CPSC 540: Machine Learning
Conditional Random Fields

Mark Schmidt

University of British Columbia

Winter 2019
3 Classes of Structured Prediction Methods

3 main approaches to structured prediction (predicting object y given features x):

1. **Generative models** use $p(y \mid x) \propto p(y, x)$ as in naive Bayes.
 - Turns structured prediction into density estimation.
 - But remember how hard it was just to model images of digits?
 - We have to model features and solve supervised learning problem.

2. **Discriminative models** directly fit $p(y \mid x)$ as in logistic regression (next topic).
 - View structured prediction as conditional density estimation.
 - Just focuses on modeling y given x, not trying to model features x.
 - Lets you use complicated features x that make the task easier.

3. **Discriminant functions** just try to map from x to y as in SVMs.
 - Now you don’t even need to worry about calibrated probabilities.
Rain Data without Month Information

- Consider an Ising UGM model for the rain data with tied parameters,

\[p(y_1, y_2, \ldots, y_k) \propto \exp \left(\sum_{c=1}^{k} y_c \omega + \sum_{c=2}^{k} y_c y_{c-1} \nu \right). \]

- First term reflects that “not rain” is more likely.
- Second term reflects that consecutive days are more likely to be the same.
 - This model is equivalent to a Markov chain model.

- Three approaches to modeling that “some months are less rainy”:
 - Mixture/Boltzmann: add extra hidden variables that might act like months.
 - Generative w/ explicit months: add extra variable \(x \) that gives the month.
 - Discriminative: same as above, but condition on \(x \) (don’t model it).
Rain Data with Month Information: Mixture/Boltzmann Approach

- We could add 12 binary latent variable z_j,

$$p(y_1, y_2, \ldots, y_k, z) \propto \exp \left(\sum_{c=1}^{k} y_c \omega + \sum_{c=2}^{k} y_c y_{c-1} \nu + \sum_{c=1}^{k} \sum_{j=1}^{12} y_c z_j \nu_j + \sum_{j=1}^{12} z_j w_j \right),$$

which is a Boltzmann machine.

- Modifies the probability of “rain” for each of the 12 values.

- Inference is more expensive due to the extra variables.
 - Learning is also non-convex since we need to sum over z.
Rain Data with Month Information: Generative Approach

- If we know the months we just could add an explicit month feature x_j

\[
p(y_1, y_2, \ldots, y_k, x) \propto \exp \left(\sum_{c=1}^{k} y_c \omega + \sum_{c=2}^{k} y_c y_{c-1} \nu + \sum_{c=1}^{k} \sum_{j=1}^{12} y_c x_j v_j + \sum_{j=1}^{12} x_j w_j \right),
\]

- Learning might be easier: we’re given known clusters.

- But still have to model distribution x, and density estimation isn’t easy.
 - It’s easy in this case because months are uniform.
 - But in other cases we may want to use a complicated x.
 - And inference is more expensive than chain-structured models.
In conditional random fields we fit distribution conditioned on features x,

$$p(y_1, y_2, \ldots, y_k \mid x) = \frac{1}{Z(x)} \exp \left(\sum_{c=1}^{k} y_c \omega + \sum_{c=2}^{d} y_c y_{c-1} \nu + \sum_{c=1}^{k} \sum_{j=1}^{12} y_c x_j v_j \right).$$

Now we don't need to model x.

- Just need to figure out how x affects y.

This is like logistic regression (no model of x) instead of naive Bayes (modeling x).

- $p(y \mid x)$ (discriminative) vs. $p(y, x)$ (generative).
In **conditional random fields** we fit distribution **conditioned on features** x,

$$p(y_1, y_2, \ldots, y_k \mid x) = \frac{1}{Z(x)} \exp \left(\sum_{c=1}^{k} y_c \omega + \sum_{c=2}^{d} y_c y_{c-1} \nu + \sum_{c=1}^{k} \sum_{j=1}^{12} y_c x_j v_j \right).$$

The **conditional UGM** given x has a **chain-structure**

$$\phi_i(y_i) = \exp \left(y_i \omega + \sum_{j=1}^{12} y_i x_j v_j \right), \quad \phi_{ij}(y_i, y_j) = \exp(y_i y_j \nu),$$

so inference can be done using **forward-backward**.

And it’s log-linear so the **NLL** will be convex.
Rain Data with Month Information

- Samples from CRF conditioned on x for December and July:

- Code available as part of UGM package.
Motivation: Automatic Brain Tumor Segmentation

- **Task:** Identification of tumors in multi-modal MRI.

- **Applications:**
 - Radiation therapy target planning, quantifying treatment response.
 - Mining growth patterns, image-guided surgery.

- **Challenges:**
 - Variety of tumor appearances, similarity to normal tissue.
 - “You are never going to solve this problem”.
Brain Tumour Segmentation with Label Dependencies

- After a lot of pre-processing and feature engineering (convolutions, priors, etc.), the final system used logistic regression to label each pixel as “tumour” or not.

\[
p(y_c \mid x_c) = \frac{1}{1 + \exp(-2y_c w^T x_c)} = \frac{\exp(y_c w^T x_c)}{\exp(w^T x_c) + \exp(-w^T x_c)}
\]

- Gives a high “pixel-level” accuracy, but sometimes gives silly results:

Classifying each pixel independently misses dependence in labels \(y^i \):
 - We prefer neighbouring voxels to have the same value.
Brain Tumour Segmentation with Label Dependencies

- With independent logistic, joint distribution over all labels in one image is

\[
p(y_1, y_2, \ldots, y_k \mid x_1, x_2, \ldots, x_k) = \prod_{c=1}^{k} \frac{\exp(y_c w^T x_c)}{\exp(w^T x_c) + \exp(-w^T x_c)}
\]

\[\propto \exp\left(\sum_{c=1}^{d} y_c w^T x_c\right),\]

where here \(x_c\) is the feature vector for position \(c\) in the image.

- We can view this as a log-linear UGM with no edges,

\[
\phi_c(y_c) = \exp(y_c w^T x_c),
\]

so given the \(x_c\) there is no dependence between the \(y_c\).
Brain Tumour Segmentation with Label Dependencies

- Adding an Ising-like term to model dependencies between y_i gives

$$p(y_1, y_2, \ldots, y_k \mid x_1, x_2, \ldots, x_k) \propto \exp \left(\sum_{c=1}^{k} y_c w^T x_c + \sum_{(c,c') \in E} y_c y_{c'} v \right),$$

- Now we have the same "good" logistic regression model, but v controls how strongly we want neighbours to be the same.

- Note that we’re going to jointly learn w and v.
 - We’ll find the optimal joint logistic regression and Ising model.
Conditional Random Fields for Segmentation

- Recall the performance with the independent classifier:

- The pairwise CRF better modelled the “guilt by association”:

(We were using edge features $x_{cc'}$ too, see bonus.)
Conditional Random Fields

- The [b]rain CRF can be written as a **conditional log-linear** models,

\[p(y \mid x, w) = \frac{1}{Z(x)} \exp(w^T F(x, y)), \]

for some parameters \(w \) and features \(F(x, y) \).

- The **NLL is convex** and has the form

\[-\log p(y \mid x, w) = -w^T F(x, y) + \log Z(x), \]

and the gradient can be written as

\[\nabla \log p(y \mid x, w) = -F(x, y) + \mathbb{E}_y \mid x [F(x, y)]. \]

- Unlike before, we now have a \(Z(x) \) and set of marginals for each \(x \).
 - Train using gradient methods like quasi-Newton, SG, or SAG.
Outline

1. Conditional Random Fields
2. Beyond Basic CRFs
Modeling OCR Dependencies

What dependencies should we model for this problem?

Input: \textbf{Paris}

Output: "Paris"

- $\phi(y_c, x_c)$: potential of individual letter given image.
- $\phi(y_{c-1}, y_c)$: dependency between adjacent letters ('q-u').
- $\phi(y_{c-1}, y_c, x_{c-1}, x_c)$: adjacent letters and image dependency.
- $\phi_c(y_{i-1}, y_c)$: inhomogeneous dependency (French: ‘e-r’ ending).
- $\phi_c(y_{c-2}, y_{c-1}, y^i)$: third-order and inhomogeneous (English: ‘i-n-g’ end).
- $\phi(y \in \mathcal{D})$: is y in dictionary \mathcal{D}?
Tractability of Discriminative Models

- Features can be very complicated, since we just condition on the x_c.

- Given the x_c, tractability depends on the conditional UGM on the y_c.
 - Inference/decoding will be fast or slow, depending on the y_c graph.

- Besides “low treewidth”, some other cases where exact computation is possible:
 - Semi-Markov chains (allow dependence on time you spend in a state).
 - Context-free grammars (allows potentials on recursively-nested parts of sequence).
 - Sum-product networks (restrict potentials to allow exact computation).
 - “Dictionary” feature is non-Markov, but exact computation still easy.

- We can alternately use our previous approximations:
 1. Pseudo-likelihood (what we used).
 2. Monte Carlo approximate inference (better but slower).
 3. Variational approximate inference (fast, quality varies).
CRF “Product of Marginals” Objective

In CRFs we typically optimize the likelihood, $p(y \mid x, w)$.
- This focuses on getting the joint likelihood of the sequence y right.

What if we are interested in getting the “parts” y_c right?
- In sequence labeling, your error is “number of positions you got wrong” in sequence.
- As opposed to “did you get the whole sequence right?”

In this setting, it could make more sense to optimized the product of marginals:

$$
\prod_{c=1}^{k} p(y_c \mid x, w) = \prod_{c=1}^{k} \sum_{\{y' \mid y_c' = y_c\}} p(y' \mid x, w).
$$

- Non-convex, but probably a better objective.
- If you know how to do inference, this paper shows how to get gradients:

Learning for Structured Prediction (Big Picture)

3 types of classifiers discussed in CPSC 340/540:

<table>
<thead>
<tr>
<th>Model</th>
<th>“Classic ML”</th>
<th>Structured Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generative model</td>
<td>$p(y, x)$</td>
<td>Naive Bayes, GDA</td>
</tr>
<tr>
<td>Discriminative model</td>
<td>$p(y</td>
<td>x)$</td>
</tr>
<tr>
<td>Discriminant function</td>
<td>$y = f(x)$</td>
<td>SVM</td>
</tr>
</tbody>
</table>

- Discriminative models don’t need to model x.
 - Don’t need “naive Bayes” or Gaussian assumptions.

- Discriminant functions don’t even worry about probabilities.
 - Based on decoding, which is different than inference in structured case.
 - Useful when inference is hard but decoding is easy.
 - Examples include “attractive” graphical models, matching problems, and ranking.
 - I put my material on structured SVMs here:
 - https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L28.5.pdf
Deep Learning for Structured Prediction (Big Picture)

- How is deep learning being used for structured prediction?
 - Discriminative approaches are most popular.

- Typically you will send x through a neural network to get representation z, then:
 1. Perform inference on $p(y \mid z)$ (backpropagate using exact/approximate marginals).
 - Neural network learns features, CRF “on top” models dependencies in y_c.
 2. Run m approximate inference steps on $p(y \mid z)$, backpropagate through these steps.
 - “Learn to use the inference you will be using” (usually with variational inference).
 3. Just model each $p(y_c \mid z)$ (treat labels as independent given representation).
 - Assume that structure is already captured in neural network goo (no inference).

- Current trend: less dependence on inference and more on learning representation.
 - “Just use an RNN rather than thinking about stochastic grammars.”
 - We’re improving a lot at learning features, less so for inference.
 - This trend may or may not reverse in the future...
Summary

- **3 types of structured prediction:**
 - Generative models, discriminative models, discriminant functions.

- **Conditional random fields** generalize logistic regression:
 - Discriminative model allowing dependencies between labels.
 - Log-linear parameterization again leads to convexity.
 - But requires inference in graphical model.

- **Reducing the reliance on inference** is a current trend in the field.

- Next time: Mike will go over CNNs in detail.
Brain Tumour Segmentation with Label Dependencies

- We got a bit more fancy and used edge features x^{ij},

$$p(y^1, y^2, \ldots, y^d \mid x^1, x^2, \ldots, x^d) = \frac{1}{Z} \exp \left(\sum_{i=1}^{d} y^i w^T x^i + \sum_{(i,j) \in E} y^i y^j v^T x^{ij} \right).$$

- For example, we could use $x^{ij} = 1/(1 + |x^i - x^j|)$.
 - Encourages y_i and y_j to be more similar if x_i and x_j are more similar.

- This is a pairwise UGM with

$$\phi_i(y^i) = \exp(y^i w^T x^i), \quad \phi_{ij}(y^i, y^j) = \exp(y^i y^j v^T x^{ij}),$$

so it didn’t make inference any more complicated.
Posterior Regularization

In some cases it might make sense to use **posterior regularization**: Regularize the probabilities in the resulting model.

Consider an NLP labeling task where
- You have a small amount of labeled sentences.
- You have a huge amount of unlabeled sentences.

Maximize labeled likelihood, plus **total-variation penalty on** \(p(y_c \mid x, w) \) **values**.
- Give high regularization weights to **words appearing in same trigrams**:

Useful for “out of vocabulary” words (words that don’t appear in labeled data).