CPSC 540: Machine Learning
Boltzmann Machines

Mark Schmidt

University of British Columbia

Winter 2019
Last Time: Learning Log-Linear UGMs

- We discussed log-linear parameterization of UGMs,
 \[\phi_j(s) = \exp(w_{j,s}), \quad \phi_{jk}(s, s') = \exp(w_{j,k,s,s'}), \quad \phi_{jkl}(s, s', s'') = \exp(w_{j,k,l,s,s',s''}). \]

- The likelihood of an example \(x \) given parameter \(w \) is given by
 \[p(x \mid w) = \frac{\exp(w^T F(x))}{Z}, \]
 and the feature functions \(F(x) \) count the number of times we use each \(w_j \).

- This leads to a convex NLL of the form
 \[-\log p(x \mid w) = -w^T F(x) + \log(Z), \]
 and gradient of the form
 \[\nabla_w -\log p(x \mid w) = -F(x) + \mathbb{E}[F(x)], \]
 which (if you can do inference) can be optimized with gradient descent methods.
Approximate Learning: Alternate Objectives

- One way to avoid cost of inference is to change the objective:
 - **Pseudo-likelihood** (fast, convex, and crude):

\[
p(x_1, x_2, \ldots, x_d) \approx \prod_{j=1}^{d} p(x_j | x_{-j}),
\]

which turns learning into \(d \) single-variable problems (similar to DAGs).
Approximate Learning: Approximate Marginals

- Alternately, we can use approximate inference to use NLL:

 - **Monte Carlo** approximation of $\mathbb{E}[F_j(x)]$ given current parameters w:
 \[
 \nabla f(w) = -F(x) + \mathbb{E}[F(x)] \\
 \approx -F(x) + \frac{1}{t} \sum_{i=1}^{t} F(x^i) .
 \]

 Monte Carlo approx

- Simple method: generate lots of samples to approximate gradient given w, then update w (many samples per iteration, can grow batch to converge fast).

- **Younes algorithm**: alternate between steps of Gibbs sampling and stochastic gradient, using 1 sample per iteration ("persistent contrastive divergence" in deep learning).
 (SG updates w, Gibbs updates x)

- Deterministic variational approximations of $\mathbb{E}[F(x)]$ can alternately be used (later).
Pairwise UGM on MNIST Digits

- Samples from a lattice-structured pairwise UGM:

- Training: 100k stochastic gradient w/ Gibbs sampling steps with $\alpha_t = 0.01$.
- Samples are iteration 100k of Gibbs sampling with fixed w.
Recall that in Ising UGMs, our edge potentials have the form

$$\phi_{ij}(x_i, x_j) = \exp(w_{ij}x_ix_j).$$

If we set \(w_{ij} = 0\), it sets \(\phi_{ij}(x_i, x_j) = 1\) for all \(x_i\) and \(x_j\).

Potential just “multiplies by 1”, which is equivalent to removing the edge.

L1-regularization of \(w_{ij}\) **values performs structure learning in UGM.**

For general log-linear, each edge has multiple parameters \(w_{i, j, s, s'}\).

In this case we can use **group L1-regularization** for structure learning.
Structure Learning on Rain Data

Large λ (and optimal tree):

Small λ:
Structure Learning on USPS Digits
Structure learning of pairwise UGM with group-L1 on USPS digits:
Structure Learning on News Words

Group-L1 on newsgroups data:
Structure Learning on News Words

Group-L1 on newsgroups data:
Outline

1. Learning UGMs
2. Boltzmann Machines
“THE REVOLUTION WILL NOT BE SUPERVISED” PROMISES FACEBOOK’S YANN LECUN IN KICKOFF AI SEMINAR

Posted March 6th, 2018

//engineering.nyu.edu/news/2018/03/06/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
Deep Density Estimation

- In 340 we discussed deep learning methods for supervised learning.

- Does it make sense to talk about deep unsupervised learning?

- Standard argument:
 - Human learning seems to be mostly unsupervised.
 - Supervision gives limited feedback: bits in a class label vs. an image.
 - Could we learn unsupervised models with much less data?

Cool Pictures Motivation for Deep Learning

- First layer of z_i trained on 10 by 10 image patches:

- Visualization of second and third layers trained on specific objects:

- Many classes use these particular images to motivate deep neural networks.
 - But they're not from a neural network: they're from a deep belief network.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
Mixture of Independent Models

- Recall the mixture of independent models:

\[
p(x) = \sum_{c=1}^{k} p(z = c) \prod_{j=1}^{d} p(x_j \mid z = c).
\]

- Given \(z \), each variable \(x_j \) comes from some “nice” distribution.

- This is enough to model any distribution.
 - Just need to know cluster of example \(x \) and distribution of \(x_j \) given \(z \).
 - But not an efficient representation: number of cluster might need to be huge.
Consider the following model with binary z_1 and z_2:

Have we gained anything?
- We have 4 clusters based on two hidden variables.
- Each cluster shares a parent/part with 2 of the other clusters.
Consider the following model:

Now we have 16 clusters, in general we’ll have 2^k with k hidden binary nodes.

- This discrete latent-factors give combinatorial number of mixtures.
 - You can think of each z_c as a “part” that can be included or not (“binary PCA”).

We’ll assume $p(x_j \mid z_1, z_2, z_3, z_4)$ is a linear model (Gaussian, logistic, etc.).

- Distributed representation where x is made of parts z.
- With d visible x_j and k hidden z_j, we only have dk parameters.
- Unfortunately, somewhat hard to use:
 - Combinatorial “explaining away” between z_c value when conditioning on x.
 - Restricted Boltzmann Machines are a similar undirected model...
Boltzmann Machines

- **Boltzmann machines** are UGMs with **binary latent variables**:

- Yet another **latent-variable model** for density estimation.
 - Hidden variables again give a combinatorial latent representation.
 - **Hard** to do anything in this model, even if you know all the z.

Restricted Boltzmann Machine

- By restricting graph structure, some things get easier:
 - Restricted Boltzmann machines (RBMs): edges only between the x_j and z_c.

- Bipartite structure allows block Gibbs sampling given one type of variable:
 - Conditional UGM is disconnected.

- Given visible x, we can sample each z_c independently.
- Given hidden z, we can sample each x_j independently.
Restricted Boltzmann Machines

- The **RBM** graph structure leads to a joint distribution of the form

\[
p(x, z) = \frac{1}{Z} \left(\prod_{j=1}^{d} \phi_j(x_j) \right) \left(\prod_{c=1}^{k} \phi_c(z_c) \right) \left(\prod_{j=1}^{d} \prod_{c=1}^{k} \phi_{jc}(x_j, z_c) \right).
\]

- RBMs usually use a **log-linear** parameterization like

\[
p(x, z) \propto \exp \left(\sum_{j=1}^{d} x_j w_j + \sum_{c=1}^{k} z_c v_c + \sum_{j=1}^{d} \sum_{c=1}^{k} x_j w_{jc} z_c \right),
\]

for parameters \(w_j, v_c, \) and \(w_{jc} \).
Generating Digits with RBMs

Here are the samples generated by the RBM after training. Each row represents a mini-batch of negative particles (samples from independent Gibbs chains). 1000 steps of Gibbs sampling were taken between each of those rows.
Generating Digits with RBMs

Visualizing each z_c’s interaction parameters (w_c values) as images:

http://deeplearning.net/tutorial/rbm.html
Learning UGMs with Hidden Variables

- With hidden ("nuissance") variables z the observed likelihood has the form

$$p(x) = \sum_z p(x, z) = \sum_z \frac{\tilde{p}(x, z)}{Z}$$

$$= \frac{1}{Z} \sum_z \tilde{p}(x, z) = \frac{Z(x)}{Z},$$

where $Z(x)$ is the partition function of the conditional UGM given x.

- This gives an observed NLL of the form

$$-\log p(x) = -\log(Z(x)) + \log Z.$$

- The second term is convex but the first term is non-convex.
 - In RBMs, $Z(x)$ is cheap due to independence of z given x.
 - For other problems we'll need to approximate $Z(x)$ and Z.
Deep Belief Networks

- Deep belief networks add are latent DAGs with more binary hidden layers:

- Data is at the bottom.
- First hidden layer could be “basic ingredients”.
- Second hidden layer could be general “parts”.
- Third hidden layer could be “abstract concept”.
Deep Belief Networks

- If we were conditioning on *top* layer:
 - Sampling would be easy.
- But we're conditioning on the *bottom* layer:
 - *Everything is hard.*
 - There is combinatorial “explaining away”.
- Common training method:
 - Greedy “layerwise” training as a restricted Boltzmann machine.
Greedy Layerwise Training of Stacked RBMs

- Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
Greedy Layerwise Training of Stacked RBMs

- Step 1: Train an RBM (alternating between block Gibbs and stochastic gradient)
- Step 2:
 - Fix first hidden layer values.
 - Train an RBM.
Greedy Layerwise Training of Stacked RBMs

- **Step 1:** Train an RBM (alternating between block Gibbs and stochastic gradient)
- **Step 2:**
 - Fix first hidden layer values.
 - Train an RBM.
- **Step 3:**
 - Fix second hidden layer values.
 - Train an RBM.
Deep Belief Networks

- Keep top as an RBM.
- For the other layers, use DAG parameters that implement block sampling.
 - Can sample by running block Gibbs on top layer for a while, then ancestral sampling.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
Deep Belief Networks

- Can add a class label to last layer.

- Can use “fine-tuning” as a feedforward neural network to refine weights.
 - https://www.youtube.com/watch?v=KuPai0ogiHk
Summary

- **Approximate UGM learning:**
 1. Change objective function: pseudolikelihood.
 2. Approximate marginals: Monte Carlo or variational methods.

- **Structure learning in UGMs** with [group] L1-regularization.

- **Boltzmann machines** are UGMs with binary hidden variables.
 - Restricted Boltzmann machines only allow connections between hidden/visible.

- **Deep belief networks and Boltzmann machines** have layers of hidden variables.

- Next time: we’ll use these tools for supervised learning.