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Motivation: Controlling Complexity

@ For many of these tasks, we need very complicated models.
o We require multiple forms of regularization to prevent overfitting.

@ In 340 we saw two ways to reduce complexity of a model:

o Model averaging (ensemble methods).
e Regularization (linear models).

@ Bayesian methods combine both of these.
o Average over models, weighted by posterior (which includes regularizer).



Current Hot Topics in Machine Learning

Bayesian learning includes:
@ Gaussian processes.
@ Approximate inference.
@ Bayesian nonparametrics.



Why Bayesian Learning?

@ Standard L2-regularized logistic regression steup:
e Given finite dataset containing IID samples.
o E.g., samples (2%, ") with 2' € R and ' € {—1,1}.
e Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.
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e Predict labels of new example T using single weights w0,
g = sgn(w’ ).

@ But data was random, so weight w is a random variables.
e This might put our trust in a W where posterior p(w | X, y) is tiny.

@ Bayesian approach: treat w as random and predict based on rules of probability.



Problems with MAP Estimation

@ Does MAP make the right decision?
o Consider three hypothesese H = {“lands”, “crashes”, “explodes”} with posteriors:
p(“lands” | D) = 0.4, p(“crashes” | D) = 0.3, p(“explodes” | D) = 0.3.

e The MAP estimate is “plane lands”, with posterior probability 0.4.
e But probability of dying is 0.6.
o If we want to live, MAP estimate doesn’t give us what we should do.

@ Bayesian approach considers all models: says don't take plane.

@ Bayesian decision theory: accounts for costs of different errors.



MAP vs. Bayes
e MAP (regularized optimization) approach maximizes over w:

w € argmaxp(w | X, y)
w
= argmaxp(y | X, w)p(w) (Bayes’ rule, w L X)
w
g € argmaxp(y | Z,w).
y

@ Bayesian approach predicts by integrating over possible w:

p(y |z, X,y) = / p(y,w |z, X, y)dw marginalization rule
w

= / p(g | w, 2, X, y)p(w | z, X, y)dw product rule
w
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o Considers all possible w, and weights prediction by posterior for w.



Motivation for Bayesian Learning

@ Motivation for studying Bayesian learning:
@ Optimal decisions using rules of probability (and possibly error costs).
@ Gives estimates of variability/confidence.
e E.g., this gene has a 70% chance of being relevant.
© Elegant approaches for model selection and model averaging.
e E.g., optimize \ or optimize grouping of w elements.
© Easy to relax IID assumption.
o E.g., hierarchical Bayesian models for data from different sources.
© Bayesian optimization: fastest rates for some non-convex problems.
@ Allows models with unknown/infinite number of parameters.
o E.g., number of clusters or number of states in hidden Markov model.

@ Why isn't everyone using this?
o Philosophical: Some people don't like “subjective” prior.
e Computational: Typically leads to nasty integration problems.



Summary

@ Bayesian statistics:

o Condition on the data, integrate (rather than maximize) over posterior.
o “All parameters are nuissance parameters” .

o Next time: learning the prior?



