CPSC 540: Machine Learning Structured SVMs

Mark Schmidt

University of British Columbia

Winter 2019

3 Classes of Structured Prediction Methods

3 main approaches to structured prediction (predicting object y given features x):

- - Turns structured prediction into density estimation.
 - But remember how hard it was just to model images of digits?
 - We have to model features and solve supervised learning problem.
- **2** Discriminative models directly fit $p(y \mid x)$ as in logistic regression (next topic).
 - View structured prediction as conditional density estimation.
 - Just focuses on modeling y given x, not trying to model features x.
 - $\bullet\,$ Lets you use complicated features x that make the task easier.
- **Observing and Set an**
 - Now you don't even need to worry about calibrated probabilities.

SVMs and Likelihood Ratios

• Logistic regression optimizes a likelihood of the form

$$p(y^i \mid x^i, w) \propto \exp(y^i w^T x^i).$$

• But if we only want correct decisions it's sufficient to have

$$\frac{p(y^i \mid x^i, w)}{p(-y^i \mid x^i, w)} \ge \kappa,$$

for any $\kappa > 1$.

• Taking logarithms and plugging in probabilities gives

$$y^i w^T x^i + \log Z - (-y^i w^T x^i) - \log Z \geq \log \kappa$$

• Since κ is arbitrary let's use $\log(\kappa) = 2$,

 $y^i w^T x^i \ge 1.$

SVMs and Likelihood Ratios

• So to classify all i correctly it's sufficient that

$$y^i w^T x^i \ge 1,$$

but this linear program may have no solutions.

• To give solution, allow non-negative "slack" r_i and penalize size of r_i ,

$$\underset{w,r}{\operatorname{argmin}}\sum_{i=1}^n r_i \quad \text{with} \quad y^i w^T x^i \geq 1 - r_i \quad \text{and} \quad r_i \geq 0.$$

• If we apply our Day 2 linear programming trick in reverse this minimizes

$$f(w) = \sum_{i=1}^{n} [1 - y^{i} w^{T} x^{i}]^{+}$$

and adding an L2-regularizer gives the standard $\ensuremath{\mathsf{SVM}}$ objective.

• The notation $[\alpha]^+$ means $\max\{0, \alpha\}$.

Multi-Class SVMs: nk-Slack Formulation

• With multi-class logistic regression we use

$$p(y^i = c \mid x^i, w) \propto \exp(w_c^T x^i).$$

 \bullet If want correct decisions it's sufficient for all $y' \neq y^i$ that

$$\frac{p(y^i \mid x^i, w)}{p(y' \mid x^i, w)} \ge \kappa.$$

• Following the same steps as before, this corresponds to

$$w_{y^i}^T x^i - w_{y'}^T x^i \ge 1.$$

• Adding slack variables our linear programming trick gives

$$f(W) = \sum_{i=1}^{n} \sum_{y' \neq y^{i}} [1 - w_{y^{i}}^{T} x^{i} + w_{y'}^{T} x^{i}]^{+},$$

which with L2-regularization we'll call the nk-slack multi-class SVM.

Multi-Class SVMs: n-Slack Formulation

• If we want correct decisions it's also sufficent that

$$\frac{p(y^i \mid x^i, w)}{\max_{y' \neq y^i} p(y' \mid x^i, w)}.$$

• This leads to the constraints

$$\max_{y' \neq y^i} \{ w_{y^i}^T x^i - w_{y'}^T x^i \} \ge 1.$$

• Following the same steps gives an alternate objective

$$f(W) = \sum_{i=1}^{n} \max_{y' \neq y^{i}} [1 - w_{y^{i}}^{T} x^{i} + w_{y'}^{T} x^{i}]^{+},$$

which with L2-regularization we'll call the *n*-slack multi-class SVM.

Multi-Class SVMs: *nk*-Slack vs. *n*-Slack

• Our two formulations of multi-class SVMs:

$$f(W) = \sum_{i=1}^{n} \sum_{y' \neq y^{i}} [1 - w_{y^{i}}^{T} x^{i} + w_{y'}^{T} x^{i}]^{+} + \frac{\lambda}{2} \|W\|_{F}^{2},$$

$$f(W) = \sum_{i=1}^{n} \max_{y' \neq y^{i}} [1 - w_{y^{i}}^{T} x^{i} + w_{y'}^{T} x^{i}]^{+} + \frac{\lambda}{2} \|W\|_{F}^{2}.$$

- The nk-slack loss penalizes based on all y' that could be confused with y^i .
- The *n*-slack loss only penalizes based on the "most confusing" alternate example.
- While nk-slack often works better, n-slack can be used for structured prediction...

Hidden Markov Support Vector Machines

• For decoding in conditional random fields to get the entire labeling correct we need

$$\frac{p(y^i \mid x^i, w)}{p(y' \mid x^i, w)} \ge \gamma,$$

for all alternative configuraitons y'.

• Following the same steps are before we obtain

$$f(w) = \sum_{i=1}^{n} \max_{y' \neq y} [1 - \log p(y^{i} \mid x^{i}, w) + \log p(y' \mid x^{i}, w)]^{+} + \frac{\lambda}{2} ||w||^{2},$$

the hidden Markov support vector machine (HMSVM).

• Tries to make log-probability of true y^i greater than for other y' by more than 1.

Hidden Markov Support Vector Machines

- Two problems with the HMSVM:
 - **1** It requires finding second-best decoding, which is harder than decoding.
 - 2 It views any alternative labeling y' as equally bad.
- Suppose that $y^i = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$, and predictions of two models are

$$y' = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}, \quad y' = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix},$$

should both models receive the same loss on this example?

Adding a Loss Function

• We can fix both HMSVM issues by replacing the "correct decision" constraint,

$$\log p(y^i \mid x^i, w) - \log p(y' \mid x^i, w) \ge 1,$$

with a constraint containing a loss function g,

$$\log p(y^i \mid x^i, w) - \log p(y' \mid x^i, w) \ge g(y^i, y').$$

• Usually we take $g(y^i, y')$ to be the difference between y^i and y'.

- If $g(y^i, y^i) = 0$, you can maximize over all y' instead of $y' \neq y^i$.
 - Further, if g is written as sum of functions depending on the graph edges, finding "most violated" constraint is equivalent to decoding.

Structured SVMs

• These constraints lead to the max-margin Markov network objective,

$$f(w) = \sum_{i=1}^{n} \max_{y'} [g(y^{i}, y') - \log p(y^{i} \mid x^{i}, w) + \log p(y' \mid x^{i}, w)]^{+} + \frac{\lambda}{2} ||w||^{2},$$

which is also known as a structured SVM.

- Beyond learning principle, key differences between CRFs and SSVMs:
 - SSVMs require decoding, not inference, for learning:
 - Exact SSVMs in cases like graph cuts, matchings, rankings, etc.
 - SSVMs have loss function for complicated accuracy measures:
 - But loss needs to decompose over parts for tractability.
 - Could also formulate 'loss-augmented' CRFs.
- We can also train with approximate decoding methods.
 - State of the art training: block-coordinate Frank Wolfe (bonus slides).

SVMs for Ranking with Pairwise Preference

- Suppose we want to rank examples.
- \bullet A common setting is with features x^i and pairwise preferences:
 - List of objects (i,j) where we want $y^i > y^j. \label{eq:started_started}$
- Assuming a log-linear model,

$$p(y^i \mid x^i, w) \propto \exp(w^T x^i),$$

we can derive a loss function based on the pairwise preference decisiosn,

$$\frac{p(y^i \mid x^i, w)}{p(y^j \mid x^j, w)} \ge \gamma,$$

which gives a loss function of the form

$$f(w) = \sum_{(i,j)\in R} [1 - w^T x^i + w^T x^j]^+.$$

Fitting Structured SVMs

Overview of progress on training SSVMs:

- Cutting plane and bundle methods (e.g., svmStruct software):
 - Require $O(1/\epsilon)$ iterations.
 - Each iteration requires decoding on every training example.
- Stochastic sub-gradient methods:
 - Each iteration requires decoding on a single training example.
 - Still requires $O(1/\epsilon)$ iterations.
 - Need to choose step size.
- Dual Online exponentiated gradient (OEG):
 - $\bullet\,$ Allows line-search for step size and has $O(1/\epsilon)$ rate.
 - Each iteration requires inference on a single training example.
- Dual block-coordinate Frank-Wolfe (BCFW):
 - Each iteration requires decoding on a single training example.
 - Requires $O(1/\epsilon)$ iterations.
 - Closed-form optimal step size.
 - Theory allows approximate decoding.

Block Coordinate Frank Wolfe

Key ideas behind BCFW for SSVMs:

• Dual problem has as the form

$$\min_{\alpha_i \in \mathcal{M}_i} F(\alpha) = f(A\alpha) - \sum_i f_i(\alpha_i).$$

where f is smooth.

- Problem structure where we can use block coordinate descent:
 - Normal coordinate updates intractable because $\alpha_i \in |\mathcal{Y}|$.
 - But Frank-Wolfe block-coordinate update is equivalent to decoding

$$s = \operatorname*{argmin}_{s' \in \mathcal{M}_i} F(\alpha) + \langle \nabla_i F(\alpha), s' - \alpha_i \rangle.$$

$$\alpha_i = \alpha_i - \gamma(s - \alpha_i).$$

- Can implement algorithm in terms of primal variables.
- Connections between Frank-Wolfe and other algorithms:
 - Frank-Wolfe on dual problem is subgradient step on primal.
 - 'Fully corrective' Frank-Wolfe is equivalent to cutting plane.