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D-Separation Plate Notation

Last Time: Directed Acyclic Graphical (DAG) Models
@ DAG models use a factorization of the joint distribution,

d

p($1,$2, ... ,.fl?d) = Hp(l'ﬂxpa(j))?
j=1

where pa(j) are the “parents” of node j.
@ This assumes a Markov property (generalizing Markov property in chains),

p(zjlr1-1) = p(@)|Tpa(s)),

@ We visualize the assumptions made by the model as a graph:
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DAGs and Conditional Independence
@ In DAGs we make the conditional independence assumption that
p(zj | wj—1,m5-2,...,m1) = p(z; | 2pa(j))-

@ But these conditional independence assumptions can imply other assumptions.
e For example, in Markov chains we directly assume for all j that

p(@j | Tj—1, @2, .. w1) = plz; | 2j-1),
but this also implies that

p(xj | Tj0,2j-3,...,21) = p(z; | T;-2),
and it implies that

pla; | Tjpn, g0, . xq) = play | x541).

@ Knowing which assumptions hold can help identify which operations are efficient.
e For example, decoding in general DAGs is NP-hard but it's easy in Markov chains.
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Review of Independence

@ Let A and B are random variables taking values a € A and b € B.

o We say that A and B are independent if we have
p(a,b) = p(a)p(b),
for all ¢ and b.
@ To denote independence of x; and x; we use the notation

T 1L Zj.
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Review of Independence

@ For independent a and b we have

_ pla,b) _ pla)p(b) _
p(b) p(b)

@ This gives us a more intuitive definition: A and B are independent if

p(a | b)

pla | b) = p(a)
for all @ and b # 0.

o In words: knowing b tells us nothing about a (and vice versa).

o Useful fact: a L b iff p(a,b) = f(a)g(b) for some functions f and g.
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Example: Independence in Product Models
@ Recall density estimation using a product of independent models:
p(x1, 22, ..., x4) = p(r1)p(22) - - - P(Ta)-

@ Using marginalization rule we can show this implies pairwise independence:

p(xi, xj) ZZ Z p(x1, e, ..., x ZZ Z (x1)p(x2) - - - p(xq)

xr1 X2 1 T2
excluding x; and z; excluding x; and x;
= ple)p(x;) DD > pla)p(za) -~ plwa) (take p(z;) and p(a;) out)
r1 X9 T4 e

excluding p(z;) and p(z;)
excluding z; and x;

p(zi)p(x; ZP T ZP T32) Zp Tq) z;)p(z;) (sums sum to 1).

excluding x; and z;
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Example: Independence in Product of Bernoullis Model
@ In a product of Bernoullis probabilities model we have
p(z1,22,...,2q) = p(z1)p(22) - - - p(Ta),

which we showed implies
p(zi, w5) = p(xi)p(x;)),

so we have z; L x; for all i and j.

@ In mixture of Bernoullis z; is not independent of x; (z; L x;):

e Knowing z; tells you something about x;.
o But similar notation-heavy steps give the conditional independence that

p(ei x| 2) = plai | 2)p(z; | 2),

that “variables x; and x; are conditionally independent given the cluster 2".

Plate Notation
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Conditional Independence

We say that A is conditionally independent of B given C if

pla,b]c)=pla]|c)p(b]ec),

for all a, b, and ¢ # 0.
Equivalently, we have
pla|b,c) =pla]c).
“If you know C', then also knowing B would tell you nothing about A™".

e In mixture of Bernoullis, given cluster there is no dependence between variables.

We often write this as
Al B]|C.

Most models have some sort of conditional independence.

o They were used to simplify calculations in the EM notes.
e They determine whether message passing is efficient.

Plate Notation
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D-Separation: From Graphs to Conditional Independence

All conditional independences implied by a DAG can be read from the graph.

In particular: variables A and B are conditionally independent given C if:

o "“D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B.”

In the special case of product of independent models our graph is:

® @ ® @ g

Here there are no paths to block, which implies the variables are independent.

Checking paths in a graph tends to be faster than tedious calculations.
e We can start connecting properties of graphs to computational complexity.

Plate Notation
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D-Separation as Genetic Inheritance

@ The rules of d-separation are intuitive in a simple model of gene inheritance:

e Each person has single number, which we'll call a “gene”.
e If you have no parents, your gene is a random number.
e If you have parents, your gene is a sum of your parents plus noise.

@ For example, think of something like this:

Y6 () o)

@NN(&*)Q)'>

e Graph corresponds to the factorization p(z1,x2, x3) = p(z1)p(x2)p(z3 | 1, 22).
e Are x; and x5 independent here?
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D-Separation as Genetic Inheritance

Genes of people are independent if knowing one says nothing about the other.

Your gene is dependent on your parents:
o If | know you your parent’s gene, | know something about yours.

Your gene is independent of your (unrelated) friends:
e If know you your friend's gene, it doesn't tell me anything about you.

Genes of people can be conditionally independent given a third person:

e Knowing your grandparent’s gene tells you something about your gene.
e But grandparent’s gene isn't useful if you know parent's gene.

Plate Notation
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D-Separation Case 0 (No Paths and Direct Links)

Are genes in person z independent of the genes in person y?

@ No path: = and y are not related (independent),

OO

We have x L y: there are no paths to be blocked.

@ Direct link: x is the parent of y,

O—C0O

We have x [ y: knowing z tells you about y (direct paths aren’t blockable).

Plate Notation
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D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

@ No path: If z and y are independent,

O O O

We have x | y: adding z doesn’'t make a path.

@ Direct link: z is the parent of y,

O—0 O

We have = [ y | z: adding z doesn’t block path.
o We use black or shaded nodes to denote values we condition on (in this case z).
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D-Separation Case 1: Chain

o Case 1: x is the grandparent of y.
o If z is the mother we have:

We have x [/ y: knowing x would give information about y because of z
e But if z is observed:

In this case © L y | z: knowing z “breaks’ dependence between x and y.

Plate Notation
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D-Separation Case 1: Chain

@ Consider weird case where parents z; and zo share parent z:
e If z1 and z5 are observed we have:

We have x L y | 21, 22: knowing both parents breaks dependency.
e But if only 21 is observed:

We have x [ y | z1: dependence still “flows” through zs.
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D-Separation Case 2: Common Parent

@ Case 2: x and y are sibilings.
e If z is a common unobserved parent:

©

We have x [/ y: knowing x would give information about y.
o But if z is observed:

©

In this case = L y | z: knowing z “breaks’ dependence between x and y.

Plate Notation
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D-Separation Case 2: Common Parent

@ Case 2: x and y are sibilings.
e If z; and z5 are common observed parents:

We have © L y | 21, 22: knowing z; and zo breaks dependence between x and y.

e But if we only observe z5:
>
OO

Then we have = Y y | z2: dependence still “flows” through z;.
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D-Separation Case 3: Common Child

@ Case 3: x and y share a child z:
o If we observe z then we have:

We have x [ y | z: if we know z, then knowing x gives us information about y.
e But if z is not observed:

We have x L y: if you don't observe z then x and y are independent.
o Different from Case 1 and Case 2: not observing the child blocks path.
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D-Separation Case 3: Common Child

@ Case 3: x and y share a child z;:
o If there exists an unobserved grandchild zs:

Y

We have x L y: the path is still blocked by not knowing z; or zs.

o But if 29 is observed:

We have x [ y | z2: grandchild creates dependence even with unobserved parent.

@ Case 3 needs to consider descendants of child.
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D-Separation Summary

e We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are "blocked” because at least one of the following holds:
@ P includes a “chain” with an observed middle node (e.g., Markov chain):

O@—CO

@ P includes a “fork” with an observed parent node (e.g., mixture of Bernoulli):

O@-0O

© P includes a “v-structure” or “collider” (e.g., probabilistic PCA):

O QO

where “child” and all its descendants are unobserved.
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Alarm Example

o Case 1:

o Earthquake f Call.
o Earthquake L Call | Alarm.

o Case 2:

e Alarm [ Stuff Missing.
o Alarm L Stuff Missing | Burglary.
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Alarm Example

Ear‘ﬂxq\nml\’! m

o Case 3:

e Earthquake L Burglary.

o Earthquake [/ Burglary | Alarm.

e “Explaining away”: knowing one parent can make the other less likely.

@ Multiple Cases:

e Call f Stuff Missing.

o Earthquake L Stuff Missing.

o Earthquake [ Stuff Missing | Call.
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Plate Notation

Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given E) = A 1 B | E.

However, there might be extra conditional independences in the distribution:

o These would depend on specific choices of the p(z; | zpa(j))-
e Or some orderings may reveal different independences.

Instead of restricting to {1,2,...,j — 1}, consider general parent choices.
@ x5 could be a parent of x;.

As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).

(all DAGs have a “topological order” of variables where parents are before children)
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Non-Uniqueness of Graph and Equivalent Graphs

@ Note that some graphs imply same conditional independences:
e Equivalent graphs: same v-structures and other (undirected) edges are the same.
o Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

O—O—0 O—O—0
O—O0—0 O—O—0
O O O—O0—0

O,



Outline

@ D-Separation

© Plate Notation
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Discussion of D-Separation

@ So the graph is not necessarily unique and is not the whole story.

@ But, we can already do a lot with d-separation:

e Implies every independence/conditional-independence we've used in 340/540.

@ Here we start blurring distinction between data/parameters/hyper-parameters...



D-Separation Plate Notation

Tilde Notation as a DAG

@ When we write ‘ ‘
yz ~ N(waz’ 1)a

this can be interpretd as a DAG model:

%,

@ "The variables on the right of ~ are the parents of the variables on the left”.
e In this case, w only depends on X since we know .

@ Note that we're now including both data and parameters in the graph.
e This allows us to see and reason about their relationships.



D-Separation Plate Notation

[ID Assumption as a DAG

On Day 2, our first independence assumption was the [ID assumption:

(D)
T o

Training/test examples come independently from data-generating process D.

If we knew D, we wouldn't need to learn.

But D is unobserved, so knowing about some x* tells us about the others.

@ We'll use this understanding later to relax the IID assumption.
e Bonus: using this to ask “when does semi-supervised learning make sense?"
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Plate Notation

o Graphical representation of the IID assumption:
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Tilde Notation as a DAG

o If the 2% are 1ID then we can represent regression as

o From d-separation on this graph we have p(y | X,w) = [\~ p(¥* | 2%, w).

or

@ We often omit the data-generating distribution D.
e But if you want to learn then should remember that it's there.

@ Note that plate reflects parameter tieing: that we use same w for all i.
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Tilde Notation as a DAG
@ When we do MAP estimation under the assumptions
Yt~ N (w2t 1), wj ~N(0,1/X),

we can interpret it as the DAG model:

/]

AN

@6 @)

@ Or introducing a second plate using:
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Other Models in DAG/Plate Notation

@ For naive Bayes we have
y' ~ Cat(d), z'|y’=c~ Cat(.).

\

4@

® ©

/

9330

QuE

@ Or in plate notation as

@ Q—@

A\
=



(]

Summary

Conditional independence of A and B given C:
e Knowing B tells us nothing about A if we already know C.

D-separation allows us to test conditional independences based on graph.

Plate Notation lets us compactly draw graphs with repeated patterns.

e There are fancier versions of plate notation called “probabilistic programming”.

Next time: trying to discover the graph structure from data.

Plate Notation
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Other Models in DAG/Plate Notation

@ In a full Gaussian model for a single x we have

'~ N (i, ).
@ @
/

2~ Cat(d), 2|2 =c~N(te, Xe).

7
@) G

@ For mixture of Gaussians we have



Conditional Independence in Star Graphs

@ Consider the following star graph:

O
510

@ "5 aliens get together and make a baby alien”.
e Unconditionally, the 5 aliens are independent.

Plate Notation



Conditional Independence in Star Graphs

@ Consider the following star graph:

O
510

@ "5 aliens get together and make a baby alien”.
o Conditioned on the baby, the 5 aliens are dependent.

Plate Notation



Conditional Independence in Star Graphs

@ Consider the following star graph:

@

O

@ "“An organism produces 5 clones”.
e Unconditionally, the 5 clones are dependent.

Plate Notation



Conditional Independence in Star Graphs

@ Consider the following star graph:

@

O

@ "“An organism produces 5 clones”.
o Conditioned on the original, the 5 clones are independent.

Plate Notation
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Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
e No!

Consider choosing unlabeled features z* uniformly at random.

o Unlabeled examples collected in this way will not help.
e By construction, distribution of Z* says nothing about 7*.

Example where SSL is not possible:
e Try to detect food allergy by trying random combinations of food:
e The actual random process isn't important, as long as it isn't affected by labels.
@ You can sample an infinite number of Z* values, but they says nothing about labels.
Example where SSL is possible:
e Trying to classify images as “cat” vs. “dog.:
@ Unlabeled data would need to be images of cats or dogs (not random images).

o Unlabeled data contains information about what images of cats and dogs look like.
o For example, there could be clusters or manifolds in the unlabeled images.
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Does Semi-Supervised Learning Make Sense?

@ Let's assume our semi-supervised Iearning model is represented by this DAG:

\/&\,
l

®
\/@

@ Assume we observe {X,y, X} and are interested in test labels ¢:
e There is a dependency between y and g because of path through w.
o Parameter w is tied between training and test distributions.
o There is a dependency between X and gy because of path through w (given y).
o But note that there is also a second path through D and X. _
e There is a dependency between X and y because of path through D and X.
o Unlabeled data helps because it tells us about data-generating distribution D.
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Does Semi-Supervised Learning Make Sense?

o Now consider generating X independent of D:

og\“
2

@ Assume we observe {X,y, X} and are interested in test labels 7:

o Knowing X and y are useful for the same reasons as before.
e But knowing X is not useful:

e Without knowing 3, X is d-separated from 7 (no dependence).
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Beware of the “Causal’ DAG

@ It can helpful to use the language of causality when reasoning about DAGs.
o You'll find that they give the correct causal interpretation based on our intuition.

@ However, keep in mind that the arrows are not necessarily causal.
o "A causes B" has the same graph as “B causes A".

@ There is work on causal DAGs which add semantics to deal with “interventions”.

e But these require extra assumptions: fitting a DAG to observational data doesn't
imply anything about causality.
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