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Last Time: Approximate Inference

@ We've been discussing graphical models for density estimation,
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where are natural and widely-used models for many phenomena.
o These will also be among ingredients of more advanced models we'll see later.

@ But most calculations involving graphical models are typically NP-hard.
o We can convert to DAGs to UGMs, so we'll just study UGMs.

@ We considered approximate inference in discrete UGMs:
@ Iterated conditional mode (ICM) applies coordinate-wise optimization.
@ Gibbs sampling applies coorrdinate-wise sampling.
@ A special case of Markov chain Monte Carlo (MCMC).
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Block-Structured Approximate Inference

@ Basic approximate inference methods like ICM and Gibb sampling:

o Update one z; at a time.
o Efficient because conditional UGM is 1 node.

@ Better approximate inference methods use block updates:

o Update a block of x; values at once.
o Efficient if conditional UGM allows exact inference.

@ If we choose the blocks cleverly, this works substantially better.
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Block-Structured Approximate Inference

o Consider a lattice-structure and the following two blocks ( “red-black ordering”):
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@ Given black nodes, conditional UGM on red nodes is a disconnected graph.
o "l can optimally update the red nodes given the black nodes” (and vice versa).
e You can update d/2 of the nodes in parallel.
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Block-Structured Approximate Inference

@ We could also consider general forest-structured blocks:
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@ We can still optimally update the black nodes given the gray nodes.
e This works much better than “one at a time".
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Block-Structured Approximate Inference

@ Or we could define a new tree-structured block on each iteration:
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@ The above block updates around two thirds of the nodes optimally.

(Here we're updating the black nodes.)
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Block Gibbs Sampling in Action

@ Gibbs vs. tree-structured block-Gibbs samples:

Samples from Gibbs sampler Samples from Block Gibbs sampler
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@ With block sampling, the samples are far less correlated.
@ We can also do tree-structured block ICM.
e Harder to get stuck if you get to update entire trees.
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Block ICM Based on Graph Cuts

o Consider a binary pairwise UGMs with “attractive” potentials,

log ¢;(1,1) + log ¢45(2, 2) > log ¢45(1,2) + log ¢;5(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.
e Can be solved in polynomial time.

This is widely-used computer vision:
o Want neighbouring pixels/super-pixels/regions to be more likely to get same label.
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Graph Cut Example: “GrabCut”

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

http://cvg.ethz.ch/teaching/cv1/2012/grabcut-siggraph04.pdf

© User draws a box around the object they want to segment.
@ Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
© Construct a pairwise UGM using:
o ¢;(z;) set to GMM probability of pixel 7 being in class z;.
o ¢;;(x;,x;) set to Ising potential times RBF based on spatial/colour distance.
@ Use w;; > 0 so the model is “attractive”.

@ Perform exact decoding in the binary attractive model using graph cuts.


http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

Block Approximate Inference Parameter Learning in UGMs

Graph Cut Example: “GrabCut”

@ GrabCut with extra user interaction:
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http://cvg.ethz.ch/teaching/cvl1/2012/grabcut-siggraph04.pdf
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http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ If we have more than 2 states, we can’t use graph cuts.

@ Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log ¢y (a, ) +1og ¢i5(B, B) > log ¢y (v, B) + log ¢i; (5, cv).

e Each step choose an « and 3, optimally “swaps” labels among these nodes.

@ Alpha-expansions are another variation based on a slightly stronger assumption,

log ¢sj(cr, ) + log ¢4 (61, B2) > log ¢ij(ax, B1) + log ¢4 ( B2, cv).

e Steps choose label «, and consider replacing the label of any node not labeled a.
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

@ These don't find global optima in general, but make huge moves:

Figure 1: From left to right: Initial labeling, labeling after eS-swap, labeling after a-expansion, labeling after
a-expansion G-shrink. The optimal labeling of the « pixels is outlined by a white triangle, and is achieved from
the initial labeling by one a-expansion g-shrink move.

@ A somewhat-related MCMC method is Swendson-Wang algorithm.
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Example: Photomontage

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

@ Here, z; corresponds to identity of original image at position 1.


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Example: Photomontage

@ Photomontage: combining different photos into one photo:

http://vision.middleburyv.edu/MRF/pdf/MRF-PAMI.pdf


http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Outline

© Parameter Learning in UGMs
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Structured Prediction with Undirected Graphical Models

@ Consider a pairwise UGM,
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@ We've been focusing on the case where the potentials ¢ are known.

o We've discussed decoding, inference, and sampling.
o We've discussed [block-]coordinate approximate inference.

@ We're now going to discuss learning the potentials ¢ from data.

@ Unfortunately, Z makes this complicated compared to DAGs.
e You can't fit each potential independently.
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Naive Parameterization of UGMs

e We'll want to make the ¢ depend on a set of parameters w.

@ As before, with n IID training x' we can do MAP estimation,
- A
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where |'ve assumed an independent Gaussian prior on w.

@ A naive parameterization is to just directly treat potentials as parameters:

Gi(s) = wjss  Dji(s,8) = Wjkss

so wj s is “potential of node j being in state s".
e And optimize subject to all parameters being non-negative.
e This unfortunately leads to a non-convex optimizaiton.
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Log-Linear Parameterization of UGMs
@ Instead of using non-negative w, we can instead exponentiate w,
¢;(s) = exp(wjs),  jx(s,s') = exp(wjp,s,s)-
@ This gives a log-linear model,
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and leads to a convex NLL.

Parameter Learning in UGMs

o Normally, exponentiating to get non-negativity introduces local minima.
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Parameter Tieing in UGMs
@ So our log-linear parameterization has the form
log ¢j(s) = wjs, log@ju(s,s’) = wjkss,

which can represent any positive pairwise potentials.

@ There exist many common variations on parameter tieing:
o We might want w; ., to be the same for all j (all nodes use same potentials).

@ You can similarly tie the edge parameters across all edges.
e This is similar to homogenous Markov chains.

o In the Ising model we tied across states: w; k1,1 = Wj k2,2 and Wj k1,2 = Wj k2,1

e We could also have special potentials for the boundaries.

e Many language models are homogeneous, except for start/end of sentences.
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Energy Function and Feature Vector Representation

@ Recall that we use p(z) for the unnormalized probability,

_ b(z)
@ In physics, the value E(x) = —log p(z) is called the energy function.

@ With the log-linear parameterization, the energy function is linear,

E:wawg"‘ E: Wik xj,ap,-
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@ To account for parameter tieing, we often write
—E(z) =wl F(z), orequivalently p(x) x exp(w! F(z)),

where feature function F' counts number of times we use each parameter.
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Example of Feature Function

o Consider the 2-node 1-edge UGM (1)—(2), where each state has 2 values.
e So we have potentials ¢1 (1), ¢2(x2), and ¢12(x1, z2) and want to have

wTF(x) =w1i,1 + w2+ w1212

o With no parameter tieing and = = [2 1], our parameter vector and features are

w1,1
w1,2
w21
w=| 2 , F(z)=
wW1,2,1,1
w1,2,1,2
wW1,2,2,1
[ W1,2,2,2 ] L
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Example of Feature Function

e If we instead had Ising potentials (just measuring whether x; = x2 we would have
T
w' F(x) = w11 + w22 + W12 same;

where w1 2 same is the parameter specifying how much we want z; = 2.

e With no parameter tieing and = [2 1], our parameter vector and features are

wi,1 0
w1,2 1
w = w271 s F(m) = |1 s
w2,2 0
0

W1,2.same
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UGM Training Objective Function

@ With log-linear parameterization, NLL for IID training examples is

exp(w?
) = —Zlogp ) Zl (2t L)
=— ZwTF(xi) + ZlogZ(w
i=1 i=1

= _w_TF(X) + nlog Z(w).

where the F(X) = Y, F(x%) are called the sufficient statistics of the dataset.

o Given sufficient statistics F'(X), we can throw out the examples z°.
(only go through data once)

@ Function f(w) is convex (it's linear plus a big log-sum-exp function).
e But notice that Z depends on w
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Log-Linear UGM Gradient

@ For 1 example z, we showed that NLL with log-linear parameterization is
f(w) = —w? F(x) + log Z(w).
@ The partial derivative with respect to parameter w; has a simple form

ex 'lUT X
Vi f(w) = ~Fy(o) + 3 S S g

= —Fj(x)+ Y _pla | w)F;()
= —Fj(z) + E[F}(x)].

@ Observe that derivative of log(Z) is expected value of feature.
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Log-Linear UGM Gradient
@ For 1 example, gradient in log-linear UGM with respect to parameter w; is
Vo, [(w) = —Fj(z) + E[Fj(x)].

e Example of ¢10(3) = exp(wi0,3) (potential that feature 10 is in state 3).
o Averaging over n examples, the gradient with no parameter tieing is given by

Vawns f(w) = = % [Zl[ﬂcio =3]| + px10=3)

i—1
! model “frequency”

frequency in data

o So if Vi, ,f(w) = 0, probabilities match frequencies in training data.
e At MLE, you match the frequencies of all the potentials in the training data.
o Typical training method: deterministic gradient descent methods (if have 7).

e But computing gradient requires inference (computing marginals like p(x19 = 3)).
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Approximate Learning: Alternate Objectives
@ One way to avoid cost of inference is to change the objective:
o Pseudo-likelihood (fast, convex, and crude):

d d
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which turns learning into d single-variable problems (similar to DAGs).
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Summary

@ Block approximate inference works better than single-variable methods.
o Blocks could be defined by trees or to implement graph cuts.

@ Log-linear parameterization can be used to learn UGMs:
e Maximum likelihood is convex, but requires normalizing constant Z.

@ Next time: the work that started the the modern deep learning movement.
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Example: Ising Model of Rain Data

o E.g., for the rain data we could parameterize our node potentials using

log(¢:(z:)) = {w1 no rain '

0 rain

@ Why do we only need 1 parameter?
o Scaling ¢;(1) and ¢(2) by constant doesn't change distribution.

@ In general, we only need (k — 1) parameters for a k-state variable.
o But if we're using regularization we may want to use k anyways (symmetry).
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Example: Ising Model of Rain Data

@ The Ising parameterization of edge potentials,

wy Ty :."L‘j

log(¢ij(xi, x;)) = {0 oL
7 J

@ Applying gradient descent gives MLE of

w 0.16 b = exp(wy)|  [1.17 i = exp(wz) exp(0) | (234 1
10857 " lexp(0) | | 1|7 Y |exp(0) exp(wa)| | 1 2.34]’
preference towards no rain, and adjacent days being the same.

o Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

@ We could alternately use fully expressive edge potentials

log (s (i, ;) = [w2 wB] 7

w4 Ws

but these don't improve the likelihood much.

@ We could fix one of these at 0 due to the normalization.
o But we often don't do this when using regularization.

@ We could also have special potentials for the boundaries.
e Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

@ For this dataset, using untied or general edges doesn’t change likelihood much.

Samples from MAF model

‘Samples based on independent model
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:

Conditional samples from MRF model
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