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3 Classes of Structured Prediction Methods

3 main approaches to structured prediction (predicting object y given features z):
@ Generative models use p(y | ) o< p(y,x) as in naive Bayes.
e Turns structured prediction into density estimation.

o But remember how hard it was just to model images of digits?
@ We have to model features and solve supervised learning problem.

@ Discriminative models directly fit p(y | ) as in logistic regression (next topic).
e View structured prediction as conditional density estimation.

o Just focuses on modeling y given x, not trying to model features x.
o Lets you use complicated features x that make the task easier.

© Discriminant functions just try to map from z to y as in SVMs.
e Now you don't even need to worry about calibrated probabilities.



Structured Support Vector Machines

SVMs and Likelihood Ratios

@ Logistic regression optimizes a likelihood of the form
p(y' | 2, w) o exp(yw’ z?).

@ But if we only want correct decisions it's sufficient to have

Py |2’ w)

p(—y [ahw) =

for any k > 1.
@ Taking logarithms and plugging in probabilities gives

yiwlz! +log Z — (—y'wlz?) —log Z > log k
@ Since k is arbitrary let's use log(k) = 2,

yina;i > 1.
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SVMs and Likelihood Ratios

@ So to classify all 7 correctly it's sufficient that
yiwlel > 1,

but this linear program may have no solutions.
@ To give solution, allow non-negative “slack” r; and penalize size of 7,

n
argmiani with y'wlz?>1—7 and r; >0.

w,r 5
’ =1

o If we apply our Day 2 linear programming trick in reverse this minimizes
n
flw)=>"[1—ywa]*
i=1
and adding an L2-regularizer gives the standard SVM objective.
o The notation [a]T means max{0, a}.
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Multi-Class SVMs: nk-Slack Formulation

@ With multi-class logistic regression we use

ply' = c |z’ w) o exp(uwy ).
e If want correct decisions it's sufficient for all 4/ # 3 that
i 2w
p(y/ | z*,w) > k.
Py |z w)
@ Following the same steps as before, this corresponds to
wgazz —w, Lt > 1.
@ Adding slack variables our linear programming trick gives

ZZ l—w s —i—w/m]+

=1y Ayt

which with L2-regularization we'll call the nk-slack multi-class SVM.
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Multi-Class SVMs: n-Slack Formulation
@ If we want correct decisions it's also sufficent that

p(y' | 2", w)

max, i p(y’ | 2, w)

@ This leads to the constraints

max{w 't —w 'y > 1.
y'7#Y

@ Following the same steps gives an alternate objective
n

fw) = max[l—wysv —I—w =T,
o VY

which with L2-regularization we’ll call the n-slack multi-class SVM.
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Multi-Class SVMs: nk-Slack vs. n-Slack
@ Our two formulations of multi-class SVMs:
= i i A
v =3 S - what +wball + SIWIE,
i=1 g/ Fyt

n
. . A
FW) = max[l —wpa’ +wya’|" + Z[|W|E.
VY 2

@ The nk-slack loss penalizes based on all /' that could be confused with 3.

@ The n-slack loss only penalizes based on the “most confusing” alternate example.

@ While nk-slack often works better, n-slack can be used for structured prediction...
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Hidden Markov Support Vector Machines

@ For decoding in conditional random fields to get the entire labeling correct we need

for all alternative configuraitons /.
@ Following the same steps are before we obtain
n S . A
flw) = Zg}%[l —logp(y' | 2’ w) +logp(y’ | «',w)]* + Jlwll?,
i=1
the hidden Markov support vector machine (HMSVM).

@ Tries to make log-probability of true y* greater than for other ' by more than 1.
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Hidden Markov Support Vector Machines

@ Two problems with the HMSVM:

@ It requires finding second-best decoding, which is harder than decoding.
@ It views any alternative labeling 4/ as equally bad.

e Suppose that y* = [1 1 1 1], and predictions of two models are
y=[1 101, ¢=[0 0 0 0],

should both models receive the same loss on this example?
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Adding a Loss Function

@ We can fix both HMSVM issues by replacing the “correct decision” constraint,
logp(y" | ', w) —logp(y' | 2',w) > 1,
with a constraint containing a loss function g,
logp(y' | ', w) —logp(y' | =',w) > g(y',y/).

e Usually we take g(y',y’) to be the difference between y and 3/’

e If g(y*,y*) = 0, you can maximize over all 3/ instead of 3/ # y".

o Further, if g is written as sum of functions depending on the graph edges, finding
“most violated" constraint is equivalent to decoding.
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Structured SVMs

@ These constraints lead to the max-margin Markov network objective,
n . S . A
f(w) = Zmy%}X[g(yl, y') —logp(y' | 2*,w) +logp(y | «',w)]" + glleQ,
i=1
which is also known as a structured SVM.

@ Beyond learning principle, key differences between CRFs and SSVMs:
e SSVMs require decoding, not inference, for learning:
@ Exact SSVMs in cases like graph cuts, matchings, rankings, etc.
e SSVMs have loss function for complicated accuracy measures:
@ But loss needs to decompose over parts for tractability.
e Could also formulate ‘loss-augmented’ CRFs.

@ We can also train with approximate decoding methods.
e State of the art training: block-coordinate Frank Wolfe (bonus slides).
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SVMs for Ranking with Pairwise Preference

@ Suppose we want to rank examples.
@ A common setting is with features x* and pairwise preferences:
o List of objects (i, j) where we want 3* > 7.

@ Assuming a log-linear model,
i i T i
p(y' | #',w) o< exp(w” z*),
we can derive a loss function based on the pairwise preference decisiosn,

p(y' | ', w)
p(y? | 29, w)

— Y

which gives a loss function of the form

flw) = Z [1—wla® +wlad] T,

(4,7)ER
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Fitting Structured SVMs

Overview of progress on training SSVMs:

e Cutting plane and bundle methods (e.g., svmStruct software):
o Require O(1/¢) iterations.
e Each iteration requires decoding on every training example.

@ Stochastic sub-gradient methods:
e Each iteration requires decoding on a single training example.
o Still requires O(1/e) iterations.
o Need to choose step size.

@ Dual Online exponentiated gradient (OEG):
o Allows line-search for step size and has O(1/¢) rate.
o Each iteration requires inference on a single training example.

@ Dual block-coordinate Frank-Wolfe (BCFW):

Each iteration requires decoding on a single training example.
Requires O(1/e) iterations.

Closed-form optimal step size.

Theory allows approximate decoding.
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Block Coordinate Frank Wolfe
Key ideas behind BCFW for SSVMs:
@ Dual problem has as the form
min F(a) = f(Aa) =Y fi(a).
a; EM; i
where f is smooth.
@ Problem structure where we can use block coordinate descent:

o Normal coordinate updates intractable because «; € |V)|.
e But Frank-Wolfe block-coordinate update is equivalent to decoding

s = argmin F(a) + (V;F(a), s — a;).
s'eM;
o, = a; — (s — o).
e Can implement algorithm in terms of primal variables.
@ Connections between Frank-Wolfe and other algorithms:

e Frank-Wolfe on dual problem is subgradient step on primal.
o 'Fully corrective’ Frank-Wolfe is equivalent to cutting plane.
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