CPSC 540: Machine Learning Bayesian Statistics

Mark Schmidt

University of British Columbia

Winter 2019

Motivation: Controlling Complexity

- For many of these tasks, we need very complicated models.
 - We require multiple forms of regularization to prevent overfitting.
- In 340 we saw two ways to reduce complexity of a model:
 - Model averaging (ensemble methods).
 - Regularization (linear models).
- Bayesian methods combine both of these.
 - Average over models, weighted by posterior (which includes regularizer).

Current Hot Topics in Machine Learning

Bayesian learning includes:

- Gaussian processes.
- Approximate inference.
- Bayesian nonparametrics.

Why Bayesian Learning?

- Standard L2-regularized logistic regression steup:
 - Given finite dataset containing IID samples.

• E.g., samples (x^i, y^i) with $x^i \in \mathbb{R}^d$ and $y^i \in \{-1, 1\}$.

 $\bullet\,$ Find "best" w by minimizing NLL with a regularizer to "prevent overfitting".

$$\hat{w} \in \mathop{\rm argmin}_w - \sum_{i=1}^n \log p(y^i \mid x^i, w) + \frac{\lambda}{2} \|w\|^2.$$

• Predict labels of *new* example \tilde{x} using single weights \hat{w} ,

$$\hat{y} = \operatorname{sgn}(\hat{w}^T \tilde{x}).$$

- But data was random, so weight \hat{w} is a random variables.
 - This might put our trust in a \hat{w} where posterior $p(\hat{w} \mid X, y)$ is tiny.

• Bayesian approach: treat w as random and predict based on rules of probability.

Problems with MAP Estimation

- Does MAP make the right decision?
 - Consider three hypothesese $\mathcal{H} = \{$ "lands", "crashes", "explodes" $\}$ with posteriors:

 $p(\text{``lands}'' \mid D) = 0.4, \quad p(\text{``crashes}'' \mid D) = 0.3, \quad p(\text{``explodes}'' \mid D) = 0.3.$

- The MAP estimate is "plane lands", with posterior probability 0.4.
 - But probability of dying is 0.6.
 - If we want to live, MAP estimate doesn't give us what we should do.
- Bayesian approach considers all models: says don't take plane.
- Bayesian decision theory: accounts for costs of different errors.

MAP vs. Bayes

• MAP (regularized optimization) approach maximizes over w:

$$\begin{split} \hat{w} &\in \operatorname*{argmax}_{w} p(w \mid X, y) \\ &\equiv \operatorname*{argmax}_{w} p(y \mid X, w) p(w) \qquad \qquad (\text{Bayes' rule, } w \perp X) \\ \hat{y} &\in \operatorname*{argmax}_{y} p(y \mid \tilde{x}, \hat{w}). \end{split}$$

• Bayesian approach predicts by integrating over possible w:

$$\begin{split} p(\tilde{y} \mid \tilde{x}, X, y) &= \int_{w} p(\tilde{y}, w \mid \tilde{x}, X, y) dw & \text{marginalization rule} \\ &= \int_{w} p(\tilde{y} \mid w, \tilde{x}, X, y) p(w \mid \tilde{x}, X, y) dw & \text{product rule} \\ &= \int_{w} p(\tilde{y} \mid w, \tilde{x}) p(w \mid X, y) dw & \tilde{y} \perp X, y \mid \tilde{x}, w \end{split}$$

• Considers all possible w, and weights prediction by posterior for w.

Motivation for Bayesian Learning

- Motivation for studying Bayesian learning:
 - Optimal decisions using rules of probability (and possibly error costs).
 - Gives estimates of variability/confidence.
 - $\bullet\,$ E.g., this gene has a 70% chance of being relevant.
 - S Elegant approaches for model selection and model averaging.
 - $\bullet\,$ E.g., optimize λ or optimize grouping of w elements.
 - Easy to relax IID assumption.
 - E.g., hierarchical Bayesian models for data from different sources.
 - **O** Bayesian optimization: fastest rates for some non-convex problems.
 - O Allows models with unknown/infinite number of parameters.
 - E.g., number of clusters or number of states in hidden Markov model.
- Why isn't everyone using this?
 - Philosophical: Some people don't like "subjective" prior.
 - Computational: Typically leads to nasty integration problems.

Summary

- Bayesian statistics:
 - Condition on the data, integrate (rather than maximize) over posterior.
 - "All parameters are nuissance parameters".
- Next time: learning the prior?