sum_{g \in G} r_g}, \text{ subject to } r_g \geq \|x_g\|_2 \text{ for all } g.$$

- Here the constraitnts are separable:
 - We can project onto each norm-cone separately.
- Since norm-cones are simple we can solve this with projected-gradient.
 - But we have more variables in the transformed problem and lose strong-convexity.

Proximal-Gradient for L0-Regularization

- There are some results on proximal-gradient for non-convex r.
- Most common case is L0-regularization,

$$f(w) + \lambda ||w||_0,$$

where $||w||_0$ is the number of non-zeroes.

- Includes AIC and BIC from 340.
- The proximal operator for $\alpha_k \lambda ||w||_0$ is simple:
 - Set $w_j = 0$ wihenever $|w_j| \le \alpha_k \lambda$ ("hard" thresholding).
- Analysis is complicated a bit because discontinuity of prox as function of α_k .