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Last Time: Directed Acyclic Graphical (DAG) Models

DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj | xpa(j)),

We visualize the assumptions made by the model as a graph:

D-separation can be used to “read” conditional independence from graph.

Can be derived by considering DAG as “inheritance of genes”.
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Parameter Learning in General DAG Models

The log-likelihood in DAG models is separable in the conditionals,

log p(x | Θ) = log

d∏
j=1

p(xj | xpa(j),Θj)

=

d∑
j=1

log p(xj | xpa(j),Θj)

If each p(xj | xpa(j)) has its own parameters Θj , we can fit them independently.

We’ve done this before: naive Bayes, Gaussian discriminant analysis, mixtures, etc.

Sometimes you want to have tied parameters (Θj = Θj′)

Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
Still easy, but need to fit p(xj | xpa(j),Θj) and p(xj′ | xpa(j′),Θj) together.
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Tabular Parameterization in DAG Models

To specify distribution, we need to decide on the form of p(xj | xpa(j),Θj).

For discrete data a default choice is the tabular parameterization:

p(xj | xpa(j),Θj) = θxj ,xpa(j)
(one parameter per child/parent combo),

as we did for Markov chains (but now with multiple parents).

Intuitive: just need conditional probabilities of children given parents like

p(“wet grass” = 1 | “sprinkler” = 1, “rain” = 0),

and MLE is just counting.
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

p(R = 1) = 0.2.

p(G = 1 | S = 0, R = 1) = 0.8.

Can calculate any probabilities using marginalization/product-rule/Bayes-rule (bonus).

https://en.wikipedia.org/wiki/Bayesian_network
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Tabular Parameterization Example
Some companies sell software to help companies reason using tabular DAGs:

http://www.hugin.com/index.php/technology

http://www.hugin.com/index.php/technology
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Fitting DAGs using Supervised Learning

But tabular parameterization requires too many parameters:

With binary states and k parents, need 2k+1 parameters.

One solution is letting users specify a “parsimonious” parameterization:

Typically have a linear number of parameters.
For example, the “noisy-or” model: p(xj | xpa(j)) = 1−

∏
k∈pa(j) qk.

“Estimate probability that each symptom leads to disease on its own”.

But if we have data, we can use supervised learning.
Write fitting p(xj | xpa(j)) as our usual p(y | x) problem.

Predicting one column of X given the values of some other columns.
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Fitting DAGs using Supervised Learning

Fitting DAGs using supervised learning:
For j = 1 : d:

1 Set ȳi = xi
j and x̄i = xi

pa(j).
2 Solve a supervised learning problem using {X̄, ȳ}.

Use the d regression/classification models as the density estimator.

We can use our usual tricks:

Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
With least squares it’s called a Gaussian belief network.
With logistic regression it’s called a sigmoid belief networks.
Don’t need Markov assumptions to tractably fit these models.
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MNIST Digits with Tabular DAG Model

Recall our latest MNIST model using a tabular DAG:

This model is pretty bad because you only see 8 parents.
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MNIST Digits with Sigmoid Belief Network

Samples from sigmoid belief network:
(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).
Models long-range dependencies but has a linear assumption.
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Inference in Forest DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

which works if each node has at most one parent.
Such graphs are called trees (connected), or forests (disconnected).

Also called “singly-connected”.

Forests allow efficient message-passing methods as in Markov chains.
In particular, decoding and univariate marginals/conditionals in O(dk2).
Message passing applied to tree-structured graphs is called belief propagation.
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Inference in General DAGs

If we try to generalize the CK equations to DAGs we obtain

p(xj = s) =
∑
xpa(j)

p(xj = s, xpa(j)) =
∑
xpa(j)

p(xj = s | xpa(j))︸ ︷︷ ︸
given

p(xpa(j)).

What goes wrong if nodes have multiple parents?
The expression p(xpa(j)) is a joint distribution depending on multiple variables.

Consider the non-tree graph:
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Inference in General DAGs

We can compute p(x4) in this non-tree using:

p(x4) =
∑
x3

∑
x2

∑
x1

p(x1, x2, x3, x4)

=
∑
x3

∑
x2

∑
x1

p(x4 | x2, x3)p(x3 | x1)p(x2 | x1)p(x1)

=
∑
x3

∑
x2

p(x4 | x2, x3)
∑
x1

p(x3 | x1)p(x2 | x1)p(x1)︸ ︷︷ ︸
M23(x2,x3)

Dependencies between {x1, x2, x3} mean our message depends on two variables.

p(x4) =
∑
x3

∑
x2

p(x4 | x2, x3)M23(x2, x3)

=
∑
x3

M34(x3, x4),
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Inference in General DAGs

With 2-variable messages, our cost increases to O(dk3).

If we add the edge x1− > x4, then the cost is O(dk4).
(the same cost as enumerating all possible assignments)

Unfortunately, cost is not as simple as counting number of parents.

Even if each node has 2 parents, we may need huge messages.
Decoding is NP-hard and computing marginals is #P-hard in general.

We’ll see later that maximum message size is “treewidth” of a particular graph.

On the other hand, ancestral sampling is easy:

We can obtain Monte Carlo estimates of solutions to these NP-hard problems.
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Conditional Sampling in DAGs
What about conditional sampling in DAGs?

Could be easy or hard depending on what we condition on.
For example, easy if we condition on the first variables in the order:

Just fix these and run ancestral sampling.

Hard to condition on the last variables in the order:
Conditioning on descendent makes ancestors dependent.
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DAG Structure Learning

Structure learning is the problem of choosing the graph.

Input is data X.
Output is a graph G.

The “easy” case is when we’re given the ordering of the variables.

So the parents of j must be chosen from {1, 2, . . . , j − 1}.

Given the ordering, structure learning reduces to feature selection:

Select features {x1, x2, . . . , xj−1} that best predict “label” xj .
We can use any feature selection method to solve these d problems.
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Example: Structure Learning in Rain Data Given Ordering
Structure learning in rain data using L1-regularized logistic regression.

For different λ values, assuming chronological ordering.
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DAG Structure Learning without an Ordering
Without an ordering, a common approach is “search and score”

Define a score for a particular graph structure (like BIC or other L0-regularizers).
Search through the space of possible DAGs.

“DAG-Search”: at each step greedily add, remove, or reverse an edge.

Structure learning is NP-hard in general, but finding the optimal tree is poly-time:
For symmetric scores, can be done by minimum spanning tree (“Chow-Liu”).
For asymetric scores, can be by minimum spanning arborescence.

Another common approach is “constraint-based” methods:
Based on performing a sequence of conditional independence tests.
Prune edge between xi and xj if you find variables S making them independent,

xi ⊥ xj | xS .

Challenge is considering exponential number of sets xS (heuristic: “PC algorithm”).
Assumes “faithfulness” (all independences are reflected in graph).

Otherwise it’s weird (a duplicated feature would be disconnected from everything.)
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Structure Learning on USPS Digits
An optimal tree on USPS digits (16 by 16 images of digits).

1,1

2,11,2

2,2

1,3

2,3

1,4

2,4

1,5

2,5

1,6

2,61,7

2,7

1,8

2,8

1,9

2,9

1,10

2,10

1,11

2,11 1,12

2,121,13

2,131,14

2,14

1,15

2,15 2,16

1,16

3,2 3,3 3,4 3,5

3,6

3,8 3,9 3,10 3,11

3,12

3,143,153,16

3,1

4,1 4,2 4,3 4,4

3,7 4,5

4,6

4,8 4,9 4,10

4,113,13

4,144,15

5,1 5,2 5,3

5,4

5,5

4,7

5,8 5,9

4,12

5,11

4,13

5,13

5,144,16

5,16

6,1 6,2 6,3

6,45,6

6,56,6

5,7

6,76,8 6,9

5,10

6,10 6,11

5,12

6,12 6,13

5,15

6,15

7,1 7,2 7,3

7,4

7,5 7,67,77,8 7,9 7,10 7,11 7,12

6,14

7,14

6,16

7,15

8,1 8,2 8,3

8,4

8,5 8,68,78,8 8,9 8,10 8,11

7,13

8,128,13

8,148,15

7,16

9,1 9,2 9,3

9,4

9,59,79,8 9,9 9,10

9,119,12

9,149,15

8,16

10,1 10,2 10,3

10,49,6

10,510,610,710,8 10,9

10,1010,11 9,13

10,12 10,1310,1410,15

9,16

10,16

11,1 11,2 11,3

11,4

11,511,6 11,711,8

11,911,10

11,11 11,12 11,1311,1411,1511,16

12,1 12,2 12,3

12,412,5 12,612,7 12,8

12,1212,1312,1412,1512,16

13,1

13,5

12,9

12,10

12,11

13,1213,1313,14

13,2 14,1

13,3

14,3

13,4

13,6

14,513,7

14,6

13,8

13,9

13,10

13,11

14,1314,14

13,15

14,15

13,16

14,2

15,2

15,3 14,4

15,4

15,5 14,7

15,6 15,7

14,8

14,9 15,8

14,10

14,11

14,12

15,1215,13 15,14 14,1615,15

15,1

16,1

16,2

16,3

16,4

16,5 16,6 16,7

16,8

15,9

15,1016,9

15,11 16,10

16,11

16,1216,13 16,14 15,16 16,15

16,16



Learning and Inference in DAGs Undirected Graphical Models

20 Newsgroups Data

Data containing presence of 100 words from newsgroups posts:

car drive files hockey mac league pc win

0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 1 0 0 0 1 1

Structure learning should give some relationship between word occurrences.
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Structure Learning on News Words
Optimal tree on newsgroups data:
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Outline

1 Learning and Inference in DAGs

2 Undirected Graphical Models
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Directed vs. Undirected Models

In some applications we have a natural ordering of the xj .

In the “rain” data, the past affects the future.

In some applications we don’t have a natural order.

E.g., pixels in an image.

In these settings we often use undirected graphical models (UGMs).

Also known as Markov random fields (MRFs) and originally from statistical physics.
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Directed vs. Undirected Models

Undirected graphical models are based on undirected graphs:

They are a classic way to model dependencies in images:
Can capture dependencies between neighbours without imposing an ordering.
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Multi-Label Classification

Consider multi-label classification:

http://proceedings.mlr.press/v37/chenb15.pdf

Flickr dataset: each image can have multiple labels (out of 38 possibilities).

Use neural networks to generate “factors” in an undirected model.

Decoding Undirected model makes predictions accounting for label correlations.
We’ll discuss how neural networks and density models fit together later.

http://proceedings.mlr.press/v37/chenb15.pdf
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Multi-Label Classification

Learned correlation matrix:

http://proceedings.mlr.press/v37/chenb15.pdf

http://proceedings.mlr.press/v37/chenb15.pdf
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Multi-Label Classification
Consider automated heart wall abnormality detection:

Want to model if any of 16 areas of the heart are not moving properly.
Can potentially improve predictions by modeling correlations.



Learning and Inference in DAGs Undirected Graphical Models

Ising Models from Statistical Physics

The Ising model for binary xi is defined by

p(x1, x2, . . . , xd) ∝ exp

 d∑
i=1

xiwi +
∑

(i,j)∈E

xixjwij

 ,

where E is the set of edges in an undirected graph.

Called a log-linear model, because log p(x) is linear plus a constant.

Consider using xi ∈ {−1, 1}:
If wi > 0 it encourages xi = 1.
If wij > 0 it encourages neighbours i and j to have the same value.

E.g., neighbouring pixels in the image receive the same label (“attractive” model)

We’re modeling dependencies, but haven’t assumed an “ordering”.
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Summary

Parameter learning in DAGs:

Can fit each p(xj | xpa(j)) independently.
Tabular parameterization, or treat as supervised learning.

Inference in DAGs:

Ancestral sampling and Monte Carlo methods work as before.
Message-passing message sizes depend on graph structure.

Structure learning is the problem of learning the graph structure.

Hard in general, but easy for trees and L1-regularization gives fast heuristic.

Next time: undirected models.
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Tabular Parameterization Example

https://en.wikipedia.org/wiki/Bayesian_network

Can calculate any probabilities using marginalization/product-rule/Bayes-rule, for example:

p(G = 1 | R = 1) = p(G = 1, S = 0 | R = 1) + p(G = 1, S = 1 | R = 1)

(
p(a | c) =

∑
b

p(a, b | c)
)

= p(G = 1 | S = 0, R = 1)p(S = 0 | R = 1) + p(G = 1 | S = 1, R = 1)p(S = 1 | R = 1)

= 0.8(0.99) + 0.99(0.01) = 0.81.

https://en.wikipedia.org/wiki/Bayesian_network
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Dynamic Bayesian Networks
Dynamic Bayesian networks are a generalization of Markov chains and DAGs:

At each time, we have a set of variables xt.
The initial x0 comes from an “initial” DAG.
Given xt−1, we generate xt from a “transition” DAG.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf

Can be used to model multiple variables over time.
Unconditional sampling is easy but inference may be hard.

https://www.cs.ubc.ca/~murphyk/Papers/dbnsem_uai98.pdf
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