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Iterated Conditional Mode Gibbs Sampling

Last Lectures: Directed and Undirected Graphical Models

@ We've discussed the most common classes of graphical models:
e DAG models represent probability as ordered product of conditionals,

d
p(x) = ] P | #pai)),
j=1
and are also known as "Bayesian networks” and “belief networks".

o UGMs represent probability as product of non-negative potentials ¢.,

p) = 7 ] oclee), with 7= [ ouro),

ceC x ceC

and are also known as “Markov random fields” and " Markov networks" .

e We discused inference tasks (for both by converting to UGMs) in discrete x;.
o Cost of message passing is exponential in treewidth of graph.
o Motivates considering approximate inference methods today.



Digression: Closure of UGMs under Conditioning

@ UGMs are closed under conditioning:
o If p(z) is a UGM, then p(z 4 | ) can be written as a UGM (for partition A and B).

e Conditioning on x2 and z3 in a chain,

» @ @ ©

gives a UGM defined on x1 and x4 that is disconnected:

O

@ Graphically, we “erase the black nodes and their edges”.

@ Notice that inference in the conditional UGM may be mucher easier.
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Digression: Closure of UGMs under Conditioning

@ Mathematically, a 4-node pairwise UGM with a chain structure assumes

p(w1, 22, 23, 24) < O1(21)P2(22)P3(23)Pa(T4)P12(21, T2)P23(w2, 23)P34(T3, 24).

e Conditioning on x3 and z3 gives UGM over z1 and x4 (tedious: bonus slide)

where new potentials “absorb” the shared potentials with observed nodes:

P1(x1) = d1(x1)bra(w1,22),  Py(a) = Pa(wa)P34(w3, 24).

Sampling
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Simpler Inference in Conditional UGMs

@ Consider the following graph which could describe bus stops:

e If we condition on the “hubs”, the graph forms a forest (and inference is easy).
e Simpler inference after conditioning is used many approximate inference methods.
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Digression: Local Markov Property and Markov Blanket

@ Approximate inference methods often use conditional p(z; | z_;),

k +k NCALI .

" p ) k k k
o where z ; means “z; for all ¢ except 7" xy, x5, ..., 71, X7, TG

@ In UGMs, the conditional simplifies due to conditional independence,

p(zj | v—j) = p(x) | Tnei(j)),

this local Markov property means conditional only depends on neighbours.

o We say that the neighbours of z; are its “Markov binkaet”.



Iterated Conditional Mode Gibbs Sampling

Digression: Local Markov Property and Markov Blanket

@ Markov blanket is the set nodes that make you independent of all other nodes.

7

o In UGMs the Markov blanket is the neighbours.

@ Markov blanket in DAGs is all parents, children, and co-parents:

@{V @&—o
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Iterated Conditional Mode (ICM)

The iterated conditional mode (ICM) algorithm for approximate decoding:

e On each iteration k, choose a variable jj.
o Optimize z;, with the other variables held fixed.

So ICM is coordinate optimization.

@ lterations correspond to finding mode of conditional p(x; | x’jj),

k k
xj+1 — méiXp({Bj =cl|azl),

@ 3 main issues:

@ How can we do this if evaluating p(z) is NP-hard?
@ Is coordinate optimization efficient for this problem?
@ Does it find the global optimum?
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ICM lssue 1: Intractable Objective

How can you optimize p(z) coordinate-wise if evaluating it is NP-hard?

@ Let's define the unnormalized probability p as
p(x) = H Pe(zc)-
ceC
@ So the normalized probability is given by

()

p(z) ==

Z
In UGMs evaluating 7 is hard but evaluating p(z) is easy.

@ And for decoding we only need unnormalized probabilities,
p(x)

argmaxp(x) = argmax —= = argmax p(z),
x x Z xr

so we can decode based on p without knowing Z.
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ICM Issue 2: Efficiency

@ Is coordinate optimization efficient for this problem?

@ Consider a pairwise UGM,

d
pla) = | ] ¢(=) 11 i zy)
J=1 (i,j)EE
or
d
logp(z) =Y logd;(w;) + Y logdij(wi,z)),
Jj=1 (i,j)eE
which is a special case of

d
F@) =Y filap)+ Y filas ),
j=1

(3,7)EE

which is one of the problems where coordinate optimization is n-times faster.

Gibbs Sampling
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Pseudo-Code for ICM

@ Consider a pairwise UGM:

d
p(x1,x2,...,2q) = (H 451(%)) H bij(zi, zj) |,
=1

(i,J)EE
@ For node ¢ with 2 neighbours j and k, ICM update would be:
(1) Compute Ml(a:l) = (]51(.7,]) (j)ij(xi,xj)qzﬁik(a:i,xk) for all x;.

edges in Markov blanket
@ Set z; to the largest value of M;(z;).
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[CM in Action

Consider using a UGM for binary image denoising;:

We have

@ Unary potentials ¢; for each position.

e Pairwise potentials ¢;; for neighbours on grid.
o Parameters are trained as CRF (later).

Goal is to produce a noise-free binary image (show video).
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ICM Issue 3: Non-Convexity

@ Does it find the global optimum?

@ Decoding is usually non-convex, so doesn't find global optimum.

@ There exist many globalization methods that can improve its performance:

e Restarting with random initializations.
o Global optimization methods:

o Simulated annealing, genetic algorithms, ant colony optimization, etc.
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Coordinate Sampling

@ What about approximate sampling?

@ In DAGs, ancestral sampling conditions on sampled values of parents,
zj ~ p(z; | xpa(j))'
@ In ICM, we approximately decode a UGM by iteratively maximizing an z;,,
Tj H;:zjxp(a:j | z_j).
@ We can approximately sample from a UGM by iteratively sampling an z;,,
zj ~ plaj | 2—j),

and this coordinate-wise sampling algorithm is called Gibbs sampling.
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Gibbs Sampling

@ Gibbs sampling starts with some z and then repeats:

© Choose a variable j uniformly at random.
© Update x; by sampling it from its conditional,

zj ~ plaj | zj).
@ Analogy: sampling version of coordinate optimization:

o Transformed d-dimensional sampling into 1-dimensional sampling.

@ Gibbs sampling is probably the most common multi-dimensional sampler.
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Gibbs Sampling in Action

e Start with some initial value: 2 [2 2 3 1]
@ Select random j like j = 3.
o Sample variable j: 2! = [2 2 1 1].

Select random j like j = 1.
Sample variable j: 2> =[3 2 1 1].
Select random j like j = 2.
Sample variable j: 23 =[3 2 1 1].

Use the samples to form a Monte Carlo estimator.



Gibbs Sampling

Gibbs Sampling

@ For discrete x; the conditionals needed for Gibbs sampling have a simple form,

plrj=cay) _ _ pag=cry) Py =cay)
p(z—;) Do D@y =Cwy) >, Py =z )

plzj=clz_j) =

where we use unnormalized p since Z is the same in numerator/denominator.
o Note that this expression is easy to evaluate: just summing over values of x;.

@ And in UGMs it further simplifies to only depend on the Markov blanket,

p(zj | v—j) = p(x; | TmB())

since the other terms cancel in the numerator/denominator.
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Gibbs Sampling in Action: UGMs

@ For node i with 2 neighbours j and k, Gibbs sampling step would be:
© Compute M;(z;) = ¢i(x;) ¢ij (@i, x;) (i, xx) for all z;.

edges in Markov blanket

@ Sample x; proportional to M;(x;).

(show videos)



Gibbs samples after every 100d iterations:

Gibbs Sampling in Action: UGMs

Samples from Gibbs sampler
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Gibbs Sampling in Action: UGMs

Estimates of marginals and decoding based on Gibbs sampling:

Gibbs Estimates of Marginals of Noisy X Gibbs Decoding of Noisy X

20

25-

30-
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Gibbs Sampling in Action: Multivariate Gaussian

@ Gibbs sampling works for general distributions.
e E.g., sampling from multivariate Gaussian by univariate Gaussian sampling.

4
wilze o
2
0
XN .
1
Samples
i : . : o 15t 50 Samples
o X(t=0)
8 . . . . .
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https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler

@ Video: https://wuw.youtube.com/watch?v=AEwY6QXWoUg


https://theclevermachine.wordpress.com/2012/11/05/mcmc-the-gibbs-sampler
https://www.youtube.com/watch?v=AEwY6QXWoUg
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Gibbs Sampling as a Markov Chain

@ Why would Gibbs sampling work?
o Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

@ The “Gibbs sampling Markov chain” for sampling from a 4-variable binary UGM:
e The states are the possible configurations of the four variables:
e s=1[0000],s=[0001],5s=[0010], etc.
e The initial probability ¢ is set to 1 for the initial state, and 0 for the others:
o Ifyoustartat s =[1101], then g(z' =[1101]) =1 and g(z* =[0000]) =0.
e The transition probabilities ¢ are based on variable we choose and UGM:
o If we are at s = [1 1 0 1] and choose coordinate randomly we have:

gz =[0011]|2"=[1101)) =0 (Gibbs only updates on variable)

1
p plee =0]|z1 =123 =0,24 =1).
from UGM

uniform

g™ =001 |2 =[1101]) =

@ Not homogeneous if cycling through the j, but homogeneous over every d samples.
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Gibbs Sampling as a Markov Chain

@ Why would Gibbs sampling work?
o Key idea: Gibbs sampling generates a sample from a homogeneous Markov chain.

@ Previously we discussed stationary distribution of Markov chain:

m(s) =) a(z' =s| ' = &) (s),

Sl

with transition probabilities ¢ (of the Gibbs sampling Markov chain).

@ A sufficient condition for Gibbs Markov chain to have unique stationary:

p(xj | z—;) >0 forall j.
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Markov Chain Monte Carlo (MCMC)

@ Stationary distribution 7 of Gibbs sampling is the target distribution:

so for large k a sample 2" will be distributed according to p(x).

@ Allows Gibbs sampling to be used in Markov Chain Monte Carlo (MCMC):

o Design a Markov chain that has 7(z) = p(z).
o Use these samples within a Monte Carlo estimator,

Elg()] ~ > gla).

@ Law of large numbers can be generalized to show this converges as n — co.

e But convergence rate is slower since we're generating dependent samples.

Gibbs Sampling
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Markov Chain Monte Carlo
MCMC sampling from a Gaussian:
From top left to bottom right: histograms of 1000 independent

Markov chains with a normal distribution as target distribution.

ES

s.ubc.ca/~arnaud/stat535/slides10.pdf


http://www.cs.ubc.ca/~arnaud/stat535/slides10.pdf
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MCMC Implementation Issues

@ Basic idea of Markov Chain Monte Carlo (MCMC) method:

o Design a Markov chain that has 7(x) = p(z).
o Use these samples within a Monte Carlo estimator,

Blg(e)] = - gla).

@ In practice, we often don't take all samples in our Monte Carlo estimate:

e Burn in: throw away the initial samples when we haven't converged to stationary.
e Thinning: only keep every k samples, since they will be highly correlated.
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MCMC Implementation Issues

@ Two common ways that MCMC is applied:
@ Sample from a huge number of Markov chains for a long time, use final states.

o Great for parallelization.
@ No need for thinning, if chains are independently initialized.
o Need to worry about burn in.

@ Sample from one Markov chain for a really long time, use states across time.

@ Less worry about burn in.
@ Need to worry about thinning.

@ It can very hard to diagnose if we reached stationary distribution.

o Recent work showed that this is P-space hard (not polynomial-time even if P=NP).
e Various heuristics exist.



Summary

Conditioning in UGMs leads to a smaller/simpler UGM.

Iterated conditional mode is coordinate descent for decoding UGMs.
o Fast but doesn't obtain global optimum in general.

Gibbs sampling is coordinate-wise sampling.
e Special case of Markov chain Monte Carlo method.

Next time: reproducing the Spaceballs beaming experiment.

Gibbs Sampling
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Conditioning in UGMs

@ Conditioning on x5 and x3 in 4-node chain-UGM gives
p(T1, T, T3, 74)
p(z2,73)
_ 7 01(z1) da(z2) d3(23) ds (1) (21, T2) o (22, 73) P3 (T3, 4)
Yoyt ZP (o)) b2 (w2) b3 (w3) ba () 1 (2, 72) (w2, w3) d3(3, 71)
_ gdi(@) da(x2) dalwa) du(wa) i (w1, x2) po (w2, w3) 3 (23, 24)
a 792(72)fa(w3) po (w2, 73) 2oy o1 b1() ba () (2, w2) (3, )
_ (@) da(wa) du (w1, m2) ¢a(x3, 74)
2o, P1(@) ha () 1 (), w2) Pa(ws, )
__ (=) (x4)
PIEEACATACA

plz1, v4|z2, 23) =
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