CPSC 540: Machine Learning
Structured SVMs

Mark Schmidt
University of British Columbia

Winter 2019
3 main approaches to structured prediction (predicting object y given features x):

1. **Generative models** use $p(y \mid x) \propto p(y, x)$ as in naive Bayes.
 - Turns structured prediction into density estimation.
 - But remember how hard it was just to model images of digits?
 - We have to model features and solve supervised learning problem.

2. **Discriminative models** directly fit $p(y \mid x)$ as in logistic regression (next topic).
 - View structured prediction as conditional density estimation.
 - Just focuses on modeling y given x, not trying to model features x.
 - Lets you use complicated features x that make the task easier.

3. **Discriminant functions** just try to map from x to y as in SVMs.
 - Now you don’t even need to worry about calibrated probabilities.
SVMs and Likelihood Ratios

- **Logistic regression** optimizes a likelihood of the form
 \[p(y^i \mid x^i, w) \propto \exp(y^i w^T x^i). \]

- But if we only want correct decisions it’s sufficient to have
 \[\frac{p(y^i \mid x^i, w)}{p(-y^i \mid x^i, w)} \geq \kappa, \]
 for any \(\kappa > 1 \).

- Taking logarithms and plugging in probabilities gives
 \[y^i w^T x^i + \log Z - (-y^i w^T x^i) - \log Z \geq \log \kappa \]

- Since \(\kappa \) is arbitrary let’s use \(\log(\kappa) = 2 \),
 \[y^i w^T x^i \geq 1. \]
SVMs and Likelihood Ratios

- So to classify all i correctly it’s sufficient that
 \[y^i w^T x^i \geq 1, \]
 but this linear program may have no solutions.

- To give solution, allow non-negative “slack” r_i and penalize size of r_i,
 \[\arg\min_{w,r} \sum_{i=1}^{n} r_i \quad \text{with} \quad y^i w^T x^i \geq 1 - r_i \quad \text{and} \quad r_i \geq 0. \]

- If we apply our Day 2 linear programming trick in reverse this minimizes
 \[f(w) = \sum_{i=1}^{n} [1 - y^i w^T x^i]^+ \]
 and adding an L2-regularizer gives the standard SVM objective.
 - The notation $[\alpha]^+$ means $\max\{0, \alpha\}$.
Multi-Class SVMs: \(nk \)-Slack Formulation

- With multi-class logistic regression we use
 \[
p(y^i = c \mid x^i, w) \propto \exp(w_c^T x^i).
\]

- If want correct decisions it's sufficient for all \(y' \neq y^i \) that
 \[
 \frac{p(y^i \mid x^i, w)}{p(y' \mid x^i, w)} \geq \kappa.
 \]

- Following the same steps as before, this corresponds to
 \[
 w_{y^i}^T x^i - w_{y'}^T x^i \geq 1.
 \]

- Adding slack variables our linear programming trick gives
 \[
 f(W) = \sum_{i=1}^{n} \sum_{y' \neq y^i} [1 - w_{y^i}^T x^i + w_{y'}^T x^i]^+,
 \]
 which with L2-regularization we'll call the \(nk \)-slack multi-class SVM.
Multi-Class SVMs: \(n\)-Slack Formulation

- If we want correct decisions it’s also sufficient that
 \[
 \frac{p(y^i \mid x^i, w)}{\max_{y' \neq y^i} p(y' \mid x^i, w)}.
 \]

- This leads to the constraints
 \[
 \max_{y' \neq y^i} \{w^T_{y^i} x^i - w^T_{y'} x^i\} \geq 1.
 \]

- Following the same steps gives an alternate objective
 \[
 f(W) = \sum_{i=1}^{n} \max_{y' \neq y^i} [1 - w^T_{y^i} x^i + w^T_{y'} x^i]^+,
 \]
 which with L2-regularization we’ll call the \(n\)-slack multi-class SVM.
Multi-Class SVMs: nk-Slack vs. n-Slack

- Our two formulations of multi-class SVMs:

 \[
 f(W) = \sum_{i=1}^{n} \sum_{y' \neq y^i} [1 - w_{y^i}^T x^i + w_{y'}^T x^i]^+ + \frac{\lambda}{2} \|W\|_F^2, \\
 f(W) = \sum_{i=1}^{n} \max_{y' \neq y^i} [1 - w_{y^i}^T x^i + w_{y'}^T x^i]^+ + \frac{\lambda}{2} \|W\|_F^2.
 \]

- The nk-slack loss penalizes based on all y' that could be confused with y^i.
- The n-slack loss only penalizes based on the “most confusing” alternate example.

- While nk-slack often works better, n-slack can be used for structured prediction...
Hidden Markov Support Vector Machines

For **decoding in conditional random fields** to get the entire labeling correct we need

$$\frac{p(y^i | x^i, w)}{p(y' | x^i, w)} \geq \gamma,$$

for all alternative configurations y'.

Following the same steps as before we obtain

$$f(w) = \sum_{i=1}^{n} \max_{y' \neq y_i} [1 - \log p(y^i | x^i, w) + \log p(y' | x^i, w)]^+ + \frac{\lambda}{2} \|w\|^2,$$

the **hidden Markov support vector machine** (HMSVM).

Tries to make log-probability of true y^i greater than for other y' by more than 1.
Hidden Markov Support Vector Machines

Two problems with the HMSVM:
1. It requires finding second-best decoding, which is harder than decoding.
2. It views any alternative labeling y' as equally bad.

Suppose that $y^i = [1 \ 1 \ 1 \ 1]$, and predictions of two models are

$$y' = [1 \ 1 \ 0 \ 1], \quad y' = [0 \ 0 \ 0 \ 0],$$

should both models receive the same loss on this example?
Adding a Loss Function

- We can fix both HMSVM issues by replacing the “correct decision” constraint,

\[\log p(y^i | x^i, w) - \log p(y' | x^i, w) \geq 1, \]

with a constraint containing a loss function \(g \),

\[\log p(y^i | x^i, w) - \log p(y' | x^i, w) \geq g(y^i, y'). \]

- Usually we take \(g(y^i, y') \) to be the difference between \(y^i \) and \(y' \).

- If \(g(y^i, y^i) = 0 \), you can maximize over all \(y' \) instead of \(y' \neq y^i \).
 - Further, if \(g \) is written as sum of functions depending on the graph edges, finding “most violated” constraint is equivalent to decoding.
Structured SVMs

- These constraints lead to the **max-margin Markov network** objective,

\[
f(w) = \sum_{i=1}^{n} \max_{y'} [g(y^i, y') - \log p(y^i \mid x^i, w) + \log p(y' \mid x^i, w)]^+ + \frac{\lambda}{2} \|w\|^2,
\]

which is also known as a **structured SVM**.

- **Beyond learning principle, key differences between CRFs and SSVMs:**
 - SSVMs **require decoding**, not inference, for learning:
 - Exact SSVMs in cases like graph cuts, matchings, rankings, etc.
 - SSVMs have **loss function** for complicated accuracy measures:
 - But loss needs to decompose over parts for tractability.
 - Could also formulate ‘loss-augmented’ CRFs.

- We can also train with approximate decoding methods.
 - State of the art training: block-coordinate Frank Wolfe (bonus slides).
SVMs for Ranking with Pairwise Preference

Suppose we want to rank examples.

A common setting is with features x^i and pairwise preferences:

- List of objects (i, j) where we want $y^i > y^j$.

Assuming a log-linear model,

$$p(y^i \mid x^i, w) \propto \exp(w^T x^i),$$

we can derive a loss function based on the pairwise preference decision,

$$\frac{p(y^i \mid x^i, w)}{p(y^j \mid x^j, w)} \geq \gamma,$$

which gives a loss function of the form

$$f(w) = \sum_{(i, j) \in R} [1 - w^T x^i + w^T x^j]^+. $$
Fitting Structured SVMs

Overview of progress on training SSVMs:

- **Cutting plane and bundle methods** (e.g., `svmStruct` software):
 - Require $O(1/\epsilon)$ iterations.
 - Each iteration requires **decoding on every training example**.

- **Stochastic sub-gradient methods**:
 - Each iteration requires **decoding on a single training example**.
 - **Still requires** $O(1/\epsilon)$ iterations.
 - Need to choose step size.

- **Dual Online exponentiated gradient (OEG)**:
 - Allows **line-search for step size** and has $O(1/\epsilon)$ rate.
 - Each iteration requires **inference on a single training example**.

- **Dual block-coordinate Frank-Wolfe (BCFW)**:
 - Each iteration requires **decoding on a single training example**.
 - Requires $O(1/\epsilon)$ iterations.
 - Closed-form **optimal step size**.
 - Theory allows approximate decoding.
Block Coordinate Frank Wolfe

Key ideas behind BCFW for SSVMs:

- Dual problem has as the form
 \[
 \min_{\alpha_i \in M_i} F(\alpha) = f(A\alpha) - \sum_i f_i(\alpha_i).
 \]
 where \(f\) is smooth.

- Problem structure where we can use **block coordinate descent**:
 - Normal coordinate updates intractable because \(\alpha_i \in |\mathcal{Y}|\).
 - But Frank-Wolfe block-coordinate update is equivalent to decoding
 \[
 s = \arg\min_{s' \in M_i} F(\alpha) + \langle \nabla_i F(\alpha), s' - \alpha_i \rangle.
 \]
 \[
 \alpha_i = \alpha_i - \gamma(s - \alpha_i).
 \]
 - Can implement algorithm in terms of primal variables.

- Connections between Frank-Wolfe and other algorithms:
 - Frank-Wolfe on dual problem is subgradient step on primal.
 - ‘Fully corrective’ Frank-Wolfe is equivalent to cutting plane.