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Block Approximate Inference Parameter Learning in UGMs

Last Time: Approximate Inference

We’ve been discussing graphical models for density estimation,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)), p(x1, x2, . . . , xd) ∝
∏
c∈C

φc(xc),

where are natural and widely-used models for many phenomena.
These will also be among ingredients of more advanced models we’ll see later.

But most calculations involving graphical models are typically NP-hard.
We can convert to DAGs to UGMs, so we’ll just study UGMs.

We considered approximate inference in discrete UGMs:
1 Iterated conditional mode (ICM) applies coordinate-wise optimization.
2 Gibbs sampling applies coorrdinate-wise sampling.

A special case of Markov chain Monte Carlo (MCMC).
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Block-Structured Approximate Inference

Basic approximate inference methods like ICM and Gibb sampling:

Update one xj at a time.
Efficient because conditional UGM is 1 node.

Better approximate inference methods use block updates:

Update a block of xj values at once.
Efficient if conditional UGM allows exact inference.

If we choose the blocks cleverly, this works substantially better.
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Block-Structured Approximate Inference
Consider a lattice-structure and the following two blocks (“red-black ordering”):

Given black nodes, conditional UGM on red nodes is a disconnected graph.
“I can optimally update the red nodes given the black nodes” (and vice versa).
You can update d/2 of the nodes in parallel.

Minimum number of blocks to disconnect the graph is graph colouring.
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Block-Structured Approximate Inference

We could also consider general forest-structured blocks:

We can still optimally update the black nodes given the gray nodes.

This works much better than “one at a time”.
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Block-Structured Approximate Inference

Or we could define a new tree-structured block on each iteration:

The above block updates around two thirds of the nodes optimally.
(Here we’re updating the black nodes.)
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Block Gibbs Sampling in Action

Gibbs vs. tree-structured block-Gibbs samples:

With block sampling, the samples are far less correlated.

We can also do tree-structured block ICM.

Harder to get stuck if you get to update entire trees.
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Block ICM Based on Graph Cuts

Consider a binary pairwise UGMs with “attractive” potentials,

log φij(1, 1) + log φij(2, 2) ≥ log φij(1, 2) + log φij(2, 1).

In words: “neighbours prefer to have similar states”.

In this setting exact decoding can be formulated as a max-flow/min-cut problem.

Can be solved in polynomial time.

This is widely-used computer vision:

Want neighbouring pixels/super-pixels/regions to be more likely to get same label.



Block Approximate Inference Parameter Learning in UGMs

Graph Cut Example: “GrabCut”

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

1 User draws a box around the object they want to segment.
2 Fit Gaussian mixture model to pixels inside the box, and to pixels outside the box.
3 Construct a pairwise UGM using:

φi(xi) set to GMM probability of pixel i being in class xi.
φij(xi, xj) set to Ising potential times RBF based on spatial/colour distance.

Use wij > 0 so the model is “attractive”.

4 Perform exact decoding in the binary attractive model using graph cuts.

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Graph Cut Example: “GrabCut”
GrabCut with extra user interaction:

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf

http://cvg.ethz.ch/teaching/cvl/2012/grabcut-siggraph04.pdf
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Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

If we have more than 2 states, we can’t use graph cuts.

Alpha-beta swaps are an approximate decoding method for “pairwise attractive”,

log φij(α, α) + log φij(β, β) ≥ log φij(α, β) + log φij(β, α).

Each step choose an α and β, optimally “swaps” labels among these nodes.

Alpha-expansions are another variation based on a slightly stronger assumption,

log φij(α, α) + log φij(β1, β2) ≥ log φij(α, β1) + log φij(β2, α).

Steps choose label α, and consider replacing the label of any node not labeled α.



Block Approximate Inference Parameter Learning in UGMs

Alpha-Beta Swap and Alpha-Expansions: ICM with Graph Cuts

These don’t find global optima in general, but make huge moves:

A somewhat-related MCMC method is Swendson-Wang algorithm.
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Example: Photomontage

Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

Here, xi corresponds to identity of original image at position i.

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Example: Photomontage
Photomontage: combining different photos into one photo:

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf

http://vision.middlebury.edu/MRF/pdf/MRF-PAMI.pdf
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Structured Prediction with Undirected Graphical Models

Consider a pairwise UGM,

p(x) =
1

Z

 d∏
j=1

φj(xj)

 ∏
(j,k)∈E

φjk(xj , xk)

 .

We’ve been focusing on the case where the potentials φ are known.

We’ve discussed decoding, inference, and sampling.
We’ve discussed [block-]coordinate approximate inference.

We’re now going to discuss learning the potentials φ from data.

Unfortunately, Z makes this complicated compared to DAGs.

You can’t fit each potential independently.
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Naive Parameterization of UGMs

We’ll want to make the φ depend on a set of parameters w.

As before, with n IID training xi we can do MAP estimation,

w = argmin
w
−

n∑
i=1

log p(xi | w) + λ

2
‖w‖2,

where I’ve assumed an independent Gaussian prior on w.

A naive parameterization is to just directly treat potentials as parameters:

φj(s) = wj,s, φjk(s, s
′) = wj,k,s,s′ ,

so wj,s is “potential of node j being in state s”.
And optimize subject to all parameters being non-negative.
This unfortunately leads to a non-convex optimizaiton.
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Log-Linear Parameterization of UGMs

Instead of using non-negative w, we can instead exponentiate w,

φj(s) = exp(wj,s), φjk(s, s
′) = exp(wj,k,s,s′).

This gives a log-linear model,

p(x | w) ∝

 d∏
j=1

φj(xj)

 ∏
(j,k)∈E

φjk(xj , xk)


= exp

 d∑
j=1

wj,xj +
∑

(j,k)∈E

wj,k,xj ,xk

 ,

and leads to a convex NLL.

Normally, exponentiating to get non-negativity introduces local minima.
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Parameter Tieing in UGMs

So our log-linear parameterization has the form

log φj(s) = wj,s, log φjk(s, s
′) = wj,k,s,s′ ,

which can represent any positive pairwise potentials.

There exist many common variations on parameter tieing:
We might want wj,xj to be the same for all j (all nodes use same potentials).

You can similarly tie the edge parameters across all edges.
This is similar to homogenous Markov chains.

In the Ising model we tied across states: wj,k,1,1 = wj,k,2,2 and wj,k,1,2 = wj,k,2,1.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Energy Function and Feature Vector Representation

Recall that we use p̃(x) for the unnormalized probability,

p(x) =
p̃(x)

Z
.

In physics, the value E(x) = − log p̃(x) is called the energy function.

With the log-linear parameterization, the energy function is linear,

−E(X) =
∑
j

wj,xj +
∑

(j,k)∈E

wj,k,xj ,xk
.

To account for parameter tieing, we often write

−E(x) = wTF (x), or equivalently p(x) ∝ exp(wTF (x)),

where feature function F counts number of times we use each parameter.



Block Approximate Inference Parameter Learning in UGMs

Example of Feature Function

Consider the 2-node 1-edge UGM (1)–(2), where each state has 2 values.

So we have potentials φ1(x1), φ2(x2), and φ12(x1, x2) and want to have

wTF (x) = w1,1 + w2,2 + w1,2,1,2.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =



w1,1

w1,2

w2,1

w2,2

w1,2,1,1

w1,2,1,2

w1,2,2,1

w1,2,2,2


, F (x) =



0
1
1
0
0
0
1
0


,
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Example of Feature Function

If we instead had Ising potentials (just measuring whether x1 = x2 we would have

wTF (x) = w1,1 + w2,2 + w1,2,same,

where w1,2,same is the parameter specifying how much we want x1 = x2.

With no parameter tieing and x =
[
2 1

]
, our parameter vector and features are

w =


w1,1

w1,2

w2,1

w2,2

w1,2.same

 , F (x) =


0
1
1
0
0

 ,
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UGM Training Objective Function

With log-linear parameterization, NLL for IID training examples is

f(w) = −
n∑

i=1

log p(xi | w) = −
n∑

i=1

log

(
exp(wTF (xi))

Z(w)

)

= −
n∑

i=1

wTF (xi) +

n∑
i=1

logZ(w)

= −wTF (X) + n logZ(w).

where the F (X) =
∑

i F (x
i) are called the sufficient statistics of the dataset.

Given sufficient statistics F (X), we can throw out the examples xi.
(only go through data once)

Function f(w) is convex (it’s linear plus a big log-sum-exp function).
But notice that Z depends on w

.



Block Approximate Inference Parameter Learning in UGMs

Log-Linear UGM Gradient

For 1 example x, we showed that NLL with log-linear parameterization is

f(w) = −wTF (x) + logZ(w).

The partial derivative with respect to parameter wj has a simple form

∇wjf(w) = −Fj(x) +
∑
x

exp(wTF (x))

Z(w)
Fj(x)

= −Fj(x) +
∑
x

p(x | w)Fj(x)

= −Fj(x) + E[Fj(x)].

Observe that derivative of log(Z) is expected value of feature.
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Log-Linear UGM Gradient

For 1 example, gradient in log-linear UGM with respect to parameter wj is

∇wjf(w) = −Fj(x) + E[Fj(x)].

Example of φ10(3) = exp(w10,3) (potential that feature 10 is in state 3).

Averaging over n examples, the gradient with no parameter tieing is given by

∇w10,3f(w) = −
1

n

[
n∑

i=1

I[xi10 = 3]

]
︸ ︷︷ ︸

frequency in data

+ p(x10 = 3)︸ ︷︷ ︸
model “frequency”

.

So if ∇w10,3
f(w) = 0, probabilities match frequencies in training data.

At MLE, you match the frequencies of all the potentials in the training data.
Typical training method: deterministic gradient descent methods (if have Z).

But computing gradient requires inference (computing marginals like p(x10 = 3)).
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Approximate Learning: Alternate Objectives

One way to avoid cost of inference is to change the objective:

Pseudo-likelihood (fast, convex, and crude):

p(x1, x2, . . . , xd) ≈
d∏

j=1

p(xj | x−j) =

d∏
j=1

p(xj | xnei(j)),

which turns learning into d single-variable problems (similar to DAGs).
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Summary

Block approximate inference works better than single-variable methods.

Blocks could be defined by trees or to implement graph cuts.

Log-linear parameterization can be used to learn UGMs:

Maximum likelihood is convex, but requires normalizing constant Z.

Next time: the work that started the the modern deep learning movement.
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Example: Ising Model of Rain Data

E.g., for the rain data we could parameterize our node potentials using

log(φi(xi)) =

{
w1 no rain

0 rain
.

Why do we only need 1 parameter?

Scaling φi(1) and φ(2) by constant doesn’t change distribution.

In general, we only need (k − 1) parameters for a k-state variable.

But if we’re using regularization we may want to use k anyways (symmetry).



Block Approximate Inference Parameter Learning in UGMs

Example: Ising Model of Rain Data

The Ising parameterization of edge potentials,

log(φij(xi, xj)) =

{
w2 xi = xj

0 xi 6= xj
.

Applying gradient descent gives MLE of

w =

[
0.16
0.85

]
, φi =

[
exp(w1)
exp(0)

]
=

[
1.17
1

]
, φij =

[
exp(w2) exp(0)
exp(0) exp(w2)

]
=

[
2.34 1
1 2.34

]
,

preference towards no rain, and adjacent days being the same.

Average NLL of 16.8 vs. 19.0 for independent model.
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Full Model of Rain Data

We could alternately use fully expressive edge potentials

log(φij(xi, xj)) =

[
w2 w3

w4 w5

]
,

but these don’t improve the likelihood much.

We could fix one of these at 0 due to the normalization.

But we often don’t do this when using regularization.

We could also have special potentials for the boundaries.

Many language models are homogeneous, except for start/end of sentences.
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Example: Ising Model of Rain Data

Independent model vs. chain-UGM model with tied nodes and Ising tied edges:

For this dataset, using untied or general edges doesn’t change likelihood much.
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Example: Ising Model of Rain Data

Samples from Ising chain-UGM model if it rains on the first day:
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