
Block Approximate Inference Parameter Learning in UGMs

CPSC 540: Machine Learning
Log-Linear Models

Mark Schmidt

University of British Columbia

Winter 2019



Block Approximate Inference Parameter Learning in UGMs

Last Time: Approximate Inference

We’ve been discussing graphical models for density estimation,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)), p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

where are natural and widely-used models for many phenomena.
These will also be among ingredients of more advanced models we’ll see later.

But most calculations involving graphical models are typically NP-hard.
We can convert to DAGs to UGMs, so we’ll just study UGMs.

We considered approximate inference in discrete UGMs:
1 Iterated conditional mode (ICM) applies coordinate-wise optimization.
2 Gibbs sampling applies coorrdinate-wise sampling.

A special case of Markov chain Monte Carlo (MCMC).



Block Approximate Inference Parameter Learning in UGMs

Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a block of xj values at once.
Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.



Block Approximate Inference Parameter Learning in UGMs

Block-Structured Approximate Inference
Consider a lattice-structure and the following two blocks (“red-black ordering”):

Given black nodes, conditional UGM on red nodes is a disconnected graph.
“I can optimally update the red nodes given the black nodes” (and vice versa).
You can update d/2 of the nodes in parallel.

Minimum number of blocks to disconnect the graph is graph colouring.



Block Approximate Inference Parameter Learning in UGMs

Block-Structured Approximate Inference

We could also consider general forest-structured blocks:

We can still optimally update the black nodes given the gray nodes.

This works much better than “one at a time”.



Block Approximate Inference Parameter Learning in UGMs

Block-Structured Approximate Inference

Or we could define a new tree-structured block on each iteration:

The above block updates around two thirds of the nodes optimally.
(Here we’re updating the black nodes.)



Block Approximate Inference Parameter Learning in UGMs

Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:

With block sampling, the samples are far less correlated.

We can also do tree-structured block ICM.

Harder to get stuck if you get to update entire trees.



Block Approximate Inference Parameter Learning in UGMs

Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

Can be solved in polynomial time.

This is widely-used computer vision:

Want neighbouring pixels/super-pixels/regions to be more likely to get same label.



Block Approximate Inference Parameter Learning in UGMs

Graph Cut Example: “GrabCut”

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

1 User draws a box around the object they want to segment.
2 Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3 Construct a pairwise UGM using:

φi(xi) set to GMM probability of pixel i being in class xi.
φij(xi, xj) set to Ising potential times RBF based on spatial/colour distance.

Use wij > 0 so the model is “attractive”.

4 Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf


Block Approximate Inference Parameter Learning in UGMs

Graph Cut Example: “GrabCut”
GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf


Block Approximate Inference Parameter Learning in UGMs

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log φij(α, α) + log φij(β, β) ≥ log φij(α, β) + log φij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log φij(α, α) + log φij(β1, β2) ≥ log φij(α, β1) + log φij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.



Block Approximate Inference Parameter Learning in UGMs

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is Swendson-Wang algorithm.



Block Approximate Inference Parameter Learning in UGMs

Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf


Block Approximate Inference Parameter Learning in UGMs

Example: Photomontage
Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf


Block Approximate Inference Parameter Learning in UGMs

Outline

1 Block Approximate Inference

2 Parameter Learning in UGMs



Block Approximate Inference Parameter Learning in UGMs

Structured Prediction with Undirected Graphical Models

Consider a pairwise UGM,

p(x) =
1

Z

 d∏
j=1

φj(xj)

 ∏
(j,k)∈E

φjk(xj , xk)

 .

We’ve been focusing on the case where the potentials φ are known.

We’ve discussed decoding, inference, and sampling.
We’ve discussed [block-]coordinate approximate inference.

We’re now going to discuss learning the potentials φ from data.

Unfortunately, Z makes this complicated compared to DAGs.

You can’t fit each potential independently.



Block Approximate Inference Parameter Learning in UGMs

Naive Parameterization of UGMs

We’ll want to make the φ depend on a set of parameters w.

As before, with n IID training xi we can do MAP estimation,

w = argmin
w
−

n∑
i=1

log p(xi | w) + λ

2
‖w‖2,

where I’ve assumed an independent Gaussian prior on w.

A naive parameterization is to just directly treat potentials as parameters:

φj(s) = wj,s, φjk(s, s
′) = wj,k,s,s′ ,

so wj,s is “potential of node j being in state s”.
And optimize subject to all parameters being non-negative.
This unfortunately leads to a non-convex optimizaiton.



Block Approximate Inference Parameter Learning in UGMs

Log-Linear Parameterization of UGMs

Instead of using non-negative w, we can instead exponentiate w,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′).

This gives a log-linear model,

p(x | w) ∝

 d∏
j=1

φj(xj)

 ∏
(j,k)∈E

φjk(xj , xk)


= exp

 d∑
j=1

wj,xj +
∑

(j,k)∈E

wj,k,xj ,xk

 ,

and leads to a convex NLL.

Normally, exponentiating to get non-negativity introduces local minima.



Block Approximate Inference Parameter Learning in UGMs

Parameter Tieing in UGMs

So our log-linear parameterization has the form

log φj(s) = wj,s, log φjk(s, s
′) = wj,k,s,s′ ,

which can represent any positive pairwise potentials.

There exist many common variations on parameter tieing:
We might want wj,xj to be the same for all j (all nodes use same potentials).

You can similarly tie the edge parameters across all edges.
This is similar to homogenous Markov chains.

In the Ising model we tied across states: wj,k,1,1 = wj,k,2,2 and wj,k,1,2 = wj,k,2,1.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.



Block Approximate Inference Parameter Learning in UGMs

Energy Function and Feature Vector Representation

Recall that we use p̃(x) for the unnormalized probability,

p(x) =
p̃(x)

Z
.

In physics, the value E(x) = − log p̃(x) is called the energy function.

With the log-linear parameterization, the energy function is linear,

−E(X) =
∑
j

wj,xj +
∑

(j,k)∈E

wj,k,xj ,xk
.

To account for parameter tieing, we often write

−E(x) = wTF (x), or equivalently p(x) ∝ exp(wTF (x)),

where feature function F counts number of times we use each parameter.



Block Approximate Inference Parameter Learning in UGMs

Example of Feature Function

Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.

So we have potentials φ1(x1), φ2(x2), and φ12(x1, x2) and want to have

wTF (x) = w1,1 + w2,2 + w1,2,1,2.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =



w1,1

w1,2

w2,1

w2,2

w1,2,1,1

w1,2,1,2

w1,2,2,1

w1,2,2,2


, F (x) =



0
1
1
0
0
0
1
0


,



Block Approximate Inference Parameter Learning in UGMs

Example of Feature Function

If we instead had Ising potentials (just measuring whether x1 = x2 we would have

wTF (x) = w1,1 + w2,2 + w1,2,same,

where w1,2,same is the parameter specifying how much we want x1 = x2.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =


w1,1

w1,2

w2,1

w2,2

w1,2.same

 , F (x) =


0
1
1
0
0

 ,



Block Approximate Inference Parameter Learning in UGMs

UGM Training Objective Function

With log-linear parameterization, NLL for IID training examples is

f(w) = −
n∑

i=1

log p(xi | w) = −
n∑

i=1

log

(
exp(wTF (xi))

Z(w)

)

= −
n∑

i=1

wTF (xi) +

n∑
i=1

logZ(w)

= −wTF (X) + n logZ(w).

where the F (X) =
∑

i F (x
i) are called the sufficient statistics of the dataset.

Given sufficient statistics F (X), we can throw out the examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).
But notice that Z depends on w

.



Block Approximate Inference Parameter Learning in UGMs

Log-Linear UGM Gradient

For 1 example x, we showed that NLL with log-linear parameterization is

f(w) = −wTF (x) + logZ(w).

The partial derivative with respect to parameter wj has a simple form

∇wjf(w) = −Fj(x) +
∑
x

exp(wTF (x))

Z(w)
Fj(x)

= −Fj(x) +
∑
x

p(x | w)Fj(x)

= −Fj(x) + E[Fj(x)].

Observe that derivative of log(Z) is expected value of feature.



Block Approximate Inference Parameter Learning in UGMs

Log-Linear UGM Gradient

For 1 example, gradient in log-linear UGM with respect to parameter wj is

∇wjf(w) = −Fj(x) + E[Fj(x)].

Example of φ10(3) = exp(w10,3) (potential that feature 10 is in state 3).

Averaging over n examples, the gradient with no parameter tieing is given by

∇w10,3f(w) = −
1

n

[
n∑

i=1

I[xi10 = 3]

]
︸ ︷︷ ︸

frequency in data

+ p(x10 = 3)︸ ︷︷ ︸
model “frequency”

.

So if ∇w10,3
f(w) = 0, probabilities match frequencies in training data.

At MLE, you match the frequencies of all the potentials in the training data.
Typical training method: deterministic gradient descent methods (if have Z).

But computing gradient requires inference (computing marginals like p(x10 = 3)).



Block Approximate Inference Parameter Learning in UGMs

Approximate Learning: Alternate Objectives

One way to avoid cost of inference is to change the objective:

Pseudo-likelihood (fast, convex, and crude):

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =

d∏
j=1

p(xj | xnei(j)),

which turns learning into d single-variable problems (similar to DAGs).



Block Approximate Inference Parameter Learning in UGMs

Summary

Block approximate inference works better than single-variable methods.

Blocks could be defined by trees or to implement graph cuts.

Log-linear parameterization can be used to learn UGMs:

Maximum likelihood is convex, but requires normalizing constant Z.

Next time: the work that started the the modern deep learning movement.



Block Approximate Inference Parameter Learning in UGMs

Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(φi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling φi(1) and φ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).



Block Approximate Inference Parameter Learning in UGMs

Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(φij(xi, xj)) =

{
w2 xi = xj

0 xi 6= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, φi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, φij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.



Block Approximate Inference Parameter Learning in UGMs

Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.



Block Approximate Inference Parameter Learning in UGMs

Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

For this dataset, using untied or general edges doesn’t change likelihood much.



Block Approximate Inference Parameter Learning in UGMs

Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:


	Block Approximate Inference
	Parameter Learning in UGMs

