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Motivation: Controlling Complexity

For many of these tasks, we need very complicated models.

We require multiple forms of regularization to prevent overfitting.

In 340 we saw two ways to reduce complexity of a model:

Model averaging (ensemble methods).
Regularization (linear models).

Bayesian methods combine both of these.

Average over models, weighted by posterior (which includes regularizer).



Current Hot Topics in Machine Learning

Bayesian learning includes:

Gaussian processes.

Approximate inference.

Bayesian nonparametrics.



Why Bayesian Learning?

Standard L2-regularized logistic regression steup:
Given finite dataset containing IID samples.

E.g., samples (xi, yi) with xi ∈ Rd and yi ∈ {−1, 1}.
Find “best” w by minimizing NLL with a regularizer to “prevent overfitting”.

ŵ ∈ argmin
w
−

n∑
i=1

log p(yi | xi, w) + λ

2
‖w‖2.

Predict labels of new example x̃ using single weights ŵ,

ŷ = sgn(ŵT x̃).

But data was random, so weight ŵ is a random variables.

This might put our trust in a ŵ where posterior p(ŵ | X, y) is tiny.

Bayesian approach: treat w as random and predict based on rules of probability.



Problems with MAP Estimation

Does MAP make the right decision?

Consider three hypothesese H = {“lands′′, “crashes′′, “explodes′′} with posteriors:

p(“lands′′ | D) = 0.4, p(“crashes′′ | D) = 0.3, p(“explodes′′ | D) = 0.3.

The MAP estimate is “plane lands”, with posterior probability 0.4.

But probability of dying is 0.6.
If we want to live, MAP estimate doesn’t give us what we should do.

Bayesian approach considers all models: says don’t take plane.

Bayesian decision theory: accounts for costs of different errors.



MAP vs. Bayes

MAP (regularized optimization) approach maximizes over w:

ŵ ∈ argmax
w

p(w | X, y)

≡ argmax
w

p(y | X,w)p(w) (Bayes’ rule, w ⊥ X)

ŷ ∈ argmax
y

p(y | x̃, ŵ).

Bayesian approach predicts by integrating over possible w:

p(ỹ | x̃, X, y) =
∫
w
p(ỹ, w | x̃, X, y)dw marginalization rule

=

∫
w
p(ỹ | w, x̃,X, y)p(w | x̃, X, y)dw product rule

=

∫
w
p(ỹ | w, x̃)p(w | X, y)dw ỹ ⊥ X, y | x̃, w

Considers all possible w, and weights prediction by posterior for w.



Motivation for Bayesian Learning

Motivation for studying Bayesian learning:
1 Optimal decisions using rules of probability (and possibly error costs).
2 Gives estimates of variability/confidence.

E.g., this gene has a 70% chance of being relevant.

3 Elegant approaches for model selection and model averaging.

E.g., optimize λ or optimize grouping of w elements.

4 Easy to relax IID assumption.

E.g., hierarchical Bayesian models for data from different sources.

5 Bayesian optimization: fastest rates for some non-convex problems.
6 Allows models with unknown/infinite number of parameters.

E.g., number of clusters or number of states in hidden Markov model.

Why isn’t everyone using this?

Philosophical: Some people don’t like “subjective” prior.
Computational: Typically leads to nasty integration problems.



Summary

Bayesian statistics:

Condition on the data, integrate (rather than maximize) over posterior.
“All parameters are nuissance parameters”.

Next time: learning the prior?


