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Last Time: Approximate Inference

We’ve discussed approximate inference in two settings:
1 Inference in graphical models (sum over x values).

E[f(x | w)] =
∑
x

f(x)p(x | w)dx.

2 Inference in Bayesian models (integrate over posterior values).

E[f(θ)] =

∫
θ

f(θ)p(θ | x)dθ.

Our previous approach was Monte Carlo methods.

Gibbs sampling (special case of MCMC).

Inverse transform can be used for conjugate models.

Rejection sampling or importance sampling for non-conjugate.

Can be used to model whole distribution, or to model conditionals in Gibbs.
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Limitations of Simple Monte Carlo Methods

The basic ingredients of our previous sampling methods:

Inverse CDF, rejection sampling, importance sampling.
Sampling in higher-dimensions: ancestral sampling, Gibbs sampling.

These work well in low dimensions or for posteriors with analytic properties.

But we want to solve high-dimensional integration problems in other settings:

Deep belief networks and Boltzmann machines.
Bayesian graphical models and Bayesian neural networks.
Hierarchical Bayesian models.

Our previous methods tend not to work in complex situations:

Inverse CDF may not be available.
Conditionals needed for ancestral/Gibbs sampling may be hard to compute.
Rejection sampling tends to reject almost all samples.
Importance sampling tends to give almost zero weight to all samples.
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Dependent-Sample Monte Carlo Methods

We want an algorithm whose samples get better over time.

Two main strategies for generating dependent samples:
Sequential Monte Carlo:

Importance sampling where proposal qt changes over time from simple to posterior.
AKA sequential importance sampling, annealed importance sampling, particle filter.
“Particle Filter Explained without Equations”:
https://www.youtube.com/watch?v=aUkBa1zMKv4

Markov chain Monte Carlo (MCMC).

Design Markov chain whose stationary distribution is the posterior.

These are the main tools to sample from high-dimensional distributions.

https://www.youtube.com/watch?v=aUkBa1zMKv4
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Markov Chain Monte Carlo

We’ve previously discussed Markov chain Monte Carlo (MCMC).
1 Based on generating samples from a Markov chain q.
2 Designed so stationary distribution π of q is target distribution p.

If we run the chain long enough, it gives us samples from p.

Gibbs sampling is an example of an MCMC method.

Sample xj conditioned on all other variables x−j .

Note that before we were sampling states according to a UGM,
in Bayesian models we’re sampling parameters according to the posterior.
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Limitations of Gibbs Sampling

Gibbs sampling is nice because it has no parameters:

You just need to decide on the blocks and figure out the conditionals.

But it isn’t always ideal:

Samples can be very correlated: slow progress.
Conditionals may not have a nice form:

If Markov blanket is not conjugate, need rejection sampling (or numerical CDF).

Generalization that can address these is Metropolis-Hastings:

Oldest algorithm among the “10 Best of the 20th Century”.
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Warm-Up to Metropolis-Hastings: “Stupid MCMC”

Consider finding the expected value of a fair di:

For a 6-sided di, the expected value is 3.5.

Consider the following “stupid MCMC” algorithm:

Start with some initial value, like “4”.

At each step, roll the di and generate a random number u:

If u < 0.5, “accept” the roll and take the roll as the next sample.

Othewise, “reject” the roll and take the old value (“4”) as the next sample.
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Warm-Up to Metropolis-Hastings: “Stupid MCMC”

Example:

Start with “4”, so record “4”.
Roll a 6 and generate 0.234, so record 6.
Roll a 3 and generate 0.612, so record 6.
Roll a 2 and generate 0.523, so record 6.
Roll a 3 and generate 0.125, so record 3.

So our samples are 4,6,6,6,3,. . .

If you run this long enough, you will spend 1/6 of the time on each number.
So the dependent samples from this Markov chain could be used within Monte Carlo.

It is “stupid” since you should just accept every sample (they are IID samples).

It works but it is twice as slow.
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A Simple Example of Metropolis-Hastings
Consider a loaded di that rolls a 6 half the time.

All others are equally likely, so they have probability 1/10.

Consider the following “less stupid” MCMC algorithm:
At each step, we start with an old state x.
Generate a random number x uniformly between 1 and 6 (roll a fair di),
and generate a random number u in the interval [0, 1].
“Accept” this roll if

u <
p(x̂)

p(x)
.

So if we roll x̂ = 6, we accept it: u < 1 (‘’always move to higher probability”).
If x = 2 and roll x̂ = 1, accept it: u < 1 (“always move to same probability”).
If x = 6 and roll x̂ = 1, we accept it with probability 1/5.

We prefer high probability states, but sometimes move to low probability states.

This has right probabilities as the stationary distribution (not yet obvious).
And accepts most samples.
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Metropolis Algorithm

The Metropolis algorithm for sampling from a continuous target p(x):

On each iteration add zero-mean Gaussian noise to xt to give proposal x̂t.
Generate u uniformly between 0 and 1.
“Accept” the sample and set xt+1 = x̂t if

u ≤ p̃(x̂t)

p̃(xt)
,

(probability of proposed)

(probability of current)

Otherwise “reject” the sample and use xt again as the next sample xt+1.

A random walk, but sometimes rejecting steps that decrease probability:

A valid MCMC algorithm on continuous densities, but convergence may be slow.
You can implement this even if you don’t know normalizing constant.
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Metropolis Algorithm in Action

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/

styled-11/code-5

Pseudo-code:
eps = randn(d,1)

xhat = x + eps

u = rand()

if u < ( p(xhat) / p(x) )

set x = xhat

otherwise

keep x

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/styled-4/styled-11/code-5
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Metropolis Algorithm Analysis

Markov chain with transitions qss′ = q(xt = s′ | xt−1 = s) is reversible if

π(s)qss′ = π(s′)qs′s,

for some distribution π (this condition is called detailed balance).

Assuming we reach stationary, reversibility implies π is stationary distribution.
By summing reversibility condition over all s values we get∑

s

π(s)qss′ =
∑
s

π(s′)qs′s∑
s

π(s)qss′ = π(s′)
∑
s

qs′s︸ ︷︷ ︸
=1∑

s

π(s)qss′ = π(s′) (stationary condition).

Metropolis is reversible (bonus slide) so has correct stationary distribution.
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Metropolis-Hastings

Gibbs and Metropolis are special cases of Metropolis-Hastings.
Uses a proposal distribution q(x̂ | x), giving probability of proposing x̂ at x.

In Metropolis, q is a zero-mean Gaussian.

Metropolis-Hastings accepts a proposed x̂t if

u ≤ p̃(x̂t)q(xt | x̂t)
p̃(xt)q(x̂t | xt)

,

where extra terms ensure reversibility for asymmetric q:

E.g., if you are more likely to propose to go from xt to x̂t than the reverse.

This again works under very weak conditions, such as q(x̂t | xt) > 0.

You can make performance much better/worse with an appropriate q.
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Metropolis-Hastings Example: Rolling Dice with Coins

Conisder the following random walk on the numbers 1-6:

If x = 1, always propose 2.
If x = 2, 50% of the time propose 1 and 50% of the time propose 3.
If x = 3, 50% of the time propose 2 and 50% of the time propose 4.
If x = 4, 50% of the time propose 3 and 50% of the time propose 5.
If x = 5, 50% of the time propose 4 and 50% of the time propose 6.
If x = 6, always propose 5.

“Flip a coin: go up if it’s heads and go down it it’s tails”.

The PageRank “random surfer” applied to this graph:
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Metropolis-Hastings Example: Rolling Dice with Coins
Suppose we want to sample from a fair 6-sided di.

p(x=1) = p(x=2) = p(x=3) = p(x=4) = p(x=5) = p(x=6) = 1/6.
But don’t have a di or a computer and can only flip coins.

Use random walk as transitions q in Metropolis-Hastings.
q(x̂ = 2 | x = 1) = 1, q(x̂ = 1 | x = 2) = 1

2 , q(x̂ = 2 | x = 3) = 1/2,. . .

If x is in the “middle” (2-5), we’ll always accept the random walk.
If x = 3 and we propose x̂ = 2, then:

u <
p(x̂ = 2)

p(x = 3)

q(x = 3 | x̂ = 2)

q(x̂ = 2 | x = 3)
=

1/6

1/6

1/2

1/2
= 1.

If x = 2 and we propose x̂ = 1, then we test u < 2 which is also always true.

If x is at the end (1 or 6), you accept with probability 1/2:

u <
p(x̂ = 2)

p(x = 1)

q(x = 1 | x̂ = 2)

q(x̂ = 2 | x = 1)
=

1/6

1/6

1/2

1
=

1

2
.
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Metropolis-Hastings Example: Rolling Dice with Coins

So Metropolis-Hastings modifies random walk probabilities:

If you’re at the end (1 or 6), stay there half the time.
This accounts for the fact that 1 and 6 have only one neighbour.

Which means they aren’t visited as often by the random walk.

Could also be viewed as a random surfer in a different graph:

You can think of Metropolis-Hastings as the modification that
“makes the random walk have the right probabilities”.

For any (reasonable) proposal distribution q.
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Metropolis-Hastings

Simple choices for proposal distribution q:

Metropolis originally used random walks: xt = xt−1 + ε for ε ∼ N (0,Σ).
Hastings originally used independent proposal: q(xt | xt−1) = q(xt).
Gibbs sampling updates single variable based on conditional:

In this case the acceptance rate is 1 so we never reject.

Mixture model for q: e.g., between big and small moves.
“Adaptive MCMC”: tries to update q as we go: needs to be done carefully.
“Particle MCMC”: use particle filter to make proposal.

Unlike rejection sampling, we don’t want acceptance rate as high as possible:

High acceptance rate may mean we’re not moving very much.
Low acceptance rate definitely means we’re not moving very much.
Designing q is an “art”.
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Mixture Proposal Distribution
Metropolis-Hastings for sampling from mixture of Gaussians:

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf

With a random walk q we may get stuck in one mode.

We could have proposal be mixture between random walk and “mode jumping”.

http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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Advanced Monte Carlo Methods

Some other more-powerful MCMC methods:

Block Gibbs sampling improves over single-variable Gibb sampling.

Collapsed Gibbs sampling (Rao-Blackwellization): integrate out variables that are
not of interest.

E.g., integrate out hidden states in Bayesian hidden Markov model.
E.g., integrate over different components in topic models.
Provably decreases variance of sampler (if you can do it, you should do it).

Auxiliary-variable sampling: introduce variables to sample bigger blocks:

E.g., introduce z variables in mixture models.
Also used in Bayesian logistic regression (beginning with Albert and Chib).
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Advanced Monte Carlo Methods

Trans-dimensional MCMC:

Needed when dimensionality of problem can change on different iterations.
Most important application is probably Bayesian feature selection.

Hamiltonian Monte Carlo:

Faster-converging method based on Hamiltonian dynamics.

Population MCMC:

Run multiple MCMC methods, each having different “move” size.
Large moves do exploration and small moves refine good estimates.

With mechanism to exchange samples between chains.
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Outline

1 Metropolis-Hastings Algorithm

2 Variational Inference
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Monte Carlo vs. Variational Inference
Two main strategies for approximate inference:

1 Monte Carlo methods:

Approximate p with empirical distribution over samples,

p(x) ≈ 1

n

n∑
i=1

I[xi = x].

Turns inference into sampling.

2 Variational methods:

Approximate p with “closest” distribution q from a tractable family,

p(x) ≈ q(x).

E.g., Gaussian, independent Bernoulli, or tree UGM.
(or mixtures of these simple distributions)

Turns inference into optimization.
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Variational Inference Illustration

Approximate non-Gaussian p by a Gaussian q:

Approximate loopy UGM by independent distribution or tree-structed UGM:

Variational methods try to find simple distribution q that is closets to target p.
This isn’t consistent like MCMC, but can be very fast.
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Laplace Approximation

A classic variational method is the Laplace approximation.
1 Find an x that maximizes p(x),

x∗ ∈ argmin
x
{− log p(x)}.

2 Computer second-order Taylor expansion of − log p(x) at x∗.

− log p(x) ≈ f(x∗) +∇f(x∗)︸ ︷︷ ︸
0

T
(x− x∗) +

1

2
(x− x∗)T∇2f(x∗)(x− x∗).

3 Find Gaussian distribution q where − log q(x) has same Taylor expansion.

− log q(x) = f(x∗) +
1

2
(x− x∗)∇2f(x∗)(x− x∗),

so q follows a N (x∗,∇2f(x∗)−1) distribution.

This is the same approximation used by Newton’s method in optimization.
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Laplace Approximation
So Laplace approximation replaces complicated p(x) with Gaussian q(x).

Centered at mode and agreeing with 1st/2nd-derivatives of log-likelihood:

Now you only need to compute Gaussian integrals (linear algebra for many f).
Very fast: just solve an optimization (compared to super-slow MCMC).
Bad approximation if posterior is heavy-tailed, multi-modal, skewed, etc.

It might not even give you the “best” Gaussian approximation:
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Kullback-Leibler (KL) Divergence

How do we define “closeness” between a distribution p and q?

A common measure is Kullback-Leibler (KL) divergence between p and q:

KL(p || q) =
∑
x

p(x) log
p(x)

q(x)
.

Replace sum with integral for continuous families of q distributions.

Also called information gain: “information lost when p is approximated by q”.
If p and q are the same, we have KL(p || q) = 0 (no information lost).
Otherwise, KL(p || q) grows as it becomes hard to predict p from q.

Unfortunately, this requires summing/integrating over p.
The problem we are trying to solve.
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Minimizing Reverse KL Divergence

Instead of using KL, most variational methods minimize reverse KL,

KL(q || p) =
∑
x

q(x) log
q(x)

p(x)
=
∑
x

q(x) log
q(x)

p̃(x)
Z.

which just swaps all p and q values in the definition (KL is not commutative).
Not intuitive: “how much information is lost when we approximate q by p”.

But, reverse KL only needs unnormalized distribution p̃,

KL(q || p) =
∑
x

q(x) log q(x)−
∑
x

q(x) log p̃(x) +
∑
x

q(x) log(Z)

=
∑
x

q(x) log
q(x)

p̃(x)
+ log(Z)︸ ︷︷ ︸

const. in q

.

By non-negativiy of KL this also gives a lower bound on log(Z).
Called the ELBO (“evidence lower bound”).
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Coordinate Optimization: Mean Field Approximation

This “variational lower bound” still seems difficult to work with.
But with appropriate q we can do coordinate optimization.

Consider minimizing reverse KL with independent q,

q(x) =

d∏
j=1

qj(xj),

where we choose q to be conjugate (usually discrete or Gaussian).

If we fix q−j and optimize the functional qj we obtain (see Murphy’s book)

qj(xj) ∝ exp
(
Eq−j [log p̃(x)]

)
,

which we can use to update qj for a particular j.
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Coordinate Optimization: Mean Field Approximation

Each iteration we choose a j and set q based on mean (of neighbours),

qj(xj) ∝ exp
(
Eq−j [log p̃(x)]

)
.

This improves the (non-convex) reverse KL on each iteration.

Applying this update is called:

Mean field method (graphical models).
Variational Bayes (Bayesian inference).
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3 Coordinate-Wise Algorithms

ICM is a coordinate-wise method for approximate decoding:

Choose a coordinate i to update.
Maximize xi keeping other variables fixed.

Gibbs sampling is a coordinate-wise method for approximate sampling:

Choose a coordinate i to update.
Sample xi keeping other variables fixed.

Mean field is a coordinate-wise method for approximate marginalization:

Choose a coordinate i to update.
Update qi(xi)︸ ︷︷ ︸

for all xi

keeping other variables fixed (qi(xi) approximates pi(xi)).
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3 Coordinate-Wise Algorithms
Consider a pairwise UGM:

p(x1, x2, . . . , xd) ∝

(
d∏

i=1

φi(xi)

) ∏
(i,j)∈E

φij(xi, xj)

 ,

ICM for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Set xi to the largest value of Mi(xi).

Gibbs for updating a node i with 2 neighbours (j and k).
1 Compute Mi(xi) = φi(xi)φij(xi, xj)φik(xi, xk) for all xi.
2 Sample xi proportional to Mi(xi).

Mean field for updating a node i with 2 neighbours (j and k).

1 Compute Mi(xi) = exp
(∑

xj
qj(xj) log φij(xi, xj) +

∑
xk
qk(xk) log φik(xi, xk)

)
.

2 Set qi(xi) proportional to φi(xi)Mi(xi).
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Structure Mean Field

Common variant is structured mean field: q function includes some of the edges.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf

Original LDA article proposed a structured mean field approximation.

http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
http://courses.cms.caltech.edu/cs155/slides/cs155-14-variational.pdf
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Previously: Belief Propagation

We’ve discussed belief propagation for forest-structured UGMs.
(undirected graphs with no loops, which must be pairwise)

https://www.quora.com/

Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm

Defines “messages” that can be sent along each edge.
Generalizes forward-backward algorithm.

https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
https://www.quora.com/Probabilistic-graphical-models-what-are-the-relationships-between-sum-product-algorithm-belief-propagation-and-junction-tree-algorithm
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Loopy Belief Propagation

In pairwise UGM, belief propagation “message” from parent p to child c is gven by

Mpc(xc) ∝
∑
xp

φi(xp)φpc(xp, xc)Mjp(xp)Mkp(xp),

assuming that parent p has parents j and k.

We get marginals by multiplying all incoming messages with local potentials.

Loopy belief propagation: a “hacker” approach to approximate marginals:

Choose an edge ic to update.
Update messages Mic(xc) keeping all other messages fixed.
Repeat until “convergence”.

We approximate marginals by multiplying all incoming messages with local potentials.

Empirically much better than mean field, we’ve spent 20 years figuring out why.
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Discussion of Loopy Belief Propagation

Loopy BP decoding is used for “error correction” in WiFi and Skype.
Called “turbo codes” in information theory.

Loopy BP is not optimizing an objective function.
Convergence of loopy BP is hard to characterize: does not converge in general.

If it converges, loopy BP finds fixed point of “Bethe free energy”:
Better approximation than mean field, but not a lower/upper bound.

Recent works give convex variants that upper bound Z.
Tree-reweighted belief propagation.
Variations that are guaranteed to converge.

Messages only have closed-form update for conjugate models.
Can approximate non-conjugate models using expectation propagation.
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Summary

Markov chain Monte Carlo generates a sequence of dependent samples:

But asymptotically these samples come from the posterior.

Metropolis-Hastings allows arbitrary “proposals”.

With good proposals works much better than Gibbs sampling.

Variational methods approximate p with a simpler distribution q.

Mean field approximation minimizes KL divergence with independent q.
Loopy belief propagation is a heuristic that often works well.

Next time: non-parametric Bayes new generative deep learning methods.

I may go over time.
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Metropolis Algorithm Analysis
Metropolis algorithm has qss′ > 0 (sufficient to guarantee stationary distribution is
unique and we reach it) and satisfies detailed balance with target distribution p,

p(s)qss′ = p(s′)qs′s.

We can show this by defining transition probabilities

qss′ = min

{
1,
p̃(s′)

p̃(s)

}
,

and observing that

p(s)qss′ = p(s) min

{
1,
p̃(s′)

p̃(s)

}
= p(s) min

{
1,

1
Z p̃(s

′)
1
Z p̃(s)

}

= p(s) min

{
1,
p(s′)

p(s)

}
= min

{
p(s), p(s′)

}
= p(s′) min

{
1,
p(s)

p(s′)

}
= p(s′)qs′s.
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