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Feedforward Neural Networks

In 340 we discussed feedforward neural networks for supervised learning.

With 1 hidden layer the classic model has this structure:

Motivation:

For some problems it’s hard to find good features.
This learns features z that are good for particular supervised learning problem.
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Neural Networks as DAG Models

It’s a DAG model but there is an important difference with our previous models:

The latent variables zc are deterministic functions of the xj .

Makes inference given x trivial: if you observe all xj you also observe all zc.

In this case y is the only random variable.
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Neural Network Notation

We’ll continue using our supervised learning notation:

X =


(x1)T

(x2)T

...
(xn)T

 , y =


y1

y2

...
yn

 ,

For the latent features and one hidden layer we’ll use

Z =


(z1)T

(z2)T

...
(zn)T

 , v =


v1
v2
...
vk

 , W =


w1

w2
...
wk

 ,

where Z is n by k and W is k by d.
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Introducing Non-Linearity

We discussed how the “linear-linear” model,

zi = Wxi, ŷi = vT zi,

is degenerate since it’s still a linear model.

The classic solution is to introduce a non-linearity,

zi = h(Wxi), ŷi = vT zi,

where a common-choice is applying sigmoid element-wise,

zic =
1

1 + exp(−wT
c x

i)
,

which is said to be the “activation” of neuron c on example i.
A universal approximator with k a function of n (also true for tanh, ReLU, etc.)
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Deep Neural Networks
In deep neural networks we add multiple hidden layers,

Mathematically, with 3 hidden layers the classic model uses

ŷi = vT h(W 3 h(W 2 h(W 1xi)︸ ︷︷ ︸
zi1

)

︸ ︷︷ ︸
zi2

)

︸ ︷︷ ︸
zi3

.
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Biological Motivation

Deep learning is motivated by theories of deep hierarchies in the brain.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

But most research is about making models work better, not be more brain-like.

https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing
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Deep Neural Network History

Popularity of deep learning has come in waves over the years.

Currently, it is one of the hottest topics in science.

Recent popularity is due to unprecedented performance on some difficult tasks:

Speech recognition.
Computer vision.
Machine translation.

These are mainly due to big datasets, deep models, and tons of computation.

Plus tweaks to classic models and focus on structured networks (CNNs, LSTMs).

For a NY Times article discussing some of the history/successes/issues, see:
https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

https://mobile.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
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Training Deep Neural Networks

If we’re training a 3-layer network with squared error, our objective is

f(v,W 1,W 2,W 3) =
1

2

n∑
i=1

(vTh(W 3h(W 2h(W 1xi)))︸ ︷︷ ︸
ŷi

−yi)2.

Usual training procedure is stochastic gradient.

But we’re discovering sets of tricks to make things easier to tune.

Highly non-convex and notoriously difficult to tune.

Recent empirical/theoretical work indicates non-convexity may not be an issue:

All local minima may be good for “large enough” networks.
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Training Deep Neural Networks

Some common data/optimization tricks we discussed in 340:
Data transformations.

For images, translate/rotate/scale/crop each xi to make more data.

Data standardization: centering and whitening.
Adding bias variables.
Parameter initialization: “small but different”, standardizing within layers.
Step-size selection: “babysitting”, Bottou trick, Adam.
Momentum: heavy-ball and Nesterov-style modifications.
Batch normalization: adaptive standardizing within layers.
ReLU: replacing sigmoid with max{0, wT

c x
i}.

Avoids gradients extremely-close to zero.
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Training Deep Neural Networks

Common forms tricks to fight overfitting:
Standard L2-regularization or L1-regularization “weight decay”.

Sometimes with different λ for each layer.
Recent work shows this introduces bad local optima.

Early stopping of the optimization based on validation accuracy.
Dropout randomly zeroes z values to discourage dependence.
Implicit regularization from using SGD.
Hyper-parameter optimization to choose various tuning parameters.
Special architectures like convolutional neural networks:

Yields Wm that are very sparse and have many tied parameters.
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“Residual” Networks (ResNets)

Suppose we fit a deep neural network to a linearly-separable dataset.
Original features x are sufficient to perfectly classify training data.
For a deep neural network to work, each layer needs to preserve information in x.

You might be “wasting” parameters just re-representing data from previous layers.

Consider residual networks:

https://en.wikipedia.org/wiki/Residual_neural_network

Take a previous (non-transformed) layer as input to current layer.
Also called “skip connections” or “highway networks”.

https://en.wikipedia.org/wiki/Residual_neural_network


Neural Networks Review Neural Networks and Message Passing

“Residual” Networks (ResNets)

ResNets seemingly make learning easier:

You can “default” to just copying the previous layer.
The non-linear transform is only learning how to modify the input.

“Fitting the residual”.

This was a key idea behind first methods that used 100+ layers.

Easy for information about x to reach y through huge number of layers.
Won all tasks in ImageNet 2015 competition.
Evidence that biological networks have skip connections like this.

Dense networks (DenseNets): connect to many previous layers.

Basically gets rid of vanishing gradient issue.
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DenseNets

https://arxiv.org/pdf/1608.06993.pdf

https://arxiv.org/pdf/1608.06993.pdf


Neural Networks Review Neural Networks and Message Passing

Backpropagation as Message-Passing

Computing the gradient in neural networks is called backpropagation.

Derived from the chain rule and memoization of repeated quantities.

We’re going to view backpropagation as a message-passing algorithm.

Key advantages of this view:

It’s easy to handle different graph structures.
It’s easy to handle different non-linear transformations.
It’s easy to handle multiple outputs (as in structured prediction).
It’s easy to add non-deterministic parts and combine with other graphical models.
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Outline

1 Neural Networks Review

2 Neural Networks and Message Passing



Neural Networks Review Neural Networks and Message Passing

Backpropagation Forward Pass

Consider computing the output of a neural network for an example i,

yi = vTh(W 3h(W 2h(W 1xi)))

=

k∑
c=1

vch

 k∑
c′=1

W 3
c′ch

 k∑
c′′=1

W 2
c′′c′h

 d∑
j=1

W 1
c′′jx

i
j

 .

where we’ve assume that all hidden layers have k values.

In the second line, the h functions are single-input single-output.

The nested sum structure is similar to our message-passing structures.

However, it’s easier because it’s deterministic: no random variables to sum over.

The messages will be scalars rather than functions.
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Backpropagation Forward Pass
Forward propagation through neural network as message passing:

yi =

k∑
c=1

vch

 k∑
c′=1

W 3
c′ch

 k∑
c′′=1

W 2
c′′c′h

 d∑
j=1

W 1
c′′jx

i
j


=

k∑
c=1

vch

(
k∑

c′=1

W 3
c′ch

(
k∑

c′′=1

W 2
c′′c′h(Mc′′)

))

=

k∑
c=1

vch

(
k∑

c′=1

W 3
c′ch(Mc′)

)

=

k∑
c=1

vch(Mc)

= My,

where intermediate messages are the z values.
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Backpropagation Backward Pass

The backpropagation backward pass computes the partial derivatives.

For a loss f , the partial derivatives in the last layer have the form

∂f

∂vc
= zi3c f ′(vTh(W 3h(W 2h(W 1xi)))),

where

zi3c′ = h

 k∑
c′=1

W 3
c′ch

 k∑
c′′=1

W 2
c′′c′h

 d∑
j=1

W 1
c′′jx

i
j

 .

Written in terms of messages it simplifies to

∂f

∂vc
= h(Mc)f

′(My).
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Backpropagation Backward Pass

In terms of forward messages, the partial derivatives have the forms:

∂f

∂vc
= h(Mc)f

′(My),

∂f

∂W 3
c′c

= h(Mc′)h
′(Mc)wcf

′(My),

∂f

∂W 2
c′′c′

= h(Mc′′)h
′(Mc′)

k∑
c=1

W 3
c′ch

′(Mc)wcf
′(My),

∂f

∂W 1
jc′′

= h(Mj)h
′(Mc′′)

k∑
c′=1

W 2
c′′c′h

′(Mc′)

k∑
c=1

W 3
c′ch

′(Mc)wcf
′(My),

which are ugly but notice all the repeated calculations.
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Backpropagation Backward Pass

It’s again simpler using appropriate messages

∂f

∂vc
= h(Mc)f

′(My),

∂f

∂W 3
c′c

= h(Mc′)h
′(Mc)wcVy,

∂f

∂W 2
c′′c′

= h(Mc′′)h
′(Mc′)

k∑
c=1

W 3
c′cVc,

∂f

∂W 1
jc′′

= h(Mj)h
′(Mc′′)

k∑
c′=1

W 2
c′′c′Vc′ ,

where Mj = xj .
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Backpropagation as Message-Passing

The general forward message for child c with parents p and weights W is

Mc =
∑
p

Wcph(Mp),

which computes weighted combination of non-linearly transformed parents.

In the first layer we don’t apply h to x.

The general backward message from child c to all its parents is

Vc = h′(Mc)
∑
c′

Wcc′Vc′ ,

which weights the “grandchildren’s gradients”.

In the last layer we use f instead of h.

The gradient of Wcp is h(Mc)Vp, which works for general graphs.
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Automatic Differentiation

Automatic differentiation:
Input is a function.
Output is one or more derivatives of the function.

Forward-mode automatic differentiation:
Computes a directional derivative for cost of evaluating function.

So computing gradient would be d-times more expensive than function.

Low memory requirements.
Most useful for evaluating Hessian-vector products, ∇2f(w)d.

Reverse-mode automatic differentiation:
Computes gradient for cost of evaluating function.
But high memory requirements: need to store intermediate calculations.

Backpropagation is (essentially) a special case.

Reverse-mode is replacing “gradient by hand” (less time-consuming/bug-prone).
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Combining Neural Networks and CRFs
Last time we saw conditional random fields like

p(y | x) ∝ exp

 k∑
c=1

ycv
Txc +

∑
(c,c′)∈E

ycyc′w

 ,

which can use logistic regression at each location c and Ising dependence on yc.

Instead of logistic regression, you could put a neural network in there:

p(y | x) ∝ exp

 k∑
c=1

ycv
Th(W 3h(W 2(W 1xc))) +

∑
(c,c′)∈E

ycyc′w

 .

Sometimes called a conditional neural field or deep structured model.
Backprop generalizes:

1 Forward pass through neural network to get ŷc predictions.
2 Belief propagation to get marginals of yc (or Gibbs sampling if high treewidth).
3 Backwards pass through neural network to get all gradients.
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Automatic Differentiation (AD) vs. Inference

If you use exact inference methods, automatic differentiation will give gradient.

You write message-passing code to compute Z.
AD modifies your code to compute expectations in gradient.

With approximate inference, AD may or may not work:

AD will work for iterative variational inference methods (which we’ll cover late).
AD will not tend to work for Monte Carlo methods.

Can’t AD through sampling (but there exist tricks like “common random numbers”).

Recent trend: run iterative variational method for a fixed number of iterations.

AD can give gradient of result after this fixed number of iterations.
“Train the inference you will use at test time”.
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Motivation: Gesture Recognition

Want to recognize gestures from video:

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

A gesture is composed of a sequence of parts:

And some parts appear in different gestures.

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
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Motivation: Gesture Recognition

We may not know the set of “parts” that make up gestures.

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf

We can consider learn the “parts” and their latent dynamics (transitions).

http://groups.csail.mit.edu/vision/vip/papers/wang06cvpr.pdf
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Motivation: Gesture Recognition

We’re given a labeled video sequence, but don’t observe “parts”:

http://www.lsi.upc.edu/~aquattoni/AllMyPapers/cvpr_07_L.pdf

Our videos are labeled with “gesture” and “background” frames,

But we don’t know the parts (G1, G2, G3, B1, B2, B3) that define the labels.

http://www.lsi.upc.edu/~aquattoni/AllMyPapers/cvpr_07_L.pdf
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Latent-Dynamic Conditional Random Field

Here we could use a latent-dynamic conditional random field

Observed variable xj is the image at time j (in this case xj is a video frame).

The gesture y is defined by sequence of parts zj .
We’re learning what the parts should be.
We’re learning “latent dynamics”: how the hidden parts change over time.

Notice in the above case that the conditional UGM is a tree.
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Neural Networks with Latent-Dynamics

Neural networks with latent dynamics:

Combines deep learning, mixture models, and graphical models.

Achieved among state of the art in several applications.



Neural Networks Review Neural Networks and Message Passing

Convolutional Neural Networks

In 340 we discussed convolutional neural networks (CNNs):

http://blog.csdn.net/strint/article/details/44163869

Convolutional layers where W acts like a convolution (sparse with tied parameters).
Pooling layers that usually take maximum among a small spatial neighbourhood.
Fully-connected layers that use an unrestricted W .

http://blog.csdn.net/strint/article/details/44163869
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Motivation: Beyond Classification
Convolutional structure simplifies the learning task:

Parameter tieing means we have more data to estimate each parameter.
Sparsity drastically reduces number of parameters.

https://www.cs.toronto.edu/~frossard/post/vgg16

We discussed CNNs for image classification: “is this an image of a cat?”.
But many vision tasks are not image classification tasks.

https://www.cs.toronto.edu/~frossard/post/vgg16
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Object Localization
Object localization is task of finding locations of objects:

Need to find where in the image the object is.
May need to recognize more than one object.

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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Region Convolutional Neural Networks: “Pipeline” Approach
Early approach (region CNN):

1 Propose a bunch of potential boxes.
2 Compute features of box using a CNN.
3 Classify each box based on an SVM.
4 Refine each box using linear regression.

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4

Improved on state of the art, but not very elegant with its 4 steps.

https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn-34ea83205de4
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Summary

Neural networks learn features for supervised learning.

For structured prediction, may reduce the need to rely on inference.

Backpropagation can be viewed as a message passing algorithm.

Combining CRFs with deep learning.

You can learn the features and the label dependency at the same time.

Next time: “end-to-end” learning
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