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Last Time: Monte Carlo vs. Variational Inference
Two main strategies for approximate inference:

@ Monte Carlo methods:
e Approximate p with empirical distribution over samples,

e Turns inference into sampling. Default method is Metropolis-Hastings.
@ Variational methods:
e Approximate p with “closest” distribution g from a tractable family,

o E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

e Turns inference into optimization. Default method minimizes reverse KL divergence.



Variational vs. Monte Carlo

@ Monte Carlo vs. variational methods:

e Variational methods are typically more complicated.
e Variational methods are not consistent.

@ ¢ does not converge to p if we run the algorithm forever.

e But variational methods often give better approximation for the same time.
@ Although MCMC is easier to parallelize.

e Variational methods typically have similar cost to MAP.

@ Combinations of variational inference and stochastic methods:

o Stochastic variational inference (SVI): use SGD to speed up variational methods.
e Variational MCMC: use Metropolis-Hastings where variational ¢ can make proposals.



Convex Relaxations

@ |'ve overviewed the ‘“classic” view of variational methods that they minimize KL.

@ Modern view: write exact inference as constrained convex optimization (bonus).

e Based on convex conjugate, writing inference as maximizing entropy with constraints.
o Different methods correspond to different function/constraints approximations.
o There are also convex relaxations that approximate with linear programs.

@ For an overview of this and all things variational, see:
people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf


people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
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Stochastic Processes and Non-Parametric Bayes

@ A stochastic process is an infinite collection of random variables {x%}.

@ Non-parametric Bayesian methods use priors defined on stochastic processes:

o Allows extremely-flexible prior, and posterior complexity grows with data size.
e Typically set up so that samples from posterior are finite-sized.

@ The two most common priors are Gaussian processes and Dirichlet processes:

o Gaussian processes define prior on space of functions (universal approximators).
o Dirichlet processes define prior on space of probabilities (without fixing dimension).
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Gaussian Processes

@ Recall the partitioned form of a multivariate Gaussian

by by
_ 7 7 Y X Ty 7
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and in this case the marginal p(z) is a N (ptz, Xzz) Gaussian.

@ Generalization of this to infinite set of variables is Gaussian processes (GPs):
e Any finite set from collection follows a Gaussian distribution.
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Gaussian Processes

To date kriging has been used in a variety of disciplines, including the following:
« Environmental sciencelS!

« Hydrogeology!®1718]

« Mining!®110]

« Natural resources!!1112]

« Remote sensingl!3]

« Real estate appraisall!4115]
and many others.
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Gaussian Processes

@ GPs are specified by a mean function m and covariance function k,

m(z) = E[f(2)], k(z,2') = E[(f(z) — m(2))(f(2') — m(z"))"].
@ Any finite sample f(z) from a GP follows a N (m(z), k(x,x)) distribution.
o Analogous to partitioned Gaussian where m(z) = p, and k(z,x) = X,
o We write that
f(z) ~ GP(m(z), k(z, ")),

@ As an example, we could have a zero-mean and linear covariance GP,

m(z) =0, k(z,2')=azTa.
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Regression Models as Gaussian Processes

@ As an example, predictions made by linear regression with Gaussian prior

fl@) =w" ¢(z), w~N(O,3),
—~~

z

are a Gaussian process with mean function

E[f(2)] = Elw” ¢(2)] = Elu]" é(z) = 0.

——

and covariance function
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Gaussian Process Model Selection

@ We can view a Gaussian process as a prior distribution over smooth functions.

output, f(x)
output, f(x)
o -

-2

0
input, x -5 0 5

! input, x
(a), prior (b), posterior

@ Most common choice of covariance is RBF.

@ Is this related to using RBF kernels or the RBFs as the bases?
e Yes, this is Bayesian linear regression plus the kernel trick.
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Gaussian Process Model Selection

@ So why do we care?

o We can get estimate of uncertainty in the prediction.
o We can use marginal likelihood to learn the kernel/covariance.

@ Write kernel in terms of parameters, use empirical Bayes to learn kernel.

@ Hierarchical approach: put a hyper-prior of types of kernels.

@ Application: Bayesian optimization of non-convex functions:
o Gradient descent is based on a Gaussian (quadratic) approximation of f.

e Bayesian optimization is based on a Gaussian process approximation of f.

o Can approximate non-convex functions.

GANs and VAEs
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Dirichlet Process

@ Recall the basic mixture model:

k
pa|0)=> mep(x | b.)
c=1

@ Non-parametric Bayesian methods allow us to consider infinite mixture model,

p(x|0) = Zﬂcpxw

@ Common choice for prior on 7 values is Dirichlet process:
e Also called “Chinese restaurant process” and “stick-breaking process”.
e For finite datasets, only a fixed number of clusters have 7. # 0.
e But don't need to pick number of clusters, grows with data size.
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Dirichlet Process

@ Gibbs sampling in Dirichlet process mixture model in action:
https://www.youtube.com/watch?v=0Vh7qZY9sPs

@ We could alternately put a prior on k:
o “Reversible-jump” MCMC can be used to sample from models of different sizes.
e AKA *“trans-dimensional” MCMC.

@ There a variety of interesting variations on Dirichlet processes

Beta process (“Indian buffet process”).
Hierarchical Dirichlet process,.
Polya trees.

o
o
o
o Infinite hidden Markov models.


https://www.youtube.com/watch?v=0Vh7qZY9sPs
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Bayesian Hierarchical Clustering

@ Hierarchical clustering of {0,2,4} digits using classic and Bayesian method:

Average Linkage Hierarchical Clustering
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Hbtps/ /w2 stat duke. edu/-kneller/bhenenpat (Y-XIS represents distance between clusters)


http://www2.stat.duke.edu/~kheller/bhcnew.pdf
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Bayesian Hierarchical Clustering

@ Hierarchical clustering of newgroups using classic and Bayesian method:

4 Newsgroups Average Linkage Clustering 4 Newsgroups Bayesian Hierarchical Clustering

Bbtp/un. stat duke. edu/kheller /onenenpat (Y-aXIS represents distance between clusters)


http://www2.stat.duke.edu/~kheller/bhcnew.pdf
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Summary of Part 1

@ Non-Parametric Bayes puts probabilities over infinite spaces.

o Gaussian processes are priors over continuous functions.
o Dirichlet processes are priors over probability mass functions.

@ Part 2: new generative deep learning methods.
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Variational Inference: Constrained Optimization View

@ Modern view of variational inference:

o Formulate inference problem as constrained optimization.
e Approximate the function or constraints to make it easy.



Exponential Families and Cumulant Function

o We will again consider log-linear models:

ex wT
P(x) - SPTFCO)

but view them as exponential family distributions,
P(X) = exp(wT F(X) - A(w)),

where A(w) = log(Z(w)).

o Log-partition A(w) is called the cumulant function,
VA(w) =E[F(X)], V*A(w)=V[F(X)],

which implies convexity.

GANs and VAEs
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Convex Conjugate and Entropy

@ The convex conjugate of a function A is given by

A%() = sup {n"w — A(w)}.

@ E.g., if we consider for logistic regression
A(w) = log(1 + exp(w)),

we have that A*(u) satisfies w = log(u)/log(1 — p).
e When 0 < i < 1 we have

A*(p) = plog(p) + (1 — p)log(1 — )
= _H(pu)a

negative entropy of binary distribution with mean .
e If u does not satisfy boundary constraint, sup is oc.



Convex Conjugate and Entropy
e More generally, if A(w) = log(Z(w)) then

A*(p) = —H(py),
subject to boundary constraints on x and constraint:
p=VAw)=E[F(X)].

@ Convex set satisfying these is called marginal polytope M.
o If Ais convex (and LSC), A** = A. So we have

A(w) = Slelg{wTu — A* ()}

and when A(w) = log(Z(w)) we have

log(Z(w)) = e {w"p+ H(pu)}-

@ We've written inference as a convex optimization problem.

GANs and VAEs
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Bonus slide: Maximum Likelihood and Maximum Entropy
@ The maximum likelihood parameters w satisfy:
min —w’ F(D) + log(Z(w))

weR?
= min —w’ F(D) + sup {w’ u+ H(p,)} (convex conjugate)
weRY HneM
= min sup {—w’ F(D) +w u+ H(p,)}
weRY pneM
= sup { min —w? F(D) +w”p+ H(p,)} (convex/concave)
peM weRd

which is —oo unless F(D) = u (e.g., maximum likelihood w), so we have
min —w? F(D) + log(Z(w))
weRd

= H
T (P,

subject to F(D) = p.
o Maximum likelihood = maximum entropy + moment constraints.



Difficulty of Variational Formulation

@ We wrote inference as a convex optimization:

log(Z) = sup {w" p+ H(p,)},
neM

@ Did this make anything easier?
o Computing entropy H(p,) seems as hard as inference.

o Characterizing marginal polytope M becomes hard with loops.

@ Practical variational methods:

o Work with approximation to marginal polytope M.
e Work with approximation/bound on entropy A*.

GANs and VAEs

o Notatation trick: we put everything “inside” w to discuss general log-potentials.



GANs and VAEs

Mean Field Approximation
@ Mean field approximation assumes
Mig,st = Misthjt,
for all edges, which means
pla; = s,z =t) = p(a; = s)p(z; =1),

and that variables are independent.
@ Entropy is simple under mean field approximation:

> p(X)logp(X) = p(w:) log p(w:).
X [
@ Marginal polytope is also simple:

Mp ={p| pis>0, Zuz‘,s = 1L e = Baasl
S
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Entropy of Mean Field Approximation

@ Entropy form is from distributive law and probabilities sum to 1:

;p( ) log p(X) = Zp J1og([ [ ()
= Zp Zlog(p(ﬂﬂi))
_ Zzp ) log p(z1)
= ZZHZ’ ;) log p(;)
= ZZP ;) logp(x;) | [ plx;)

JFi
:ZZ[) x;) log p(x;) Z Hp(wj)

@j | G#ij#

=>> pl@:)logp(ws).

i Ty
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Mean Field as Non-Convex Lower Bound

e Since Mp C M, yields a lower bound on log(Z):

sup {w”p+ H(py)} < sup, {w"p+ H(pu)} = log(2).
HEME

@ Since Mg C M, it is an inner approximation:

Fig. 5.3 Cartoon illuse : (
distributions s & nonconvex inner ind on M{). usteated here is the case of discrete

random variables w apond \u MEAN PAFAMELErs

nd My

i a polytope. The circles co

that arise from delts < itions, and belong to both M

o Constraints fi;5,st = i s/tj,+ Make it non-convex.
o Mean field algorithm is coordinate descent on w’'y + H(p,) over Mp.
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Discussion of Mean Field and Structured MF

@ Mean field is weird:

e Non-convex approximation to a convex problem.
o For learning, we want upper bounds on log(Z).

@ Structured mean field:

o Cost of computing entropy is similar to cost of inference.
o Use a subgraph where we can perform exact inference.

Coupled HMM Structured MF approximation
N Y Y with tractable chains
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http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational . pdf


http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

GANs and VAEs

Structured Mean Field with Tree

@ More edges means better approximation of M and H(p,):

original G (Naive) MF H, structured MF H,
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http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational . pdf

@ Fixed points of loopy correspond to using “Bethe” approximation of entropy and
“local polytope” approximation of “marginal polytope”.

@ You can design better variational methods by constructing better approximations.


http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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