CPSC 540: Machine Learning
Convergence of Gradient Descent

Mark Schmidt
University of British Columbia

Winter 2018
Admin

- **Auditting/registration forms:**
 - Submit them at end of class, pick them up end of next class.
 - I need your prereq form before I’ll sign registration forms.
 - I wrote comments on the back of some forms.

- **Office hours:** start today after class.

- **Assignment 1** due Friday.
 - 1 late day to hand in Monday, 2 late days for Wednesday.
 - Instructions to hand in assignment on Piazza.
 - If you don’t have a CS account, sign up ASAP:
 https://www.cs.ubc.ca/getacct
We discussed convex optimization problems.

- Off-the-shelf solvers are available for solving medium-sized convex problems.

We discussed ways to show functions are convex:

- Show that f is below chord for any convex combination of points.
- f is constructed from operations that preserve convexity.
 - Non-negative scaling, sum, max, composition with affine map.
- Show that $\nabla^2 f(w)$ is positive semi-definite for all w,
 \[\nabla^2 f(w) \succeq 0 \text{ (zero matrix)} \]

Formally, the notation $A \succeq B$ means that for any vector v we have

\[v^T A v \geq v^T B v, \]

and this is called a “generalized inequality”.

- It defines an “ordering” among some matrices, but not all matrices can be compared.
We say that a C^2 function is strictly convex iff for all w we have

$$\nabla^2 f(w) \succ 0,$$

meaning that the Hessian is positive definite everywhere.

Equivalent definitions of a positive definite matrix A:
1. The eigenvalues of A are all positive.
2. $v^T A v > 0$ for all $v \neq 0$.

Why do we care about strict convexity?
- Positive-definite matrices are invertible, so $[\nabla^2 f(w)]^{-1}$ exists.
- There can be at most one global optimum (so it’s unique, if one exists).
Strict Convexity and L2-Regularized Least Squares

- In L2-regularized least squares, the Hessian matrix is
 \[\nabla^2 f(w) = (X^\top X + \lambda I). \]

- This matrix is positive-definite,
 \[v^\top (X^\top X + \lambda I)v = \|Xv\|^2 + \lambda \|v\|^2 > 0, \]
 which follows from properties of norms:
 - Both terms are non-negative because they’re norms.
 - Second term \(\|v\| \) is positive because \(v \neq 0 \) and \(\lambda > 0 \).

- This implies that:
 - The matrix \((X^\top X + \lambda I)\) is invertible.
 - The solution is unique.
Cost of L2-Regularized Least Squares

- Two strategies from 340 for L2-regularized least squares:
 1. Closed-form solution,
 \[w = (X^T X + \lambda I)^{-1} (X^T y), \]
 which costs \(O(n d^2 + d^3)\).
 - This is fine for \(d = 5000\), but may be too slow for \(d = 1,000,000\).
 2. Run \(t\) iterations of gradient descent,
 \[w^{k+1} = w^k - \alpha_k \left(X^T (X w^k - y) + \lambda w^k \right), \]
 \(\nabla f(w^k)\)
 which costs \(O(n d t)\).
 - I'm using \(t\) as total number of iterations, and \(k\) as iteration number.

- Gradient descent is faster if \(t\) is not too big:
 - If we only do \(t < \max\{d, d^2/n\}\) iterations.
Cost of Logistic Regression

- Gradient descent can also be applied to other models like **logistic regression**,

\[f(w) = \sum_{i=1}^{n} \log(1 + \exp(-y^i w^T x^i)), \]

which we can’t formulate as a linear system or linear program.
- Setting \(\nabla f(w) = 0 \) gives a system of transcendental equations.

- But this objective function is **convex and differentiable**.
 - So gradient descent converges to a global optimum.

- Alternately, another common approach is **Newton’s method**.
 - Requires computing Hessian \(\nabla^2 f(w^k) \), and known as “IRLS” in statistics.
Digression: Logistic Regression Gradient and Hessian

- With some tedious manipulations, gradient for logistic regression is
 \[\nabla f(w) = X^T r. \]

 where vector \(r \) has \(r_i = -y^i h(-y^i w^T x^i) \) and \(h \) is the sigmoid function.

- We know the gradient has this form from the multivariate chain rule.
 - Functions for the form \(f(Xw) \) always have \(\nabla f(w) = X^T r \) (see bonus slide).

- With some more tedious manipulations we get
 \[\nabla^2 f(w) = X^T DX. \]

 where \(D \) is a diagonal matrix with \(d_{ii} = h(y^i w^T x^i)h(-y^i w^T x^i) \).
 - The \(f(Xw) \) structure leads to a \(X^T DX \) Hessian structure.
 - For other problems \(D \) may not be diagonal.
Cost of Logistic Regression

- Gradient descent costs $O(nd)$ per iteration to compute Xw^k and X^Tr^k.
- Newton costs $O(nd^2 + d^3)$ per iteration to compute and invert $\nabla^2f(w^k)$.

- Newton typically requires substantially fewer iterations.

- But for datasets with very large d, gradient descent might be faster.
 - If $t < \max\{d, d^2/n\}$ then we should use the “slow” algorithm with fast iterations.

- So, how many iterations t of gradient descent do we need?
Outline

1. Gradient Descent Progress Bound
2. Gradient Descent Convergence Rate
Gradient Descent for Finding a Local Minimum

- A typical gradient descent algorithm:
 - Start with some initial guess, w^0.
 - Generate new guess w^1 by moving in the negative gradient direction:
 \[
 w^1 = w^0 - \alpha_0 \nabla f(w^0),
 \]
 where α_0 is the step size.
 - Repeat to successively refine the guess:
 \[
 w^{k+1} = w^k - \alpha_k \nabla f(w^k), \quad \text{for } k = 1, 2, 3, \ldots
 \]
 where we might use a different step-size α_k on each iteration.
 - Stop if $\|\nabla f(w^k)\| \leq \epsilon$.
 - In practice, you also stop if you detect that you aren’t making progress.
Gradient Descent in 2D

Starting "guess" w^0
Lipschitz Continuity of the Gradient

- Let’s first show a basic property:
 - If the step-size α_t is small enough, then gradient descent decreases f.

- We’ll analyze gradient descent assuming gradient of f is Lipschitz continuous.
 - There exists an L such that for all w and v we have
 \[\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|. \]
 - “Gradient can’t change arbitrarily fast”.

- This is a fairly weak assumption: it’s true in almost all ML models.
 - Least squares, logistic regression, neural networks with sigmoid activations, etc.
Lipschitz Continuity of the Gradient

- For C^2 functions, Lipschitz continuity of the gradient is equivalent to

$$\nabla^2 f(w) \preceq LI,$$

for all w.

- Equivalently: “singular values of the Hessian are bounded above by L”.
 - For least squares, minimum L is the maximum eigenvalue of X^TX.

- This means we can bound quadratic forms involving the Hessian using

$$d^T \nabla^2 f(u) d \leq d^T (LI) d = Ld^T d = L\|d\|^2.$$
Descent Lemma

- For a C^2 function, a variation on the multivariate Taylor expansion is that

$$f(v) = f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(u) (v - w),$$

for any w and v (with u being some convex combination of w and v).

- Lipschitz continuity implies the green term is at most $L \|v - w\|^2$,

$$f(v) \leq f(w) + \nabla f(w)^T (v - w) + \frac{L}{2} \|v - w\|^2,$$

which is called the descent lemma.

- The descent lemma also holds for C^1 functions (bonus slide).
The descent lemma gives us a convex quadratic upper bound on f:

$$f(x) + \nabla f(x)^T(y-x) + \frac{L}{2}\|y-x\|^2$$

This bound is minimized by a gradient descent step from w with $\alpha_k = 1/L$.
Gradient Descent decreases f for $\alpha_k = 1/L$

- So let’s consider doing gradient descent with a step-size of $\alpha_k = 1/L$,

$$w^{k+1} = w^k - \frac{1}{L} \nabla f(w^k).$$

- If we substitute w^{k+1} and w^k into the descent lemma we get

$$f(w^{k+1}) \leq f(w^k) + \nabla f(w^k)^T (w^{k+1} - w^k) + \frac{L}{2} \|w^{k+1} - w^k\|^2.$$

- Now if we use that $(w^{k+1} - w^k) = -\frac{1}{L} \nabla f(w^k)$ in gradient descent,

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{L} \nabla f(w^k)^T \nabla f(w^k) + \frac{L}{2} \|\frac{1}{L} \nabla f(w^k)\|^2$$

$$= f(w^k) - \frac{1}{L} \|\nabla f(w^k)\|^2 + \frac{1}{2L} \|\nabla f(w^k)\|^2$$

$$= f(w^k) - \frac{1}{2L} \|\nabla f(w^k)\|^2.$$
We’ve derived a \textit{bound on guaranteed progress} when using $\alpha_k = 1/L$.

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \| \nabla f(w^k) \|^2.$$

- If gradient is non-zero, $\alpha_k = 1/L$ is guaranteed to decrease objective.
- Amount we decrease grows with the size of the gradient.
- Same argument shows that any $\alpha_k < 2/L$ will decrease f.
Choosing the Step-Size in Practice

- In practice, you should never use $\alpha_k = 1/L$.
 - L is usually expensive to compute, and this step-size is really small.
 - You only need a step-size this small in the worst case.

- One practical option is to approximate L:
 - Start with a small guess for \hat{L} (like $\hat{L} = 1$).
 - Before you take your step, check if the progress bound is satisfied:
 \[
 f(w^k - (1/\hat{L})\nabla f(w^k)) \leq f(w^k) - \frac{1}{2\hat{L}} \|\nabla f(w^k)\|^2.
 \]
 - Double \hat{L} if it’s not satisfied, and test the inequality again.
 - Worst case: eventually have $L \leq \hat{L} < 2L$ and you decrease f at every iteration.
 - Good case: $\hat{L} << L$ and you are making way more progress than using $1/L$.

Choosing the Step-Size in Practice

- An approach that usually works better is a backtracking line-search:
 - Start each iteration with a large step-size α.
 - So even if we took small steps in the past, be optimistic that we’re not in worst case.
 - Decrease α until if Armijo condition is satisfied (this is what `findMin.jl` does),
 \[
 f(w^k - \alpha \nabla f(w^k)) \leq f(w^k) - \alpha \gamma \|\nabla f(w^k)\|^2 \quad \text{for} \quad \gamma \in (0, 1/2],
 \]

 \[
 \text{potential} \quad w^{k+1}
 \]

 often we choose γ to be very small like $\gamma = 10^{-4}$.
 - We would rather take a small decrease instead of trying many α values.

- Good codes use clever tricks to initialize and decrease the α values.
 - Usually only try 1 value per iteration.
- Even more fancy line-search: Wolfe conditions (makes sure α is not too small).
 - Good reference on these tricks: Nocedal and Wright’s Numerical Optimization book.
Outline

1. Gradient Descent Progress Bound
2. Gradient Descent Convergence Rate
Convergence Rate of Gradient Descent

- In 340, we claimed that \(\nabla f(w^k) \) converges to zero as \(k \) goes to \(\infty \).
 - For convex functions, this means it converges to a global optimum.
 - However, we may not have \(\nabla f(w^k) = 0 \) for any finite \(k \).

- Instead, we’re usually happy with \(\|\nabla f(w^k)\| \leq \epsilon \) for some small \(\epsilon \).
 - Given an \(\epsilon \), how many iterations does it take for this to happen?

- We’ll first answer this question only assuming that
 1. Gradient \(\nabla f \) is Lipschitz continuous (as before).
 2. Step-size \(\alpha_k = 1/L \) (this is only to make things simpler).
 3. Function \(f \) can’t go below a certain value \(f^* \) (“bounded below”).

- Most ML objectives \(f \) are bounded below (like the squared error being at least 0).
 - We’re not assuming convexity (argument will work for any smooth problem).
Convergence Rate of Gradient Descent

Key ideas:
1. We start at some $f(w^0)$, and at each step we decrease f by at least $\frac{1}{2L} \| \nabla f(w^k) \|^2$.
2. But we can't decrease $f(w^k)$ below f^\ast.
3. So $\| \nabla f(w^k) \|^2$ must be going to zero "fast enough".

Let's start with our guaranteed progress bound,

$$f(w^k) \leq f(w^{k-1}) - \frac{1}{2L} \| \nabla f(w^{k-1}) \|^2.$$

Since we want to bound $\| \nabla f(w^k) \|$, let's rearrange as

$$\| \nabla f(w^{k-1}) \|^2 \leq 2L(f(w^{k-1}) - f(w^k)).$$
Convergence Rate of Gradient Descent

- So for each iteration k, we have
 \[\| \nabla f(w^{k-1}) \|^2 \leq 2L [f(w^{k-1}) - f(w^k)]. \]

- Let’s sum up the squared norms of all the gradients up to iteration t,
 \[\sum_{k=1}^{t} \| \nabla f(w^{k-1}) \|^2 \leq 2L \sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)]. \]

- Now we use two tricks:
 1. On the left, use that all $\| \nabla f(w^{k-1}) \|$ are at least as big as their minimum.
 2. On the right, use that this is a telescoping sum:
 \[
 \sum_{k=1}^{t} [f(w^{k-1}) - f(w^k)] = f(w^0) - \underbrace{f(w^1) + f(w^1)}_{0} - \underbrace{f(w^2) + f(w^2)}_{0} - \ldots - f(w^t)
 = f(w^0) - f(w^t).
 \]
Convergence Rate of Gradient Descent

- With these substitutions we have
 \[
 \sum_{k=1}^{t} \min_{j \in \{0, \ldots, t-1\}} \left\{ \| \nabla f(w^j) \|^2 \right\} \leq 2L[f(w^0) - f(w^t)].
 \]
 no dependence on \(k \)

- Now using that \(f(w^t) \geq f^* \) we get
 \[
 \min_{k \in \{0,1,\ldots,t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq 2L[f(w^0) - f^*],
 \]
 and finally that
 \[
 \min_{k \in \{0,1,\ldots,t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t} = O(1/t),
 \]
 so if we run for \(t \) iterations, we'll find least one \(k \) with \(\| \nabla f(w^k) \|^2 = O(1/t). \)
Convergence Rate of Gradient Descent

- Our “error on iteration t” bound:
 \[
 \min_{k \in \{0, 1, \ldots, t-1\}} \left\{ \| \nabla f(w^k) \|^2 \right\} \leq \frac{2L[f(w^0) - f^*]}{t}.
 \]

- We want to know when the norm is below ϵ, which is guaranteed if:
 \[
 \frac{2L[f(w^0) - f^*]}{t} \leq \epsilon.
 \]

- Solving for t gives that this is guaranteed for every t where
 \[
 t \geq \frac{2L[f(w^0) - f^*]}{\epsilon},
 \]

so gradient descent requires $t = O(1/\epsilon)$ iterations to achieve $\| \nabla f(w^k) \|^2 \leq \epsilon$.
Summary

- **Gradient descent** can be suitable for solving high-dimensional problems.
- **Guaranteed progress bound** if gradient is Lipschitz, based on norm of gradient.
- **Practical step size strategies** based on the progress bound.
- **Error on iteration** \(t \) of \(O(1/t) \) for functions that are bounded below.
 - Implies that we need \(t = O(1/\epsilon) \) iterations to have \(\|\nabla f(x^k)\| \leq \epsilon \).

- Next time: didn’t I say that regularization makes gradient descent go faster?
Strictly-Convex Functions

- A function is strictly-convex if the convexity definitions hold strictly:

\[
\begin{align*}
 f(\theta w + (1 - \theta) v) &< \theta f(w) + (1 - \theta) f(v), \quad 0 < \theta < 1 \quad (C^0) \\
 f(v) &> f(w) + \nabla f(w)^\top (v - w) \quad (C^1) \\
 \nabla^2 f(w) &> 0 \quad (C^2)
\end{align*}
\]

- Function is always strictly below any chord, strictly above any tangent, and curved upwards in every direction.

- Strictly-convex function have at most one global minimum:
 - If \(w \) and \(v \) can’t both be global minima if \(w \neq v \):
 - it would imply convex combinations \(u \) of \(w \) and \(v \) would have \(f(u) \) below the global minimum.
Checking Derivative Code

- Gradient descent codes require you to **write objective/gradient code**.
 - This tends to be error-prone, although automatic differentiation codes are helping.

- Make sure to **check your derivative code**:
 - Numerical approximation to partial derivative:
 \[
 \nabla_if(x) \approx \frac{f(x + \delta e_i) - f(x)}{\delta}
 \]

 - For large-scale problems you can check a random direction \(d\):
 \[
 \nabla f(x)^T d \approx \frac{f(x + \delta d) - f(x)}{\delta}
 \]

 - If the left side coming from your code is very different from the right side, there is likely a bug.
Multivariate Chain Rule

- If \(g : \mathbb{R}^d \mapsto \mathbb{R}^n \) and \(f : \mathbb{R}^n \mapsto \mathbb{R} \), then \(h(x) = f(g(x)) \) has gradient

\[
\nabla h(x) = \nabla g(x)^T \nabla f(g(x)),
\]

where \(\nabla g(x) \) is the Jacobian (since \(g \) is multi-output).

- If \(g \) is an affine map \(x \mapsto Ax + b \) so that \(h(x) = f(Ax + b) \) then we obtain

\[
\nabla h(x) = A^T \nabla f(Ax + b).
\]

- Further, for the Hessian we have

\[
\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A.
\]
Convexity of Logistic Regression

- Logistic regression Hessian is
 \[\nabla^2 f(w) = X^T DX. \]

 where \(D \) is a diagonal matrix with \(d_{ii} = h(y_i w^T x^i)h(-y_i w^T x^i) \).

- Since the sigmoid function is non-negative, we can compute \(D^{\frac{1}{2}} \), and
 \[v^T X^T DX v = v^T X^T D^{\frac{1}{2}} D^{\frac{1}{2}} X v = (D^{\frac{1}{2}} X v)^T (D^{\frac{1}{2}} X v) = \|XD^{\frac{1}{2}}v\|^2 \geq 0, \]

 so \(X^T DX \) is positive semidefinite and logistic regression is convex.

 - It becomes strictly convex if you add L2-regularization, making solution unique.
Lipschitz Continuity of Logistic Regression Gradient

- Logistic regression Hessian is
 \[
 \nabla^2 f(w) = \sum_{i=1}^{n} \left[h(y_i w^T x^i) h(-y_i w^T x^i) x^i (x^i)^T \right] d_{ii}
 \]
 \[
 \leq 0.25 \sum_{i=1}^{n} x^i (x^i)^T
 \]
 \[
 = 0.25 X^T X.
 \]

- In the second line we use that \(h(\alpha) \in (0, 1) \) and \(h(-\alpha) = 1 - \alpha \).
 - This means that \(d_{ii} \leq 0.25 \).

- So for logistic regression, we can take \(L = \frac{1}{4} \max\{\text{eig}(X^T X)\} \).
Why the gradient descent iteration?

- For a C^2 function, a variation on the multivariate Taylor expansion is that
 \[
 f(v) = f(w) + \nabla f(w)^T (v - w) + \frac{1}{2} (v - w)^T \nabla^2 f(u)(v - w),
 \]
 for any w and v (with u being some convex combination of w and v).

- If w and v are very close to each other, then we have
 \[
 f(v) = f(w) + \nabla f(w)^T (v - w) + O(\|v - w\|^2),
 \]
 and the last term becomes negligible.

- Ignoring the last term, for a fixed $\|v - w\|$ I can minimize $f(v)$ by choosing
 \[
 (v - w) \propto -\nabla f(w).
 \]
 So if we’re moving a small amount the optimal choice is gradient descent.
Descent Lemma for C^1 Functions

- Let ∇f be L-Lipschitz continuous, and define $g(\alpha) = f(x + \alpha z)$ for a scalar α.

$$f(y) = f(x) + \int_0^1 \nabla f(x + \alpha(y - x))^T(y - x) d\alpha \quad \text{(fund. thm. calc.)}$$

$$(\pm \text{ const.}) = f(x) + \nabla f(x)^T(y - x) + \int_0^1 (\nabla f(x + \alpha(y - x)) - \nabla f(x))^T(y - x) d\alpha$$

$$(\text{CS ineq.}) \leq f(x) + \nabla f(x)^T(y - x) + \int_0^1 \|\nabla f(x + \alpha(y - x)) - \nabla f(x)\|\|y - x\| d\alpha$$

$$(\text{Lipschitz}) \leq f(x) + \nabla f(x)^T(y - x) + \int_0^1 L\|x + \alpha(y - x) - x\|\|y - x\| d\alpha$$

$$(\text{homog.}) = f(x) + \nabla f(x)^T(y - x) + \int_0^1 L\alpha\|y - x\|^2 d\alpha$$

$$\left(\int_0^1 \alpha = \frac{1}{2}\right) = f(x) + \nabla f(x)^T(y - x) + \frac{L}{2}\|y - x\|^2.$$
We said that Lipschitz continuity of the gradient
\[\|\nabla f(w) - \nabla f(v)\| \leq L\|w - v\|, \]
is equivalent for C^2 functions to having
\[\nabla^2 f(w) \preceq LI. \]

There are a lot of other equivalent definitions, see here:
- http://xingyuzhou.org/blog/notes/Lipschitz-gradient.