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Last Time: Bayesian Statistics

@ For most of the course, we considered MAP estimation:
w = argmaxp(w | X,y) (train)
w
' = argmaxp(y | &, ) (test).
7
@ But w was random: | have no justification to only base decision on w.

e Ignores other reasonable values of w that could make opposite decision.
@ Last time we introduced Bayesian approach:
e Treat w as a random variable, and define probability over what we want given data:

g = argmaxp(j | #', X, y)
J

— argmax / p(§ | 5, w)p(w | X, y)dw.
g w

Directly follows from rules of probability, and no separate training/testing.
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Coin Flipping Example: MAP Approach

@ MAP vs. Bayesian for a simple coin flipping scenario:
@ Our likelihood is a Bernoulli,
p(H | 0)=90.
@ Our prior assumes that we are in one of two scenarios:

@ The coin has a 50% chance of being fair (6 = 0.5).
@ The coin has a 50% chance of being rigged (6 = 1).

@ Our data consists of three consecutive heads: ‘HHH'.

@ What is the probability that the next toss is a head?
o MAP estimate is § = 1, since p(§ =1 | HHH) > p(0 = 0.5 | HHH).
e So MAP says the probability is 1.

o But MAP overfits: we believed there was a 50% chance the coin is fair.
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Coin Flipping Example: Posterior Distribution

@ Bayesian method needs posterior probability over 6,

p(HHH |0 =1)p(6 =1)
p(HHH)
p(HHH |0 =1)p(6 = 1)
(HHH |6 =0.5)p(6 = 0.5) + p(HHH |6 = 1)p(6 = 1)
(1)(0.5) 8

(1/8)(0.5) + (1)(0.5) ~ 9’

p(@0=1|HHH) = (Bayes rule)

(marg and prod rule) =
p

and similarly we have p(§ = 0.5 | HHH) = §.

@ So given the data, we should believe with probability % that coin is rigged.
o There is still a % probability that it is fair that MAP is ignoring.
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Coin Flipping Example: Posterior Predictive

Posterior predictive gives probability of head given data and prior,

p(H|HHH)=p(H,0 =1| HHH) +p(H,0 = 0.5 | HHH)
=p(H|0=1,HHH)p(0 =1 | HHH)
+p(H|0=05HHH)pO =05 | HHH)

= (1)(8/9) + (0.5)(1/9) = 0.94.

@ So the correct probability given our assumptions/data is 0.94, and not 1.
e Though with a different prior we would get a different answer.

@ Notice that there was no optimization of the parameter 6:
o In Bayesian stats we condition on data and integrate over unknowns.

In Bayesian stats/ML: “all parameters are nuissance parameters”.



Baysics Empirical Bayes

Coin Flipping Example: Discussion

Comments on coin flipping example:

Bayesian prediction uses that HHH could come from fair coin.

As we see more heads, posterior converges to 1.
o MLE/MAP/Bayes usually agree as data size increases.

@ If we ever see a tail, posterior of # = 1 becomes 0.

@ If the prior is correct, then Bayesian estimate is optimal:
o Bayesian decision theory gives optimal action incorporating costs.

If the prior is incorrect, Bayesian estimate may be worse.
e This is where people get uncomfortable about “subjective” priors.

But MLE/MAP are also based on “subjective” assumptions.
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Bayesian Model Averaging

@ In 340 we saw that model averaging can improve performance.
e E.g., random forests average over random trees that overfit.

@ But should all models get equal weight?
e What if we find a random decision stump that fits the data perfectly?
@ Should this get the same weight as deep random trees that likely overfit?

e In science, research may be fraudulent or not based on evidence.
@ Should “vaccines cause autism” or climate change denial models get equal weight?

@ In these cases, naive averaging may do worse.
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Bayesian Model Averaging

@ Suppose we have a set of m probabilistic classifiers w;
e Previously our ensemble method gave all models equal weights,

1 1 1

PG &) = —p(§ | ,w1) + —p(§ | ,w2) + -+ —p(§ | Z,wm).
@ Bayesian model averaging (following rules of probability) weights by posterior,

p(F1Z) =plw | X,y)p(7 | T,w1) + plws | X,9)(F | T, w2)+
T +p(wm | va)p(:g ’ j7wm)‘

@ So we should weight by probability that w; is the correct model.
e Equal weights assume all models are equally probable and fit data equally well.
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Bayesian Model Averaging

@ Weights are posterior, so proportional to likelihood times prior:

p(w; | X,y) o< p(y | X, w;) p(wy) .
—_————

likelihood prior

@ Likelihood gives more weight to models that predict 3 well.

@ Prior should gives less weight to models that are likely to overfit.

@ This is how rules of probability say we should weight models.

e It's annoying that it requires a “prior” belief over models.
e But as n — oo, all weight goes to “correct” model[s] w* as long as p(w*) > 0.
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Bayes for Density Estimation and Generative/Discriminative

@ We can use Bayesian approach for density estimation:
e With data D and parameters 6 we have:
@ Likelihood p(D | 6).

@ Prior p(6).
@ Posterior p(6 | D).

@ We can use Bayesian approach for supervised learning:
o Generative approach (naive Bayes, GDA) are density estimation on X and y:
@ Likelihood p(y, X | w).

@ Prior p(w).
© Posterior p(w | X, y).

o Discriminative approach (logistic regression, neural nets) just conditions on X:
@ Likelihood p(y | X, w).

@ Prior p(w).
@ Posterior p(w | X, y).
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7 Ingredients of Bayesian Inference

Q Likelihood p(y | X, w).

o Probability of seeing data given parameters.

@ Prior p(w | A).

o Belief that parameters are correct before we've seen data.

@ Posterior p(w | X,y, A).
o Probability that parameters are correct after we've seen data.
o We won't use the MAP “point estimate”, we want the whole distribution.

© Predictive p(y | ,w).
o Probability of test label 3 given parameters w and test features Z.
o For example, sigmoid function for logistic regression.
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7 Ingredients of Bayesian Inference

@ Posterior predictive p(y | Z, X, y, A).
o Probability of new data given old, integrating over parameters.
e This tells us which prediction is most likely given data and prior.

© Marginal likelihood p(y | X, \) (also called “evidence”).

o Probability of seeing data given hyper-parameters (integrating over parameters).
o We'll use this later for hypothesis testing and setting hyper-parameters.

@ Cost C(9 | 9).
e The penalty you pay for predicting y when it was really was 3.
e Leads to Bayesian decision theory: predict to minimize expected cost.
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Baysics

Review: Decision Theory
@ Are we equally concerned about “spam” vs. “not spam”

@ Consider a scenario where different predictions have different costs:
Predict / True True “spam”  True “not spam”
100

Predict “spam” 0
Predict “not spam” 10 0

@ In 340 we discussed predictin § given w by minimizing expected cost:

E[Cost(§ = “spam”)] = p(§ = “spam’ )

+ p(g = "not spam” | Z,w)C(
o Consider a case where p(g = “spam” | Z,w) > p(g§ = “not spam” | Z,0).
o We might still predict “not spam” if expected cost is lower.
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Bayesian Decision Theory

@ Bayesian decision theory:
o Instead of using a MAP estimate w, we should use posterior predictive,

E[Cost(j = “spam”)] = p(y = spam | 2, X,y)C(§ = “spam” | §j = “spam”)
)C(g = “"spam” | § = “not spam”).

+ p(g = “not spam” | Z, X,y

e Minimizing this expected cost is the optimal action.

@ Note that there is a lot going on here:
o Expected cost depends on cost and posterior predictive.
o Posterior predictive depends on predictive and posterior
e Posterior depends on likelihood and prior.
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Bayesian Linear Regression

We know that L2-regularized linear regression,

1 A
in— || Xw —y|*+ < |lw|?
argmin 202” w—yl +2Hw||7

corresponds to MAP estimation in the model

Y~ Nwlz' o?), wj~ N0,

By some tedious Gaussian identities, the posterior has the form
L (1 p - T L o7 -
w| X, y~N | = | X X+ Xy, | 5 X" X+ .
g g g

Notice that mean of posterior is the MAP estimate (not true in general).

Bayesian perspective gives us variability in w and optimal predictions given prior.

But it also gives different ways to choose A and choose basis.
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Learning the Prior from Data?

@ Can we use the training data to set the hyper-parameters?

@ In theory: No!

e It would not be a “prior”.
e It's no longer the right thing to do.

@ In practice: Yes!
o Approach 1: split into training/validation set or use cross-validation as before.

o Approach 2: optimize the marginal likelihood (“evidence”):

ply | X,A) = / p(y | X, w)p(w | N)dw.

w

e Also called type Il maximum likelihood or evidence maximization or empirical Bayes.
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Digression: Marginal Likelihood in Gaussian-Gaussian Model

@ Suppose we have a Gaussian likelihood and Gaussian prior,
Y~ N(wlzh o?), wj~N(O,27h).
@ The joint probability of y* and wj is given by
1 2 A 2
p(y,w | X,A) < exp | —5— [ Xw —y[|” = Sllw|” ).
20 2
@ The marginal likelihood integrates the joint over the nuissance parameter w,
oy X0 = [ plyw] X, Ndu
w

@ Solving the Gaussian integral gives a marginal likelihood of

T -1 1
ply | X,A) o |C|7Y2 exp (_yC2y> , C=0"T+ XXXT.
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Type Il Maximum Likelihood for Basis Parameter

e Consider polynomial basis, and treat degree M as a hyper-parameter:

40
Model Evidence
20 |
e /
0]

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
e Marginal likelihood (evidence) is highest for M = 2.
e "Bayesian Occam’s Razor": prefers simpler models that fit data well.
o p(y | X, A) is small for M =7, since 7-degree polynomials can fit many datasets.
e It's actually non-monotonic in M: it prefers M =0 and M =2 over M = 1.
o Model selection criteria like BIC are approximations to marginal likelihood as n — oc.


http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf
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Type Il Maximum Likelihood for Polynomial Basis

@ Why is the marginal likelihood high for degree 2 but not degree 77
e Marginal likelihood for degree 2:

p<y|X,A>=A041[02p<y|X,w>p<w|A)dw

e Marginal likelihood for degree 7:

p(y'X’”‘/wo/wl/m/wz/w4/w5/u,6/w7p(y'X’W(“"A)d“"

o Higher-degree integrates over high-dimensional volume:
@ A non-trivial proportion of degree 2 functions fit the data really well.

@ There are many degree 7 functions that fit the data even better,
but they are a much smaller proportion of all degree 7 functions.
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Bayes Factors for Bayesian Hypothesis Testing
@ Suppose we want to compare hypotheses:
o E.g., “this data is best fit with linear model” vs. a degree-2 polynomial.
@ Bayes factor is ratio of marginal likelihoods,

p(y | X, degree 2)
p(y | X,degree 1)’

o If very large then data is much more consistent with degree 2.
e A common variation also puts prior on degree.

@ A more direct method of hypothesis testing:

e No need for null hypothesis, “power" of test, p-values, and so on.
o As usual can only tell you which model is likely, not whether any are correct.
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American Statistical Assocation:

e “Statement on Statistical Significance and P-Values”.
@ http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108

“Hack Your Way To Scientific Glory":

@ https://fivethirtyeight.com/features/science-isnt-broken

“Replicability crisis” in social psychology and many other fields:
@ https://en.wikipedia.org/wiki/Replication_crisis

@ http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375

“T—TeStS Aren't MonotoniC”: https://www.naftaliharris.com/blog/t-test-non-monotonic

Bayes factors don't solve problems with p-values and multiple testing.
e But they give an alternative view, are more intuitive, and make assumptions clear.

Some notes on various issues associated with Bayes factors:

@ http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf


http://amstat.tandfonline.com/doi/pdf/10.1080/00031305.2016.1154108
https://fivethirtyeight.com/features/science-isnt-broken
https://en.wikipedia.org/wiki/Replication_crisis
http://www.nature.com/news/big-names-in-statistics-want-to-shake-up-much-maligned-p-value-1.22375
https://www.naftaliharris.com/blog/t-test-non-monotonic
http://www.aarondefazio.com/adefazio-bayesfactor-guide.pdf

Learning Principles

Maximum likelihood:
w € argmax p(y | X, w) g € argmaxp(y | Z,w).
w g
MAP:
w € argmaxp(w | X,y, A) g € argmaxp(y | Z,w).
w ]
e Optimizing A in this setting does not work: sets A = 0.
Bayesian (no “learning”):

g€ argran/ p(@ | Z,wp(w | X, y, A)dw.
I w

Type Il maximum likelihood (“learn hyper-parameters”):

\e argmaxp(y | X, A) 7€ argmax/ p(y | Z,w)p(w | X, vy, X)dw.
A Y w

Empirical Bayes
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Type Il Maximum Likelihood for Regularization Parameter

@ Type Il maximum likelihood maximizes probability of data given hyper-parameters,
e argmaxply | X ). where p(y | X0 = [ ply | X.ulp(w| Mo,
A w

and the integral has closed-form solution if everything is Gaussian.
e You can run gradient descent to choose .

@ We are using the data to optimize the prior (empirical Bayes).
@ Even if we have a complicated model, much less likely to overfit:
e Complicated models need to integrate over many more alternative hypotheses.
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Type Il Maximum Likelihood for Individual Regularization Parameter

o Consider having a hyper-parameter \; for each wj,
y' ~ Nz, 0?1,  w; ~ N(0, )\j_l).

@ Too expensive for cross-validation, but type Il MLE works.
e You can do gradient descent to optimize the ;.

@ Weird fact: this yields sparse solutions.

o "Automatic relevance determination” (ARD)
e Can send A\; — oo, concentrating posterior for w; at exactly 0.

o It tries to “remove some of the integrals”.

e This is L2-regularization, but empirical Bayes naturally encourages sparsity.

@ Non-convex and theory not well understood:
e Tends to yield much sparser solutions than L1-regularization.
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Type Il Maximum Likelihood for Other Hyper-Parameters

o Consider also having a hyper-parameter o; for each 1,
Y~ Nwls' o), w; NN(O,)\?).
@ You can also use type Il MLE to optimize these values.

@ The “automatic relevance determination” selects training examples (o; — 00).
e This is like the support vectors in SVMs, but tends to be much more sparse.

@ Type Il MLE can also be used to learn kernel parameters like RBF variance.
e Do gradient descent on the o values in the Gaussian kernel.
o It will also do something sensible if you use it to choose number of clusters k.

o Or number of states in hidden Markov model, number of latent factors in PCA, etc.

@ Bonus slides: Bayesian feature selection gives probability that w; is non-zero.
e Posterior is much more informative than standard sparse MAP methods.



Summary

Bayesian model averaging and decision theory:
e Model averaging and decision theory based on rules of probability.

Marginal likelihood is probability seeing data given hyper-parameters.

Empirical Bayes optimizes marginal likelihood to set hyper-parameters:

o Allows tuning a large number of hyper-parameters.
e Bayesian Occam’s razor: naturally encourages sparsity and simplicity.

Next time: putting a prior on the prior and relaxing 11D

Empirical Bayes
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Gradient on Validation/Cross-Validation Error

It's also possible to do gradient descent on A to optimize
validation /cross-validation error of model fit on the training data.

For L2-regularized least squares, define w(\) = (XTX + AI)~tXTy.
You can use chain rule to get derivative of validation error E, ;g with respect to A:

2 Buaia(w(3) = Elagalw0)w' (V).

For more complicated models, you can use total derivative to get gradient with
respect to A in terms of gradient/Hessian with respect to w.

However, this is often more sensitive to over-fitting than empirical Bayes approach.
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Bayesian Feature Selection

@ Classic feature selection methods don't work when d >> n:
e AIC, BIC, Mallow's, adjusted-R?, and L1-regularization return very different results.

@ Here maybe all we can hope for is posterior probability of w; = 0.
o Consider all models, and weight by posterior the ones where w; = 0.

@ If we fix A and use L1-regularization, posterior is not sparse.

e Probability that a variable is exactly 0 is zero.
o L1-regularization only leads to sparse MAP, not sparse posterior.
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Bayesian Feature Selection

o Type Il MLE gives sparsity because posterior variance goes to zero.
e But this doesn't give probabiliy of being 0.

@ We can encourage sparsity in Bayesian models using a spike and slab prior:

P e e —
)

e Mixture of Dirac delta function at 0 and another prior with non-zero variance.
o Places non-zero posterior weight at exactly 0.
o Posterior is still non-sparse, but answers the question:

e "“What is the probability that variable is non-zero”?
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Bayesian Feature Selection

Monte Carlo samples of w; for 18 features when classifying ‘2" vs. ‘3"
o Requires “trans-dimensional” MCMC since dimension of w is changing.

Positive Variables Negative Variables Neutral Variables
10000 10000

4000
2000 ‘ - ‘ 5000 I 5000 r l
0 a 0
5 0 5 g 5 E-] 0
Positive Vaﬂublts Negative \/uﬂables Neutral Variables
10000 5000 =
5°°°‘ ‘ __.i_ ‘ N
. |
5 D 5 '.‘) 5 5 0 5
Positive Variables Negative Vur\ablvs Neutral Variables
10000 w0 10000
5000 I ! 2000 . I 5000 I
0 o ) J
5 0 5 E-] 0 L) - 0 5
Positive Variables Negative Variables Neutral Variables
10000 10000 10000
5000 I ‘ 5000 I 5000 I
0 U o
-5 5 -5 -] 5 0 5
Positive Vanahles Negative \iar\ables Neutral Variables
10000 10000 ~—
5000 ‘ ‘ I 5000 ‘ I
)
5 ] -5 o 5
Positive Vanahlss Negative Var\ahles Neutral Variables
10000 ~ 5000 10000 -~
5000 I ‘ ‘ 5000 . 1
0 [}
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o "Positive” variables had w; > 0 when fit with L1-regularization.
o “Negative” variables had w; < 0 when fit with L1-regularization.
o “Neutral’ variables had w; = 0 when fit with L1-regularization.
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