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Last Time: Monte Carlo vs. Variational Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling. Default method is Metropolis-Hastings.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

Turns inference into optimization. Default method minimizes reverse KL divergence.
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Variational vs. Monte Carlo

Monte Carlo vs. variational methods:

Variational methods are typically more complicated.
Variational methods are not consistent.

q does not converge to p if we run the algorithm forever.

But variational methods often give better approximation for the same time.

Although MCMC is easier to parallelize.

Variational methods typically have similar cost to MAP.

Combinations of variational inference and stochastic methods:

Stochastic variational inference (SVI): use SGD to speed up variational methods.
Variational MCMC: use Metropolis-Hastings where variational q can make proposals.
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Convex Relaxations

I’ve overviewed the “classic” view of variational methods that they minimize KL.

Modern view: write exact inference as constrained convex optimization (bonus).

Based on convex conjugate, writing inference as maximizing entropy with constraints.
Different methods correspond to different function/constraints approximations.
There are also convex relaxations that approximate with linear programs.

For an overview of this and all things variational, see:
people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf

people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Stochastic Processes and Non-Parametric Bayes

A stochastic process is an infinite collection of random variables {xi}.

Non-parametric Bayesian methods use priors defined on stochastic processes:

Allows extremely-flexible prior, and posterior complexity grows with data size.
Typically set up so that samples from posterior are finite-sized.

The two most common priors are Gaussian processes and Dirichlet processes:

Gaussian processes define prior on space of functions (universal approximators).
Dirichlet processes define prior on space of probabilities (without fixing dimension).
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Gaussian Processes

Recall the partitioned form of a multivariate Gaussian

µ =
[
µx, µy

]
, Σ =

[
Σxx Σxy

Σyx Σyy

]
,

and in this case the marginal p(x) is a N (µx,Σxx) Gaussian.

Generalization of this to infinite set of variables is Gaussian processes (GPs):

Any finite set from collection follows a Gaussian distribution.
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Gaussian Processes
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Gaussian Processes

GPs are specified by a mean function m and covariance function k,

m(x) = E[f(x)], k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))T ].

Any finite sample f(x) from a GP follows a N (m(x), k(x, x)) distribution.

Analogous to partitioned Gaussian where m(x) = µx and k(x, x) = Σxx.

We write that
f(x) ∼ GP(m(x), k(x, x′)),

As an example, we could have a zero-mean and linear covariance GP,

m(x) = 0, k(x, x′) = xTx′.



Non-Parametric Bayes GANs and VAEs

Regression Models as Gaussian Processes

As an example, predictions made by linear regression with Gaussian prior

f(x) = wT φ(x)︸︷︷︸
z

, w ∼ N (0,Σ),

are a Gaussian process with mean function

E[f(x)] = E[wTφ(x)] = E[w]︸︷︷︸
0

Tφ(x) = 0.

and covariance function

E[f(x)f(x)T ] = φ(x)T E[wwT ]︸ ︷︷ ︸
Σ

φ(x′) = φ(x)Σφ(x′) = k(x, x′).
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Gaussian Process Model Selection

We can view a Gaussian process as a prior distribution over smooth functions.

Most common choice of covariance is RBF.

Is this related to using RBF kernels or the RBFs as the bases?

Yes, this is Bayesian linear regression plus the kernel trick.
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Gaussian Process Model Selection

So why do we care?

We can get estimate of uncertainty in the prediction.
We can use marginal likelihood to learn the kernel/covariance.

Write kernel in terms of parameters, use empirical Bayes to learn kernel.

Hierarchical approach: put a hyper-prior of types of kernels.

Application: Bayesian optimization of non-convex functions:

Gradient descent is based on a Gaussian (quadratic) approximation of f .
Bayesian optimization is based on a Gaussian process approximation of f .

Can approximate non-convex functions.
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Dirichlet Process

Recall the basic mixture model:

p(x | θ) =

k∑
c=1

πcp(x | θc).

Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x | θ) =

∞∑
c=1

πcp(x | θc).

Common choice for prior on π values is Dirichlet process:

Also called “Chinese restaurant process” and “stick-breaking process”.
For finite datasets, only a fixed number of clusters have πc 6= 0.
But don’t need to pick number of clusters, grows with data size.
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Dirichlet Process

Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs

We could alternately put a prior on k:
“Reversible-jump” MCMC can be used to sample from models of different sizes.

AKA “trans-dimensional” MCMC.

There a variety of interesting variations on Dirichlet processes

Beta process (“Indian buffet process”).
Hierarchical Dirichlet process,.
Polya trees.
Infinite hidden Markov models.

https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Bayesian Hierarchical Clustering

Hierarchical clustering of {0, 2, 4} digits using classic and Bayesian method:

http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

http://www2.stat.duke.edu/~kheller/bhcnew.pdf
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Bayesian Hierarchical Clustering

Hierarchical clustering of newgroups using classic and Bayesian method:

http://www2.stat.duke.edu/~kheller/bhcnew.pdf (y-axis represents distance between clusters)

http://www2.stat.duke.edu/~kheller/bhcnew.pdf


Non-Parametric Bayes GANs and VAEs

Summary of Part 1

Non-Parametric Bayes puts probabilities over infinite spaces.

Gaussian processes are priors over continuous functions.
Dirichlet processes are priors over probability mass functions.

Part 2: new generative deep learning methods.
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Variational Inference: Constrained Optimization View

Modern view of variational inference:

Formulate inference problem as constrained optimization.
Approximate the function or constraints to make it easy.
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Exponential Families and Cumulant Function

We will again consider log-linear models:

P (X) =
exp(wTF (X))

Z(w)
,

but view them as exponential family distributions,

P (X) = exp(wTF (X)−A(w)),

where A(w) = log(Z(w)).

Log-partition A(w) is called the cumulant function,

∇A(w) = E[F (X)], ∇2A(w) = V[F (X)],

which implies convexity.
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Convex Conjugate and Entropy

The convex conjugate of a function A is given by

A∗(µ) = sup
w∈W
{µTw −A(w)}.

E.g., if we consider for logistic regression

A(w) = log(1 + exp(w)),

we have that A∗(µ) satisfies w = log(µ)/ log(1− µ).

When 0 < µ < 1 we have

A∗(µ) = µ log(µ) + (1− µ) log(1− µ)

= −H(pµ),

negative entropy of binary distribution with mean µ.
If µ does not satisfy boundary constraint, sup is ∞.
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Convex Conjugate and Entropy

More generally, if A(w) = log(Z(w)) then

A∗(µ) = −H(pµ),

subject to boundary constraints on µ and constraint:

µ = ∇A(w) = E[F (X)].

Convex set satisfying these is called marginal polytope M.

If A is convex (and LSC), A∗∗ = A. So we have

A(w) = sup
µ∈U
{wTµ−A∗(µ)}.

and when A(w) = log(Z(w)) we have

log(Z(w)) = sup
µ∈M
{wTµ+H(pµ)}.

We’ve written inference as a convex optimization problem.



Non-Parametric Bayes GANs and VAEs

Bonus slide: Maximum Likelihood and Maximum Entropy
The maximum likelihood parameters w satisfy:

min
w∈Rd

−wTF (D) + log(Z(w))

= min
w∈Rd

−wTF (D) + sup
µ∈M
{wTµ+H(pµ)} (convex conjugate)

= min
w∈Rd

sup
µ∈M
{−wTF (D) + wTµ+H(pµ)}

= sup
µ∈M
{min
w∈Rd

−wTF (D) + wTµ+H(pµ)} (convex/concave)

which is −∞ unless F (D) = µ (e.g., maximum likelihood w), so we have

min
w∈Rd

−wTF (D) + log(Z(w))

= max
µ∈M

H(pµ),

subject to F (D) = µ.
Maximum likelihood ⇒ maximum entropy + moment constraints.
Converse: MaxEnt + fit feature frequencies ⇒ ML(log-linear).
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Difficulty of Variational Formulation

We wrote inference as a convex optimization:

log(Z) = sup
µ∈M
{wTµ+H(pµ)},

Did this make anything easier?

Computing entropy H(pµ) seems as hard as inference.
Characterizing marginal polytope M becomes hard with loops.

Practical variational methods:

Work with approximation to marginal polytope M.
Work with approximation/bound on entropy A∗.

Notatation trick: we put everything “inside” w to discuss general log-potentials.
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Mean Field Approximation

Mean field approximation assumes

µij,st = µi,sµj,t,

for all edges, which means

p(xi = s, xj = t) = p(xi = s)p(xj = t),

and that variables are independent.

Entropy is simple under mean field approximation:∑
X

p(X) log p(X) =
∑
i

∑
xi

p(xi) log p(xi).

Marginal polytope is also simple:

MF = {µ | µi,s ≥ 0,
∑
s

µi,s = 1, µij,st = µi,sµj,t}.
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Entropy of Mean Field Approximation

Entropy form is from distributive law and probabilities sum to 1:

∑
X

p(X) log p(X) =
∑
X

p(X) log(
∏
i

p(xi))

=
∑
X

p(X)
∑
i

log(p(xi))

=
∑
i

∑
X

p(X) log p(xi)

=
∑
i

∑
X

∏
j

p(xj) log p(xi)

=
∑
i

∑
X

p(xi) log p(xi)
∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi)
∑

xj | j 6=i

∏
j 6=i

p(xj)

=
∑
i

∑
xi

p(xi) log p(xi).
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Mean Field as Non-Convex Lower Bound

Since MF ⊆M, yields a lower bound on log(Z):

sup
µ∈MF

{wTµ+H(pµ)} ≤ sup
µ∈M
{wTµ+H(pµ)} = log(Z).

Since MF ⊆M, it is an inner approximation:

Constraints µij,st = µi,sµj,t make it non-convex.

Mean field algorithm is coordinate descent on wTµ+H(pµ) over MF .
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Discussion of Mean Field and Structured MF

Mean field is weird:

Non-convex approximation to a convex problem.
For learning, we want upper bounds on log(Z).

Structured mean field:

Cost of computing entropy is similar to cost of inference.
Use a subgraph where we can perform exact inference.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Structured Mean Field with Tree

More edges means better approximation of M and H(pµ):

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

You can design better variational methods by constructing better approximations.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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