CPSC 540: Machine Learning

Topic Models

Mark Schmidt

University of British Columbia

Winter 2019
Last Time: Empirical Bayes and Hierarchical Bayes

- In Bayesian statistics we work with posterior over parameters,

\[p(\theta \mid x, \alpha, \beta) = \frac{p(x \mid \theta)p(\theta \mid \alpha, \beta)}{p(x \mid \alpha, \beta)}. \]

- We discussed empirical Bayes, where you optimize prior using marginal likelihood,

\[\arg\max_{\alpha, \beta} p(x \mid \alpha, \beta) = \arg\max_{\alpha, \beta} \int p(x \mid \theta)p(\theta \mid \alpha, \beta)d\theta. \]

 - Can be used to optimize \(\lambda_j \), polynomial degree, RBF \(\sigma_i \), polynomial vs. RBF, etc.

- We also considered hierarchical Bayes, where you put a prior on the prior,

\[p(\alpha, \beta \mid x, \gamma) = \frac{p(x \mid \alpha, \beta)p(\alpha, \beta \mid \gamma)}{p(x \mid \gamma)}. \]

 - Further protection against overfitting, and can be used to model non-IID data.
Motivation for Topic Models

We want a model of the “factors” making up a set of documents.

- In this context, latent-factor models are called topic models.

Suppose you have the following set of sentences:

- I like to eat broccoli and bananas.
- I ate a banana and spinach smoothie for breakfast.
- Chinchillas and kittens are cute.
- My sister adopted a kitten yesterday.
- Look at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It’s a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce something like:

- Sentences 1 and 2: 100% Topic A
- Sentences 3 and 4: 100% Topic B
- Sentence 5: 60% Topic A, 40% Topic B
- Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
- Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

“Topics” could be useful for things like searching for relevant documents.

http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation
Classic Approach: Latent Semantic Indexing

● Classic methods are based on scores like **TF-IDF**:
 1. **Term frequency**: probability of a word occurring within a document.
 ● E.g., 7% of words in document i are “the” and 2% of the words are “LeBron”.
 2. **Document frequency**: probability of a word occurring across documents.
 ● E.g., 100% of documents contain “the” and 0.01% have “LeBron”.
 3. **TF-IDF**: measures like $(\text{term frequency}) \times \log \frac{1}{\text{(document frequency)}}$.
 ● Seeing “LeBron” tells you a lot about document, seeing ‘the” tells you nothing.

● Many many many variations exist.

● **TF-IDF features are very redundant**.
 ● Consider TF-IDF of “LeBron”, “Durant”, and “Kobe”.
 ● High values of these typically just indicate topic of “basketball”.
 ● Basically a weighted bag of words.

● We want to find **latent factors (‘topics’)** like “basketball”.

- Term frequency: probability of a word occurring within a document.
 - E.g., 7% of words in document i are “the” and 2% of the words are “LeBron”.
- Document frequency: probability of a word occurring across documents.
 - E.g., 100% of documents contain “the” and 0.01% have “LeBron”.
- TF-IDF: measures like $(\text{term frequency}) \times \log \frac{1}{\text{(document frequency)}}$.
 - Seeing “LeBron” tells you a lot about document, seeing ‘the” tells you nothing.

- Many many many variations exist.

- TF-IDF features are very redundant.
 - Consider TF-IDF of “LeBron”, “Durant”, and “Kobe”.
 - High values of these typically just indicate topic of “basketball”.
 - Basically a weighted bag of words.
Modern Approach: Latent Dirichlet Allocation

- **Latent semantic indexing** (LSI) topic model:
 1. Summarize each document by its TF-IDF values.
 2. Run a latent-factor model like PCA or NMF on the matrix.
 3. Treat the latent factors as the “topics”.

- LSI has largely been replace by **latent Dirichlet allocation** (LDA).
 - Hierarchical Bayesian model of all words in a document.
 - Still ignores word order.
 - Tries to explain all words in terms of topics.

- The most cited ML paper in the 00s?

- LDA has several components, we’ll build up to it by parts.
 - We’ll assume all documents have d words and word order doesn’t matter.
Model 1: Categorical Distribution of Words

- Base model: each word x_j comes from a categorical distribution.

$$p(x_j = \text{“the”}) = \theta_{\text{“the”}} \quad \text{where} \quad \theta_{\text{word}} \geq 0 \quad \text{and} \quad \sum_{\text{word}} \theta_{\text{word}} = 1.$$

- So to generate a document with d words:
 - Sample d words from the categorical distribution.

- Drawback: misses that documents are about different “topics”.
 - We want the word distribution to depend on the “topics”.
Model 2: Mixture of Categorical Distributions

- To represent “topics”, we’ll use a mixture model.
 - Each mixture has its own categorical distribution over words.
 - E.g., the “basketball” mixture will have higher probability of “LeBron”.

- So to generate a document with d words:
 - Sample a topic z from a categorical distribution.
 - Sample d word categorical distribution z.

- Drawback: misses that documents may be about more than one topics.
Model 3: Multi-Topic Mixture of Categorical

- Our third model introduces a new vector of “topic proportions” π.
 - Gives percentage of each topic that makes up the document.
 - E.g., 80% basketball and 20% politics.
 - Called probabilistic latent semantic indexing (PLSI).

- So to generate a document with d words given topic proportions π:
 - Sample d topics z_j from categorical distribution π.
 - Sample a word for each z_j from corresponding categorical distribution.

- Drawback: how do we compute π for a new document?
 - This is the same issue we had in our hospitals example.
Model 4: Latent Dirichlet Allocation

- **Latent Dirichlet allocation (LDA)** puts a prior on topic proportions.
 - Conjugate prior for categorical is Dirichlet distribution.

- So to generate a document with \(d \) words given Dirichlet prior:
 - Sample mixture proportions \(\pi \) from the Dirichlet prior.
 - Sample \(d \) topics \(z_j \) from categorical distribution \(\pi \).
 - Sample a word for each \(z_j \) from corresponding categorical distribution.

- This is the generative model, typically fit with MCMC or variational methods.
Latent Dirichlet Allocation (LDA)

Each topic is like a "principal component" or "latent factor"
Latent Dirichlet Allocation (LDA)

1. Sample topic proportions \(\theta \) from Dirichlet.

Each topic is like a "principal component" or "latent factor".
Latent Dirichlet Allocation (LDA)

1. Sample topic proportions θ from Dirichlet.

2. Sample d topics z_d from Θ.

Each topic is like a "principal component" or "latent factor"
Latent Dirichlet Allocation (LDA)

1. Sample topic proportions θ from Dirichlet.
2. Sample 'd' topics z_j from θ.
3. For each z_j sample a word based on frequencies for topic.

Each topic is like a "principal component" or "latent factor"
Figure 2: **Real inference with LDA.** We fit a 100-topic LDA model to 17,000 articles from the journal *Science*. At left is the inferred topic proportions for the example article in Figure 1. At right are the top 15 most frequent words from the most frequent topics found in this article.
Figure 3: A topic model fit to the *Yale Law Journal*. Here there are twenty topics (the top eight are plotted). Each topic is illustrated with its top most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic is more specific than “tax.”

Latent Dirichlet Allocation Example

Health topics in social media:

<table>
<thead>
<tr>
<th>TV & Movies</th>
<th>Games & Sports</th>
<th>School</th>
<th>Conversation</th>
<th>Family</th>
<th>Transportation</th>
<th>Music</th>
</tr>
</thead>
<tbody>
<tr>
<td>watch</td>
<td>killing</td>
<td>ugh</td>
<td>ill</td>
<td>mom</td>
<td>home</td>
<td>voice</td>
</tr>
<tr>
<td>tv</td>
<td>play</td>
<td>class</td>
<td>ok</td>
<td>shes</td>
<td>car</td>
<td>hear</td>
</tr>
<tr>
<td>killing</td>
<td>game</td>
<td>school</td>
<td>hah</td>
<td>dad</td>
<td>drive</td>
<td>feelin</td>
</tr>
<tr>
<td>movie</td>
<td>playing</td>
<td>read</td>
<td>ha</td>
<td>says</td>
<td>walk</td>
<td>lil</td>
</tr>
<tr>
<td>seen</td>
<td>win</td>
<td>test</td>
<td>fine</td>
<td>hes</td>
<td>bus</td>
<td>night</td>
</tr>
<tr>
<td>movies</td>
<td>doing</td>
<td>yeah</td>
<td>sister</td>
<td>driving</td>
<td>bit</td>
<td>music</td>
</tr>
<tr>
<td>more</td>
<td>finish</td>
<td>thanks</td>
<td>tell</td>
<td>trip</td>
<td>music</td>
<td>bit</td>
</tr>
<tr>
<td>watched</td>
<td>reading</td>
<td>hey</td>
<td>mum</td>
<td>ride</td>
<td>listening</td>
<td>listen</td>
</tr>
<tr>
<td>hi</td>
<td>teacher</td>
<td>thats</td>
<td>brother</td>
<td>leave</td>
<td>dental health</td>
<td>listen</td>
</tr>
<tr>
<td></td>
<td>write</td>
<td>xd</td>
<td>thinks</td>
<td>house</td>
<td></td>
<td>sound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Ailment Topics</th>
<th>Ailments</th>
<th>Allergies</th>
<th>Diet & Exercise</th>
<th>Cancer & Serious Illness</th>
<th>Injuries & Pain</th>
<th>Dental Health</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influenza-like Illness</td>
<td>Insomnia & Sleep Issues</td>
<td>Diet & Exercise</td>
<td>Cancer & Serious Illness</td>
<td>Injuries & Pain</td>
<td>Dental Health</td>
</tr>
<tr>
<td>General Words</td>
<td>better</td>
<td>night</td>
<td>body</td>
<td>cancer</td>
<td>hurts</td>
<td>dentist</td>
</tr>
<tr>
<td></td>
<td>hope</td>
<td>bed</td>
<td>pounds</td>
<td>help</td>
<td>knee</td>
<td>appointment</td>
</tr>
<tr>
<td></td>
<td>ill</td>
<td>body</td>
<td>gym</td>
<td>pray</td>
<td>ankle</td>
<td>doctors</td>
</tr>
<tr>
<td></td>
<td>soon</td>
<td>ill</td>
<td>weight</td>
<td>awareness</td>
<td>hurt</td>
<td>tooth</td>
</tr>
<tr>
<td></td>
<td>feeling</td>
<td>work</td>
<td>lost</td>
<td>diagnosed</td>
<td>neck</td>
<td>teeth</td>
</tr>
<tr>
<td></td>
<td>day</td>
<td>day</td>
<td>workout</td>
<td>prayers</td>
<td>och</td>
<td>appt</td>
</tr>
<tr>
<td></td>
<td>flu</td>
<td>lose</td>
<td>lose</td>
<td>died</td>
<td>leg</td>
<td>wisdom</td>
</tr>
<tr>
<td></td>
<td>thanks</td>
<td>days</td>
<td>days</td>
<td>family</td>
<td>arm</td>
<td>eye</td>
</tr>
<tr>
<td></td>
<td>xx</td>
<td>legs</td>
<td>legs</td>
<td>friend</td>
<td>hand</td>
<td>going</td>
</tr>
<tr>
<td></td>
<td>sick</td>
<td>week</td>
<td>week</td>
<td>shes</td>
<td>fell</td>
<td>went</td>
</tr>
<tr>
<td>Symptoms</td>
<td>sore</td>
<td>sore</td>
<td>sore</td>
<td>cancer</td>
<td>pain</td>
<td>infection</td>
</tr>
<tr>
<td></td>
<td>throat</td>
<td>throat</td>
<td>throat</td>
<td>breast</td>
<td>sore</td>
<td>pain</td>
</tr>
<tr>
<td></td>
<td>fever</td>
<td>pain</td>
<td>pain</td>
<td>lung</td>
<td>mouth</td>
<td>mouth</td>
</tr>
<tr>
<td></td>
<td>cough</td>
<td>aching</td>
<td>aching</td>
<td>prostate</td>
<td>ear</td>
<td>ear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stomach</td>
<td>stomach</td>
<td>sad</td>
<td>sinus</td>
<td>sinus</td>
</tr>
</tbody>
</table>

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103408
Latent Dirichlet Allocation Example

Three topics in 100 years of “Vogue” fashion magazine:

- **“Art”**: art, work, collection, american, art gallery, modern art, museum art, metropolitan museum art
- **“Dressmaking”**: inches, waist, collars, vogue pattern, designed, sizes, cents, yard
- **“Advice and Etiquette”**: wedding, people, good, house, answers, correspondents, dinner, vogue

http://dh.library.yale.edu/projects/vogue/topics/
Discussion of Topic Models

- There are many extensions of LDA:
 - We can put prior on the number of words (like Poisson).
 - Correlated and hierarchical topic models learn dependencies between topics.

Figure 2: A portion of the topic graph learned from 15,744 OCR articles from Science. Each node represents a topic, and is labeled with the five most probable words from its distribution; edges are labeled with the correlation between topics.

Discussion of Topic Models

- There are *many* extensions of LDA:
 - We can put prior on the number of words (like Poisson).
 - Correlated and hierarchical topic models learn dependencies between topics.
 - Can be combined with Markov models to capture dependencies over time.
Discussion of Topic Models

- There are *many* extensions of LDA:
 - We can put *prior on the number of words* (like Poisson).
 - *Correlated* and *hierarchical* topic models learn dependencies between topics.
 - Can be combined with *Markov models* to capture dependencies over time.
 - Recent work on better word representations like “*word2vec*” (340, bonus slides).
 - Now being applied *beyond text*, like “cancer mutation signatures”:

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005657
Discussion of Topic Models

- Topic models for analyzing musical keys:

![Graphs showing LDA-based key-profiles for C major and C minor.](http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf)

Figure 2: The C major and C minor key-profiles learned by our model, as encoded by the β matrix. Resulting key-profiles are obtained by transposition.

![Images of key judgments for the first 6 measures of Bach’s Prelude in C minor, WTC-II.](http://cseweb.ucsd.edu/~dhu/docs/nips09_abstract.pdf)

Figure 3: Key judgments for the first 6 measures of Bach’s Prelude in C minor, WTC-II. Annotations for each measure show the top three keys (and relative strengths) chosen for each measure. The top set of three annotations are judgments from our LDA-based model; the bottom set of three are from human expert judgments [5].
Monte Carlo Methods for Topic Models

- **Nasty integrals in topic models:**

\[
P(W, Z, \theta, \varphi; \alpha, \beta) = \prod_{i=1}^{K} P(\varphi_i; \beta) \prod_{j=1}^{M} P(\theta_j; \alpha) \prod_{t=1}^{N} P(Z_{j,t} | \theta_j) P(W_{j,t} | \varphi_{Z_{j,t}}),
\]

where the bold-font variables denote the vector version of the variables. First, \(\varphi \) and \(\theta \) need to be integrated out.

\[
P(Z, W; \alpha, \beta) = \int_{\varphi} \int_{\theta} P(W, Z, \theta, \varphi; \alpha, \beta) \, d\varphi \, d\theta
= \int_{\varphi} \int_{\theta} \prod_{i=1}^{K} P(\varphi_i; \beta) \prod_{j=1}^{M} \prod_{t=1}^{N} P(W_{j,t} | \varphi_{Z_{j,t}}) \, d\varphi \int_{\theta} \prod_{j=1}^{M} P(\theta_j; \alpha) \prod_{t=1}^{N} P(Z_{j,t} | \theta_j) \, d\theta.
\]

How do we actually *use* Monte Carlo for topic models?

First we *write out* the posterior:

$$p(Z, \eta, \Theta | X, \alpha, \beta) = \frac{1}{\prod_{i=1}^{d} \frac{\prod_{j=1}^{n} p(z_j^i | \Theta) p(x_j^i | z_j^i, \eta_j^i)}{\prod_{c=1}^{k} p(\eta_c | \beta)}}$$
Monte Carlo Methods for Topic Models

- How do we actually *use* Monte Carlo for topic models?

- Next we *generate samples from the posterior*:
 - With *Gibbs sampling* we alternate between:
 - Sampling topics given word probabilities and topic proportions.
 - Sampling topic proportions given topics and prior parameters α.
 - Sampling word probabilities given topics, words, and prior parameters β.
 - Have a burn-in period, use thinning, try to monitor convergence, etc.

- Finally, we *use posterior samples to do inference*:
 - Distribution of topic proportions for sample i is frequency in samples.
 - To see if words come from same topic, check frequency in samples.
Outline

1. Topic Models

2. Rejection and Importance Sampling
Overview of Bayesian Inference Tasks

- In **Bayesian** approach, we typically work with the **posterior**

\[p(\theta \mid x) = \frac{1}{Z} p(x \mid \theta)p(\theta), \]

where \(Z \) makes the distribution sum/integrate to 1.

- Typically, we need to compute **expectation of some \(f \) with respect to posterior**, \[
E[f(\theta)] = \int_{\theta} f(\theta)p(\theta \mid x)d\theta.
\]

- **Examples:**
 - If \(f(\theta) = \theta \), we get **posterior mean of \(\theta \)**.
 - If \(f(\theta) = p(\tilde{x} \mid \theta) \), we get **posterior predictive**.
 - If \(f(\theta) = \mathbb{I}(\theta \in S) \) we get **probability of \(S \)** (e.g., marginals or conditionals).
 - If \(f(\theta) = 1 \) and we use \(\tilde{p}(\theta \mid x) \), we get **marginal likelihood \(Z \)**.
Need for Approximate Integration

- Bayesian models allow things that aren’t possible in other frameworks:
 - Optimize the regularizer (empirical Bayes).
 - Relax IID assumption (hierarchical Bayes).
 - Have clustering happen on multiple levels (topic models).

- But posterior often doesn’t have a closed-form expression.
 - We don’t just want to flip coins and multiply Gaussians.

- We once again need approximate inference:
 1. Variational methods.
 2. Monte Carlo methods.

- Classic ideas from statistical physics, that revolutionized Bayesian stats/ML.
Variational Inference vs. Monte Carlo

Two main strategies for approximate inference:

1. **Variational** methods:
 - Approximate p with “closest” distribution q from a tractable family,
 \[p(x) \approx q(x). \]
 - Turns inference into optimization (need to find best q).
 - Called **variational Bayes**.

2. **Monte Carlo** methods:
 - Approximate p with empirical distribution over samples,
 \[p(x) \approx \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[x^i = x]. \]
 - Turns inference into sampling.
 - For Bayesian methods, we’ll typically need to sample from posterior.
Conjugate Graphical Models: Ancestral and Gibbs Sampling

- For **conjugate DAGs**, we can use **ancestral sampling** for unconditional sampling.

- Examples:
 - For LDA, sample π then sample the z_j then sample the x_j.
 - For HMMs, sample the hidden z_j then sample the x_j.

- We can also often use **Gibbs sampling** as an **approximate sampler**.
 - If **neighbours are conjugate** in UGMs.
 - To generate conditional samples in conjugate DAGs.

- However, **without conjugacy our inverse transform trick doesn’t work**.
 - We can’t even sample from the 1D conditionals with this method.
We want to use simple distributions to sample from complex distributions.

Two common strategies are rejection sampling and importance sampling.

We’ve previously seen rejection sampling to do conditional sampling:

- Example: sampling from a Gaussian subject to $x \in [-1, 1]$.

Generate unconditional samples, throw out the ones that aren’t in $[-1, 1]$.
General Rejection Sampling Algorithm

Want to sample from complicated target \(\mathcal{P}(x) \).
General Rejection Sampling Algorithm

We can sample from $g(x)$

Want to sample from complicated target $\bar{p}(x)$.
General Rejection Sampling Algorithm

We can sample from $g(x)$.

$q(x)$ times M such that $Mg(x) \geq p(x)$ for all x.

Want to sample from complicated target $p(x)$.
General Rejection Sampling Algorithm

We can sample from $q(x)$ such that $Mq(x) \geq \hat{p}(x)$ for all x. Want to sample from complicated target $\hat{p}(x)$. $x \rightarrow$ Sample from $q(x)$.
General Rejection Sampling Algorithm

We can sample from \(g(x) \)

Accept if random sample from \([0, M_g(x)]\) is less than \(\tilde{\rho}(x) \)

\(q(x) \) times \(M \) such that \(M q(x) \geq \tilde{\rho}(x) \) for all \(x \).

Want to sample from complicated target \(\tilde{\rho}(x) \).
General Rejection Sampling Algorithm

We can sample from $q(x)$

Accept if random sample from $[0, Mq(x)]$ is less than $\tilde{\rho}(x)$

Reject otherwise.

$g(x)$ times M such that $Mg(x) \geq \tilde{\rho}(x)$ for all x.

Want to sample from complicated target $\tilde{\rho}(x)$.
General Rejection Sampling Algorithm

We can sample from $q(x)$

Accept if random sample from $[0, Mq(x)]$ is less than $\hat{\rho}(x)$

\tilde{x} Sample likely to be accepted

$X \rightarrow$ Sample from $q(x)$

$q(x)$ times \mathcal{M} such that $Mq(x) \geq \hat{\rho}(x)$ for all x.

Want to sample from complicated target $\hat{\rho}(x)$.
General Rejection Sampling Algorithm

We can sample from \(q(x) \)

Accept if random sample from \([0, M q(x)]\) is less than \(\tilde{\rho}(x) \)

Sample likely to be rejected.

\(\text{Reject otherwise.} \)

\(q(x) \) times \('M' \) such that \(M q(x) \geq \tilde{\rho}(x) \) for all \(x \).

Want to sample from complicated target \(\tilde{\rho}(x) \).
General Rejection Sampling Algorithm

Ingredients of a more general rejection sampling algorithm:

1. Ability to evaluate unnormalized $\tilde{p}(x)$,

 $$p(x) = \frac{\tilde{p}(x)}{Z}.$$

2. A distribution q that is easy to sample from.

3. An upper bound M on $\tilde{p}(x)/q(x)$.

Rejection sampling algorithm:

1. Sample x from $q(x)$.
2. Sample u from $U(0, 1)$.
3. Keep the sample if $u \leq \frac{\tilde{p}(x)}{Mq(x)}$.

The accepted samples will be from $p(x)$.
General Rejection Sampling Algorithm

- We can use general rejection sampling for:
 - Sample from Gaussian q to sample from student t.
 - Sample from prior to sample from posterior ($M = 1$),
 $$ p(\theta | x) = \frac{p(x | \theta) p(\theta)}{\leq 1}. $$

- Drawbacks:
 - You may reject a large number of samples.
 - Most samples are rejected for high-dimensional complex distributions.
 - You need to know M.

- Extension in 1D for convex $-\log p(x)$:
 - Adaptive rejection sampling refines piecewise-linear q after each rejection.

Importance Sampling

- **Importance sampling** is a variation that accepts all samples.
 - Key idea is similar to EM,

\[
\mathbb{E}_p[f(x)] = \sum_x p(x) f(x) \\
= \sum_x q(x) \frac{p(x) f(x)}{q(x)} \\
= \mathbb{E}_q \left[\frac{p(x)}{q(x)} f(x) \right],
\]

and similarly for continuous distributions.

- We can sample from \(q \) but reweight by \(p(x)/q(x) \) to sample from \(p \).
- Only assumption is that \(q \) is non-zero when \(p \) is non-zero.
- If you only know unnormalized \(\tilde{p}(x) \), a variant gives approximation of \(Z \).
Importance Sampling

- As with rejection sampling, only efficient if q is close to p.
- Otherwise, weights will be huge for a small number of samples.
 - Even though unbiased, variance can be huge.

- Can be problematic if q has lighter “tails” than p:
 - You rarely sample the tails, so those samples get huge weights.

- As with rejection sampling, doesn’t tend to work well in high dimensions.
Summary

- **Latent Dirichlet allocation**: factor/topic model for discrete data like text.
- **Rejection sampling**: generate exact samples from complicated distributions.
- **Importance sampling**: reweights samples from the wrong distribution.
- Back to MCMC, and variational methods.
In natural language, we often represent words by an index.
- E.g., “cat” is word 124056 among a “bag of words”.

But this may be inefficient:
- Should “cat” and “kitten” share parameters in some way?

We want a latent-factor representation of words.
- Closeness in latent space should indicate similarity.
- Distances could represent meaning?

We could use PCA, LDA, and so on.
- But recent “word2vec” approach is getting a lot of popularity...
Using Context

- Consider these phrases:
 - “The *cat* purred”.
 - “The *kitten* purred”.
 - “black *cat* ran”.
 - “black *kitten* ran”

- Words that occur in the same context likely have similar meanings.

- **Word2vec** uses this insight to design an **MDS distance function**.
Two variations of word2vec:

1. Try to predict word from surrounding words ("continuous bag of words").
2. Try to predict surrounding words from word ("skip-gram").

Train latent-factors to solve one of these supervised learning tasks.
In both cases, each word i is represented by a vector z^i.

We optimize likelihood of word vectors z^i under the model

$$p(x_i | x_{\text{nei}}) = \prod_{j \in \text{nei}} p(x_i | x_j), \quad p(x_i | x_j) \propto \frac{\exp(\langle z^i, z^j \rangle)}{\sum_{k=1}^{K} \exp(\langle z^c, z^j \rangle)}.$$

which is making a strong independence assumption.

Apply gradient descent to NLL as usual:

- Encourages $\langle z^i, z^j \rangle$ to be big for words in same context (making z^i close to z^j).
- Encourages $\langle z^i, z^j \rangle$ to be small for words not appearing in same context.

In CBOW, denominator sums over all words.
In skip-grams, denominator sums over all possible surround words.

Common trick to speed things up:
- Hierarchical softmax.
- Negative sampling (sample terms in denominator).
Bonu Slide: Word2Vec

MDS visualization of a set of related words.

http://sebastianruder.com/secret-word2vec

Distances between vectors might represent semantic relationships.
Bonus Slide: Word2Vec

- Subtracting word vectors to find related words:

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>France - Paris</td>
<td>Italy: Rome</td>
<td>Japan: Tokyo</td>
<td>Florida: Tallahassee</td>
</tr>
<tr>
<td>big - bigger</td>
<td>small: larger</td>
<td>cold: colder</td>
<td>quick: quicker</td>
</tr>
<tr>
<td>Miami - Florida</td>
<td>Baltimore: Maryland</td>
<td>Dallas: Texas</td>
<td>Kona: Hawaii</td>
</tr>
<tr>
<td>Einstein - scientist</td>
<td>Messi: midfielder</td>
<td>Mozart: violinist</td>
<td>Picasso: painter</td>
</tr>
<tr>
<td>Sarkozy - France</td>
<td>Berlusconi: Italy</td>
<td>Merkel: Germany</td>
<td>Koizumi: Japan</td>
</tr>
<tr>
<td>copper - Cu</td>
<td>zinc: Zn</td>
<td>gold: Au</td>
<td>uranium: plutonium</td>
</tr>
<tr>
<td>Berlusconi - Silvio</td>
<td>Sarkozy: Nicolas</td>
<td>Putin: Medvedev</td>
<td>Obama: Barack</td>
</tr>
<tr>
<td>Microsoft - Windows</td>
<td>Google: Android</td>
<td>IBM: Linux</td>
<td>Apple: iPhone</td>
</tr>
<tr>
<td>Microsoft - Ballmer</td>
<td>Google: Yahoo</td>
<td>IBM: McNealy</td>
<td>Apple: Jobs</td>
</tr>
<tr>
<td>Japan - sushi</td>
<td>Germany: bratwurst</td>
<td>France: tapas</td>
<td>USA: pizza</td>
</tr>
</tbody>
</table>

Table 8 shows words that follow various relationships. We follow the approach described above: the relationship is defined by subtracting two word vectors, and the result is added to another word. Thus, for example, Paris - France + Italy = Rome. As it can be seen, accuracy is quite good, although

- Word vectors for 157 languages:
What about **homonyms** and **polysemy**?
- The word vectors would need to account for all meanings.

More recent approaches:
- Try to **cluster the different context** where words appear.
- Use **different vectors for different contexts**.
Multiple Word Prototypes

http://www.socher.org/index.php/Main/ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes