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Structured Support Vector Machines

3 Classes of Structured Prediction Methods

3 main approaches to structured prediction (predicting object y given features x):
1 Generative models use p(y | x) ∝ p(y, x) as in naive Bayes.

Turns structured prediction into density estimation.

But remember how hard it was just to model images of digits?
We have to model features and solve supervised learning problem.

2 Discriminative models directly fit p(y | x) as in logistic regression (next topic).
View structured prediction as conditional density estimation.

Just focuses on modeling y given x, not trying to model features x.
Lets you use complicated features x that make the task easier.

3 Discriminant functions just try to map from x to y as in SVMs.

Now you don’t even need to worry about calibrated probabilities.
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SVMs and Likelihood Ratios

Logistic regression optimizes a likelihood of the form

p(yi | xi, w) ∝ exp(yiwTxi).

But if we only want correct decisions it’s sufficient to have

p(yi | xi, w)
p(−yi | xi, w)

≥ κ,

for any κ > 1.

Taking logarithms and plugging in probabilities gives

yiwTxi + logZ − (−yiwTxi)− logZ ≥ log κ

Since κ is arbitrary let’s use log(κ) = 2,

yiwTxi ≥ 1.
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SVMs and Likelihood Ratios

So to classify all i correctly it’s sufficient that

yiwTxi ≥ 1,

but this linear program may have no solutions.

To give solution, allow non-negative “slack” ri and penalize size of ri,

argmin
w,r

n∑
i=1

ri with yiwTxi ≥ 1− ri and ri ≥ 0.

If we apply our Day 2 linear programming trick in reverse this minimizes

f(w) =

n∑
i=1

[1− yiwTxi]+

and adding an L2-regularizer gives the standard SVM objective.
The notation [α]+ means max{0, α}.
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Multi-Class SVMs: nk-Slack Formulation

With multi-class logistic regression we use

p(yi = c | xi, w) ∝ exp(wTc x
i).

If want correct decisions it’s sufficient for all y′ 6= yi that

p(yi | xi, w)
p(y′ | xi, w)

≥ κ.

Following the same steps as before, this corresponds to

wTyix
i − wTy′xi ≥ 1.

Adding slack variables our linear programming trick gives

f(W ) =
n∑
i=1

∑
y′ 6=yi

[1− wTyix
i + wTy′x

i]+,

which with L2-regularization we’ll call the nk-slack multi-class SVM.
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Multi-Class SVMs: n-Slack Formulation

If we want correct decisions it’s also sufficent that

p(yi | xi, w)
maxy′ 6=yi p(y

′ | xi, w)
.

This leads to the constraints

max
y′ 6=yi
{wTyix

i − wTy′xi} ≥ 1.

Following the same steps gives an alternate objective

f(W ) =

n∑
i=1

max
y′ 6=yi

[1− wTyix
i + wTy′x

i]+,

which with L2-regularization we’ll call the n-slack multi-class SVM.
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Multi-Class SVMs: nk-Slack vs. n-Slack

Our two formulations of multi-class SVMs:

f(W ) =

n∑
i=1

∑
y′ 6=yi

[1− wTyix
i + wTy′x

i]+ +
λ

2
‖W‖2F ,

f(W ) =

n∑
i=1

max
y′ 6=yi

[1− wTyix
i + wTy′x

i]+ +
λ

2
‖W‖2F .

The nk-slack loss penalizes based on all y′ that could be confused with yi.

The n-slack loss only penalizes based on the “most confusing” alternate example.

While nk-slack often works better, n-slack can be used for structured prediction...
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Hidden Markov Support Vector Machines

For decoding in conditional random fields to get the entire labeling correct we need

p(yi | xi, w)
p(y′ | xi, w)

≥ γ,

for all alternative configuraitons y′.

Following the same steps are before we obtain

f(w) =

n∑
i=1

max
y′ 6=y

[1− log p(yi | xi, w) + log p(y′ | xi, w)]+ +
λ

2
‖w‖2,

the hidden Markov support vector machine (HMSVM).

Tries to make log-probability of true yi greater than for other y′ by more than 1.
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Hidden Markov Support Vector Machines

Two problems with the HMSVM:
1 It requires finding second-best decoding, which is harder than decoding.
2 It views any alternative labeling y′ as equally bad.

Suppose that yi =
[
1 1 1 1

]
, and predictions of two models are

y′ =
[
1 1 0 1

]
, y′ =

[
0 0 0 0

]
,

should both models receive the same loss on this example?
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Adding a Loss Function

We can fix both HMSVM issues by replacing the “correct decision” constraint,

log p(yi | xi, w)− log p(y′ | xi, w) ≥ 1,

with a constraint containing a loss function g,

log p(yi | xi, w)− log p(y′ | xi, w) ≥ g(yi, y′).

Usually we take g(yi, y′) to be the difference between yi and y′.

If g(yi, yi) = 0, you can maximize over all y′ instead of y′ 6= yi.

Further, if g is written as sum of functions depending on the graph edges, finding
“most violated” constraint is equivalent to decoding.
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Structured SVMs

These constraints lead to the max-margin Markov network objective,

f(w) =

n∑
i=1

max
y′

[g(yi, y′)− log p(yi | xi, w) + log p(y′ | xi, w)]+ +
λ

2
‖w‖2,

which is also known as a structured SVM.

Beyond learning principle, key differences between CRFs and SSVMs:
SSVMs require decoding, not inference, for learning:

Exact SSVMs in cases like graph cuts, matchings, rankings, etc.

SSVMs have loss function for complicated accuracy measures:
But loss needs to decompose over parts for tractability.
Could also formulate ‘loss-augmented’ CRFs.

We can also train with approximate decoding methods.
State of the art training: block-coordinate Frank Wolfe (bonus slides).
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SVMs for Ranking with Pairwise Preference

Suppose we want to rank examples.

A common setting is with features xi and pairwise preferences:
List of objects (i, j) where we want yi > yj .

Assuming a log-linear model,

p(yi | xi, w) ∝ exp(wTxi),

we can derive a loss function based on the pairwise preference decisiosn,

p(yi | xi, w)
p(yj | xj , w)

≥ γ,

which gives a loss function of the form

f(w) =
∑

(i,j)∈R

[1− wTxi + wTxj ]+.
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Fitting Structured SVMs
Overview of progress on training SSVMs:

Cutting plane and bundle methods (e.g., svmStruct software):
Require O(1/ε) iterations.
Each iteration requires decoding on every training example.

Stochastic sub-gradient methods:
Each iteration requires decoding on a single training example.
Still requires O(1/ε) iterations.
Need to choose step size.

Dual Online exponentiated gradient (OEG):
Allows line-search for step size and has O(1/ε) rate.
Each iteration requires inference on a single training example.

Dual block-coordinate Frank-Wolfe (BCFW):
Each iteration requires decoding on a single training example.
Requires O(1/ε) iterations.
Closed-form optimal step size.
Theory allows approximate decoding.
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Block Coordinate Frank Wolfe
Key ideas behind BCFW for SSVMs:

Dual problem has as the form

min
αi∈Mi

F (α) = f(Aα)−
∑
i

fi(αi).

where f is smooth.
Problem structure where we can use block coordinate descent:

Normal coordinate updates intractable because αi ∈ |Y|.
But Frank-Wolfe block-coordinate update is equivalent to decoding

s = argmin
s′∈Mi

F (α) + 〈∇iF (α), s
′ − αi〉.

αi = αi − γ(s− αi).

Can implement algorithm in terms of primal variables.
Connections between Frank-Wolfe and other algorithms:

Frank-Wolfe on dual problem is subgradient step on primal.
‘Fully corrective’ Frank-Wolfe is equivalent to cutting plane.
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