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D-Separation Plate Notation

Last Time: Directed Acyclic Graphical (DAG) Models

DAG models use a factorization of the joint distribution,

p(x1, x2, . . . , xd) =

d∏
j=1

p(xj |xpa(j)),

where pa(j) are the “parents” of node j.

This assumes a Markov property (generalizing Markov property in chains),

p(xj |x1:j−1) = p(xj |xpa(j)),

We visualize the assumptions made by the model as a graph:
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DAGs and Conditional Independence

In DAGs we make the conditional independence assumption that

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xpa(j)).

But these conditional independence assumptions can imply other assumptions.
For example, in Markov chains we directly assume for all j that

p(xj | xj−1, xj−2, . . . , x1) = p(xj | xj−1),

but this also implies that

p(xj | xj−2, xj−3, . . . , x1) = p(xj | xj−2),

and it implies that

p(xj | xj+1, xj+2, . . . , xd) = p(xj | xj+1).

Knowing which assumptions hold can help identify which operations are efficient.
For example, decoding in general DAGs is NP-hard but it’s easy in Markov chains.
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Review of Independence

Let A and B are random variables taking values a ∈ A and b ∈ B.

We say that A and B are independent if we have

p(a, b) = p(a)p(b),

for all a and b.

To denote independence of xi and xj we use the notation

xi ⊥ xj .
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Review of Independence

For independent a and b we have

p(a | b) =
p(a, b)

p(b)
=
p(a)p(b)

p(b)
= p(a).

This gives us a more intuitive definition: A and B are independent if

p(a | b) = p(a)

for all a and b 6= 0.

In words: knowing b tells us nothing about a (and vice versa).

Useful fact: a ⊥ b iff p(a, b) = f(a)g(b) for some functions f and g.



D-Separation Plate Notation

Example: Independence in Product Models

Recall density estimation using a product of independent models:

p(x1, x2, . . . , xd) = p(x1)p(x2) · · · p(xd).

Using marginalization rule we can show this implies pairwise independence:

p(xi, xj) =
∑
x1

∑
x2

· · ·
∑
xd︸ ︷︷ ︸

excluding xi and xj

p(x1, x2, . . . , xd) =
∑
x1

∑
x2

· · ·
∑
xd︸ ︷︷ ︸

excluding xi and xj

p(x1)p(x2) · · · p(xd)

= p(xi)p(xj)
∑
x1

∑
x2

· · ·
∑
xd︸ ︷︷ ︸

excluding xi and xj

p(x1)p(x2) · · · p(xd)︸ ︷︷ ︸
excluding p(xi) and p(xj)

(take p(xi) and p(xj) out)

= p(xi)p(xj)
∑
x1

p(x1)
∑
x2

p(x2) · · ·
∑
xd

p(xd)︸ ︷︷ ︸
excluding xi and xj

= p(xi)p(xj) (sums sum to 1).
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Example: Independence in Product of Bernoullis Model

In a product of Bernoullis probabilities model we have

p(x1, x2, . . . , xd) = p(x1)p(x2) · · · p(xd),

which we showed implies
p(xi, xj) = p(xi)p(xj),

so we have xi ⊥ xj for all i and j.

In mixture of Bernoullis xi is not independent of xj (xi 6⊥ xj):

Knowing xj tells you something about xi.
But similar notation-heavy steps give the conditional independence that

p(xi, xj | z) = p(xi | z)p(xj | z),

that “variables xi and xj are conditionally independent given the cluster z”.
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Conditional Independence

We say that A is conditionally independent of B given C if

p(a, b | c) = p(a | c)p(b | c),

for all a, b, and c 6= 0.

Equivalently, we have
p(a | b, c) = p(a | c).

“If you know C, then also knowing B would tell you nothing about A”’.
In mixture of Bernoullis, given cluster there is no dependence between variables.

We often write this as
A ⊥ B | C.

Most models have some sort of conditional independence.
They were used to simplify calculations in the EM notes.
They determine whether message passing is efficient.
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D-Separation: From Graphs to Conditional Independence

All conditional independences implied by a DAG can be read from the graph.

In particular: variables A and B are conditionally independent given C if:

“D-separation blocks all undirected paths in the graph
from any variable in A to any variable in B.”

In the special case of product of independent models our graph is:

Here there are no paths to block, which implies the variables are independent.

Checking paths in a graph tends to be faster than tedious calculations.

We can start connecting properties of graphs to computational complexity.



D-Separation Plate Notation

D-Separation as Genetic Inheritance

The rules of d-separation are intuitive in a simple model of gene inheritance:
Each person has single number, which we’ll call a “gene”.
If you have no parents, your gene is a random number.
If you have parents, your gene is a sum of your parents plus noise.

For example, think of something like this:

Graph corresponds to the factorization p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2).
Are x1 and x2 independent here?
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D-Separation as Genetic Inheritance

Genes of people are independent if knowing one says nothing about the other.

Your gene is dependent on your parents:

If I know you your parent’s gene, I know something about yours.

Your gene is independent of your (unrelated) friends:

If know you your friend’s gene, it doesn’t tell me anything about you.

Genes of people can be conditionally independent given a third person:

Knowing your grandparent’s gene tells you something about your gene.
But grandparent’s gene isn’t useful if you know parent’s gene.
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D-Separation Case 0 (No Paths and Direct Links)

Are genes in person x independent of the genes in person y?

No path: x and y are not related (independent),

We have x ⊥ y: there are no paths to be blocked.

Direct link: x is the parent of y,

We have x 6⊥ y: knowing x tells you about y (direct paths aren’t blockable).
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D-Separation Case 0 (No Paths and Direct Links)

Neither case changes if we have a third independent person z:

No path: If x and y are independent,

We have x ⊥ y: adding z doesn’t make a path.

Direct link: x is the parent of y,

We have x 6⊥ y | z: adding z doesn’t block path.

We use black or shaded nodes to denote values we condition on (in this case z).
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D-Separation Case 1: Chain

Case 1: x is the grandparent of y.
If z is the mother we have:

We have x 6⊥ y: knowing x would give information about y because of z
But if z is observed:

In this case x ⊥ y | z: knowing z “breaks” dependence between x and y.
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D-Separation Case 1: Chain
Consider weird case where parents z1 and z2 share parent x:

If z1 and z2 are observed we have:

We have x ⊥ y | z1, z2: knowing both parents breaks dependency.
But if only z1 is observed:

We have x 6⊥ y | z1: dependence still “flows” through z2.
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D-Separation Case 2: Common Parent

Case 2: x and y are sibilings.

If z is a common unobserved parent:

We have x 6⊥ y: knowing x would give information about y.
But if z is observed:

In this case x ⊥ y | z: knowing z “breaks” dependence between x and y.
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D-Separation Case 2: Common Parent

Case 2: x and y are sibilings.

If z1 and z2 are common observed parents:

We have x ⊥ y | z1, z2: knowing z1 and z2 breaks dependence between x and y.
But if we only observe z2:

Then we have x 6⊥ y | z2: dependence still “flows” through z1.
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D-Separation Case 3: Common Child
Case 3: x and y share a child z:

If we observe z then we have:

We have x 6⊥ y | z: if we know z, then knowing x gives us information about y.
But if z is not observed:

We have x ⊥ y: if you don’t observe z then x and y are independent.

Different from Case 1 and Case 2: not observing the child blocks path.
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D-Separation Case 3: Common Child

Case 3: x and y share a child z1:

If there exists an unobserved grandchild z2:

We have x ⊥ y: the path is still blocked by not knowing z1 or z2.
But if z2 is observed:

We have x 6⊥ y | z2: grandchild creates dependence even with unobserved parent.

Case 3 needs to consider descendants of child.
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D-Separation Summary

We say that A and B are d-separated (conditionally independent) if all paths P
from A to B are “blocked” because at least one of the following holds:

1 P includes a “chain” with an observed middle node (e.g., Markov chain):

2 P includes a “fork” with an observed parent node (e.g., mixture of Bernoulli):

3 P includes a “v-structure” or “collider” (e.g., probabilistic PCA):

where “child” and all its descendants are unobserved.
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Alarm Example

Case 1:

Earthquake 6⊥ Call.
Earthquake ⊥ Call | Alarm.

Case 2:

Alarm 6⊥ Stuff Missing.
Alarm ⊥ Stuff Missing | Burglary.
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Alarm Example

Case 3:
Earthquake ⊥ Burglary.
Earthquake 6⊥ Burglary | Alarm.

“Explaining away”: knowing one parent can make the other less likely.

Multiple Cases:
Call 6⊥ Stuff Missing.
Earthquake ⊥ Stuff Missing.
Earthquake 6⊥ Stuff Missing | Call.
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Discussion of D-Separation

D-separation lets you say if conditional independence is implied by assumptions:

(A and B are d-separated given E)⇒ A ⊥ B | E.

However, there might be extra conditional independences in the distribution:

These would depend on specific choices of the p(xj | xpa(j)).
Or some orderings may reveal different independences.

Instead of restricting to {1, 2, . . . , j − 1}, consider general parent choices.

x2 could be a parent of x1.

As long the graph is acyclic, there exists a valid ordering (chain rule makes sense).
(all DAGs have a “topological order” of variables where parents are before children)
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Non-Uniqueness of Graph and Equivalent Graphs

Note that some graphs imply same conditional independences:

Equivalent graphs: same v-structures and other (undirected) edges are the same.
Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):
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Outline

1 D-Separation

2 Plate Notation
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Discussion of D-Separation

So the graph is not necessarily unique and is not the whole story.

But, we can already do a lot with d-separation:

Implies every independence/conditional-independence we’ve used in 340/540.

Here we start blurring distinction between data/parameters/hyper-parameters...
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Tilde Notation as a DAG

When we write
yi ∼ N (wTxi, 1),

this can be interpretd as a DAG model:

“The variables on the right of ∼ are the parents of the variables on the left”.
In this case, w only depends on X since we know y.

Note that we’re now including both data and parameters in the graph.
This allows us to see and reason about their relationships.
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IID Assumption as a DAG

On Day 2, our first independence assumption was the IID assumption:

Training/test examples come independently from data-generating process D.

If we knew D, we wouldn’t need to learn.

But D is unobserved, so knowing about some xi tells us about the others.

We’ll use this understanding later to relax the IID assumption.

Bonus: using this to ask “when does semi-supervised learning make sense?”
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Plate Notation

Graphical representation of the IID assumption:

It’s common to represent repeated parts of graphs using plate notation:
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Tilde Notation as a DAG

If the xi are IID then we can represent regression as

or

From d-separation on this graph we have p(y | X,w) =
∏n

i=1 p(y
i | xi, w).

We often omit the data-generating distribution D.

But if you want to learn then should remember that it’s there.

Note that plate reflects parameter tieing: that we use same w for all i.
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Tilde Notation as a DAG
When we do MAP estimation under the assumptions

yi ∼ N (wTxi, 1), wj ∼ N (0, 1/λ),

we can interpret it as the DAG model:

Or introducing a second plate using:
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Other Models in DAG/Plate Notation
For naive Bayes we have

yi ∼ Cat(θ), xi | yi = c ∼ Cat(θc).

Or in plate notation as
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Summary

Conditional independence of A and B given C:

Knowing B tells us nothing about A if we already know C.

D-separation allows us to test conditional independences based on graph.

Plate Notation lets us compactly draw graphs with repeated patterns.

There are fancier versions of plate notation called “probabilistic programming”.

Next time: trying to discover the graph structure from data.
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Other Models in DAG/Plate Notation
In a full Gaussian model for a single x we have

xi ∼ N (µ,Σ).

For mixture of Gaussians we have

zi ∼ Cat(θ), xi | zi = c ∼ N (µc,Σc).
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Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.

Unconditionally, the 5 aliens are independent.
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Conditional Independence in Star Graphs

Consider the following star graph:

“5 aliens get together and make a baby alien”.

Conditioned on the baby, the 5 aliens are dependent.
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Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.

Unconditionally, the 5 clones are dependent.
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Conditional Independence in Star Graphs

Consider the following star graph:

“An organism produces 5 clones”.

Conditioned on the original, the 5 clones are independent.
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Does Semi-Supervised Learning Make Sense?

Should unlabeled examples always help supervised learning?
No!

Consider choosing unlabeled features x̄i uniformly at random.
Unlabeled examples collected in this way will not help.
By construction, distribution of x̄i says nothing about ȳi.

Example where SSL is not possible:
Try to detect food allergy by trying random combinations of food:

The actual random process isn’t important, as long as it isn’t affected by labels.
You can sample an infinite number of x̄i values, but they says nothing about labels.

Example where SSL is possible:
Trying to classify images as “cat” vs. “dog.:

Unlabeled data would need to be images of cats or dogs (not random images).
Unlabeled data contains information about what images of cats and dogs look like.
For example, there could be clusters or manifolds in the unlabeled images.
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Does Semi-Supervised Learning Make Sense?
Let’s assume our semi-supervised learning model is represented by this DAG:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:
There is a dependency between y and ỹ because of path through w.

Parameter w is tied between training and test distributions.
There is a dependency between X and ỹ because of path through w (given y).

But note that there is also a second path through D and X̃.
There is a dependency between X̄ and ỹ because of path through D and X̃.

Unlabeled data helps because it tells us about data-generating distribution D.
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Does Semi-Supervised Learning Make Sense?

Now consider generating X̄ independent of D:

Assume we observe {X, y, X̄} and are interested in test labels ỹ:

Knowing X and y are useful for the same reasons as before.
But knowing X̄ is not useful:

Without knowing ȳ, X̄ is d-separated from ỹ (no dependence).
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Beware of the “Causal” DAG

It can helpful to use the language of causality when reasoning about DAGs.

You’ll find that they give the correct causal interpretation based on our intuition.

However, keep in mind that the arrows are not necessarily causal.

“A causes B” has the same graph as “B causes A”.

There is work on causal DAGs which add semantics to deal with “interventions”.

But these require extra assumptions: fitting a DAG to observational data doesn’t
imply anything about causality.
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