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Last Time: Viterbi Decoding and Message Passing

@ Decoding in density models: finding = with highest joint probability:

argmax p(zy1,To,...,xq).
T1,L2,-,Td

@ For Markov chains, we find decoding by writing maximization as

max p(z1, 2, x3,24) = maxmax p(x4 | z3) max p(xs | z2) maxp(ze | 1) p(z1 ),
T1,T2,T3,T4 T4 a3 x2 x1 ~—

Mi(z1)

Ma(x2)

Ms(x3)

My(x4)

e Viterbi decoding computes M (1) for all 1, My(xz2) for all z2, and so on.
The M;(z;) functions are called messages (summarize everything about past).
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Chapman-Kolmogorov Equations as Message Passing

@ We can also view Chapman Kolmogorov equations as message passing;:

plea) =D Y plar,wa,ws,xa) =Y Y > plas | z3)p(es | z2)p(as | 21)p(z1)

xr3 T2 1 xr3 o T

= p(aa | 23) Y plas [ w2)Y  plas | 21) M (1)
3 T2 T1

= p(za|23)) plas | z2)Mo(ws)
3 T3

ZZP(M | w3) M3(z3)

x3
=My (z4),

© Messages M;(x;) are the marginals of the Markov chain.

e So we can view CK equations as Viterbi decoding with "max” replace by “sum”.
e These two methods are also known as “max-product” and “sum-product” algorithms.
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Message-Passing Algorithms

@ We've discussed several algorithms with similar structure:

o Viterbi decoding algorithm for decoding in discrete Markov chains.
e CK equations for marginals in discrete Markov chains.
o Gaussian updates for marginals in Gaussian Markov chains.

@ These are all special cases of message-passing algorithms:

@ Define M, summarizing all relevant information about the past at time j.
© Use Markov property to write M recursively in terms of M;_;.
@ Solve task by computing My, M, ..., M.

@ “Generalized distributive law" is a framework for describing when/why this works:
e https://authors.library.caltech.edu/1541/1/AJTieeetit00.pdf

@ In some cases we'll also need backwards message V; (‘cost to go”):
o V; summarizes all relevant information about the future at time j.


https://authors.library.caltech.edu/1541/1/AJIieeetit00.pdf
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Backwards “Cost to Go” Messages

e Using backwards messages Vj(z;) to (innefficiently) compute p(z1):

p(x1) => > > ple1,@2,23,24) = > > > pz1)p(z2 | 1)p(es | 22)p(24 | ©3)

xr2 T3 T4 2 x3 x4

=p(z1) D> _p(@a | 21) D> p(e3 | 22) > p(wa | x3)
zg x3 x4

=p(z1) > p(z2 | 21) D> p(z3 | 22)D>_ p(zs | 23) Va(zs)
zo x3 x4 T
=p(z1) Y pz2 | 21)Y_ p(23 | x2) Va(23)
T x3 _\/—‘1

=p(z1)>_ plwz | ©1) Va(zz)
22

z2
1

= p(z1) Vi(z1).
—_——

1

@ Observe that backwards messages Vj(z;) are not probabilities as in CK equations.

e But they summarize everything you need to know about the future.
o Can use this structure to condition on the future, and compute things like p(z1 | 24).
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Forward-Backward Algorithm

e Computing all M;(z;) and Vj(x;) is called the forward-backward algorithm.
o Not interesting for Markov chains since V;(z;) =1 for all j and z;.

@ Why do we need both types of messages?
o Can efficiently compute all conditionals p(z; = s | 219 = 3) (for all j and s).

o Messages are modified when you condition (see bonus slides).
@ The modified V;(z;) will reflect “what you need to know about the future events”.

o Can be used to compute probabilities in generalizations of Markov chains (next).
@ In this setting the forward messages may not be probabilities either.

o In reinforcement learning, estimating the “cost to go” (“value”) function is the goal.
o We aren’t covering RL, but understanding Markov chains will help you understand RL.
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Back to the Rain Data

@ We previously considered the “Vancouver Rain” data:

Rain Data for first 100 months

@ We said that a homogeneous Markov chain is a good model:
o Captures direct dependency between adjcaent days.
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Back to the Rain Data

@ But doesn't it rain less in the summer?

@ There are hidden clusters in the data not captured by the Markov chain.
e But mixture of independent models are inefficient at representing direct dependency.

@ Mixture of Markov chains could capture direct dependence and clusters,

plar, e, ..., x) =3 plz = ) plar | 2 = plaa | 21,2 = ) - -plea | 2a1,2 = ¢).

Markov chain ¢

@ Cluster z chooses which homogeneous Markov chain parameters to use.

o We could learn that we're more likely to have rain in winter.
e Can modify CK equations to take into account z, and then apply EM.
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Back to the Rain Data

The rain data is artificially divideded into months.

@ We previously discussed viewing rain data as one very long sequence (n = 1).

We could apply homogeneous Markov chains due to parameter tieing.

But a mixture doesn’'t make sense when n = 1.

@ What we want: different “parts” of the sequence come from different clusters.
o We transition from “summer” cluster to “fall” cluster at some time j.

One way to address this ( “hidden” Markov model):

e Let each day have it's own cluster.
e Have a Markov dependency between cluster values of adjacent days.
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Hidden Markov Models

@ Hidden Markov models have each z; depend on hidden Markov chain.

O —=O—E-6)~E)
I [ 1 ]
H ® 6 6 b

d
p(z1,22,...,21, 22, ... z4) = p(21) HP(Zj | zj—1 Hp zj | zj)-
=2 j=1

ISH

@ We're going to learn clusters z; and the hidden dynamics.
o Hidden cluster z; could be “summer” or "winter" (we're learning the clusters).
e Transition probability p(z; | zj—1) is probability of staying in “summer"”.
o Emission probability p(x; | z;) is probability of “rain” during “summer”.
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Hidden Markov Models

@ Hidden Markov models have each x; depend on hidden Markov chain.

@;722‘_"725 Zzy)—

ol ]
b © 66 &

d
p(a1, @, 21,22, za) = p(21) [ [ p(25 | 21 H (x5 | 25).

@ You observe the z; values but do not see the z; values.
o CK equations won't work since p(z; = s) depends on future x; values.

@ But forward-backward algorithm can be used to compute probailities.
e And subsequently learn with EM.
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Hidden Markov Models

@ Hidden Markov models have each x; depend on hidden Markov chain.

@’—‘722——5@—‘7@"—9@
} Lol ]
5 O 6 6 O

@ Note that the x; can be continuous even with discrete clusters z;.
e You could have a “mixture of Gaussians” with cluster changing in time.

o If the z; are continuous it's often called a state-space model.
o If everything is Gaussian, it leads to Kalman filtering.
o Keywords for non-Gaussian: unscented Kalman filter and particle filter.

@ Variants of HMMs are probably the most-used time-series model...
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Applications of HMMs and Kalman Filters

Applications (edi

HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depend on the sequence are).

Applications include:

. Single Molecule Kinetic analysis!'€)
. Cryptanalysis

. Speech recognition

. Speech synthesis

. Pant-of-speech tagging

. Document Separation in scanning solutions
. Machine translation

. Partial discharge

. Gene prediction

. Alignment of bio-sequences

. Time Series Analysis

. Activity recognition

. Protein folding!'?!

. Metamorphic Virus Detection! ¢!

. DNA Motif Discovery!'®]

Applications (e

. Attitude and Heading Reference Systems

+ Autopilot

. Battery state of charge (SoC) estimation[*9/[4¢]

. Brain-computer interface

. Chaotic signals

. Tracking and Vertex Fitting of charged particles in
Particle Detectors(*!]

. Tracking of objects in computer vision

. Dynamic positioning

. Economics, in particular macroeconomics, time

series analysis, and econometrics!*2]

. Inertial guidance system

. Orbit Determination

. Power system state estimation

. Radar tracker

. Satellite navigation systems

. Seismology*3l

. Sensorless control of AC motor variable-frequency

drives

. Simultaneous localization and mapping
. Speech enhancement

. Visual odometry

. Weather forecasting

. Navigation system

. 3D modeling

. Structural health monitoring

. Human sensorimotor processing#4!

Directed Acyclic Graphical Models
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Example: Modeling DNA Sequences

@ A nice demo of independent vs. Markov vs. HMMs for DNA sequences:

@ http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html

https://wuw.tes.com/lessons/WESE9RncBhieAQ/dna

@ Independent model for elements of sequence:

ps=0.2, pc=0.3, R;=°-3v pr=0.2



http://a-little-book-of-r-for-bioinformatics.readthedocs.io/en/latest/src/chapter10.html
https://www.tes.com/lessons/WE5E9RncBhieAQ/dna
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Example: Modeling DNA Sequences

@ Markov model for elements of sequence (dependence on previous symbol):

"AfterA" wheel "AfterC" wheel

p=0.2, p=0.3, p,=0.3, p,=0.2 0.1, p=0.41, p=0.39, p,=0.1

"AfterG" wheel “AfterT" wheel

Ps=0.25, p=0.25, p=0.25, p,=0.25  p,=0.5, p=0.17, p=0.17, p,=0.17
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Example: Modeling DNA Sequences

e Hidden Markov model (HMM) for elements of sequence (two hidden clusters):

"AT-rich" wheel "GC-rich" wheel

p=0.3 of
changing wheel

———-
p=0.1of
changing wheel

p=0.39, p=0.1, p=0.1, p,=0.41 p:=0.1, p=0.41, p=0.39, p,=0.1

@ Can reflect that probabilities are different in different regions.
e The actual regions are not given, but instead are nuissance variables handled by EM.

@ You probably get a better model by consider hidden Markov and visible Markov.
e With 2 hidden clusters, you would have 8 “probability wheels” (4 per cluster).
o Would have “treewidth 2", which we'll show later means it's tractable to use.
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Who is Guarding Who?

@ There is a lot of data on offense of NBA basketball players.
o Every point and assist is recorded, more scoring gives more wins and $$$.

@ But how do we measure defense?
o We need to know who each player is guarding.

JAMES HARDEN KAWHI LEONARD
NSIVE SHOT CHAR DEFENSIVE SHOT CHART

Figu

suppress

disruption scores (color). Kawhi Leonard tends to

s on the perimeter. Mote comparisons ate provided in the Appendi
http://www.lukebornn.com/papers/franks_ssac_2015.pdf

@ HMMs can be used to model who is guarding who over time.
e https://www.youtube.com/watch?v=JvNkZdZJBt4


http://www.lukebornn.com/papers/franks_ssac_2015.pdf
https://www.youtube.com/watch?v=JvNkZdZJBt4
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Outline

© Directed Acyclic Graphical Models
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Higher-Order Markov Models
@ Markov models use a density of the form
p(z) = p(z1)p(z2 | x1)p(w3 | z2)p(24 | 23) -+ (T4 | Td—1)-
@ They support efficient computation but Markov assumption is strong.
@ A more flexible model would be a second-order Markov model,
p(z) = p(z1)p(z2 | #1)p(23 | 22, 21)p(wa | w3, 22) - - P(Ta | Ta—1,Td—2),
or even a higher-order models.

@ General case is called directed acyclic graphical (DAG) models:
o They allow dependence on any subset of previous features.
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DAG Models

@ As in Markov chains, DAG models use the chain rule to write

p(z1,22,. .., 2q) = p(z1)p(z2 | 21)p(2s | 21, 22) -+ P24 | 21,22, .., Ta—1).
@ We can alternately write this as:

d

play, g, xq) = [ [ o) | 215-1).
j=1

@ In Markov chains, we assumed z; only depends on previous x;_1 given past.

@ In DAGs, x; can depend on any subset of the past x1,22,...,2j_1.
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DAG Models
@ We often write joint probability in DAG models as
d
p($17$2? B xd) = Hp(xj ‘ wpa(j))a
j=1

where pa(j) are the “parents” of node j.

e For Markov chains the only “parent” of j is (j — 1).
o If we have k parents we only need 2¥*1 parameters.

@ This corresponds to a set of conditional independence assumptions,

p(xj | 21:5-1) = p(T5 | Tpa(j))s

that we're independent of previous non-parents given the parents.
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MNIST Dlgits with Markov Chains

@ Recall trying to model digits using an inhomogeneous Markov chain:

Only models dependence on pixel above, not on 2 pixels above nor across columns.
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MNIST Digits with DAG Model (Sparse Parents)

@ Samples from a DAG model with 8 parents per feature:

=

5 10 15 20 25 5 10 15 20 25

Eil

5 10 15 20 25 5 10 15 20 25

Parents of (i, j) are 8 other pixels in the neighbourhood (“up by 2, left by 2"):

{<i_2aj_2)7 (i_lvj_2)7 (ivj_2)a (i_27j_1)7 (i_Lj_l)v (ivj_1)7 (i_27j)7 (7‘_1’])}
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From Probability Factorizations to Graphs

DAG models are also known as “Bayesian networks” and “belief networks”.

e “Graphical” name comes from visualizing parents/features as a graph:

e We have a node for each feature j.
e We place an edge into j from each of its parents.

The DAG representation for a Markov chains is:

E)—) )4

o Different than “state transition diagrams”: edges are between variables (not states).

This graph is not just a visualization tool:
o Can be used to test arbitrary conditional independences (“d-separation”).
o Graph structure tells us whether message passing is efficient (“treewidth™).
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Graph Structure Examples

With product of independent we have

so pa(j) = @ and the graph is:

® @& 6w
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Graph Structure Examples

With Markov chain we have

d
H p(zj | zj-1)
Jj=2

so pa(j) = {j — 1} and the graph is:

E—) L))y

Directed Acyclic Graphical Models
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Graph Structure Examples

With second-order Markov chain we have

d

p(x) = p(x)p(es | @1) [ [ p(a) | 2jo1,2j-0),
7j=3

so pa(j) ={j — 2,7 — 1} and the graph is:

O INOy DG
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Graph Structure Examples

With general distribution we have

d

p(x) = [[ p(z; | 21:5-1).

j=1

so pa(j) =41,2,...,j — 1} and the graph is:
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Graph Structure Examples

In naive Bayes (or GDA with diagonal ¥) we add an extra variable y and use

d
H (zj [ y),

Jj=1

which has pa(y) = 0 and pa(z;) = y giving

Y

7NN

®” @ © @ G
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Graph Structure Examples

With mixture of independent models we have
d
p(z ) = p(2) [[ o) | 2).
j=1

which has pa(z) = 0 and pa(x;) = z giving same structure as naive Bayes:

Since structure is the same, many computations will be similar.
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Graph Structure Examples

With mixture of Markov chains models we have
d
p(x1, e, ..., xq,2) = p(xy1 | 2z H p(xj | zj-1,2).
Jj=2

which has pa(z) = 0 and pa(z;) = {z;_1, z}:

@\x |
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Graph Structure Examples
Sometimes it's easier to present a model using the graph.

In hidden Markov models we have this structure:

@’—721-—3@—’7@4@
l L] ]
5 ® 6 & ©

The graph and variable names already give you an idea of what this model does:
@ We have hidden variables z; that follow a Markov chain.

@ Each feature x; depends on corresponding hidden variable z;.
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Graph Structure Examples

@ Instead of factorizing by variables j, could factor into blocks b:

p(x) = Hp(xb ‘ xpa(b)):
b

and have the nodes be blocks (usually assuming full connectivity within the
block).

@ With mixture of Gaussian and full covariances we have

p(z,2) = p(z)p(z | 2).
@ The corresponding graph structure is:
@

@ Gaussian generative classifiers (GDA) have the same structure.
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Graph Structure Examples

With probabilistic PCA we have

The data x comes from a set of independent parents (latent factors).
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Graph Structure Examples

We can consider less-structured examples,

/
wet frans

The corresponding factorization is:

p(S,V, R, W, G, D) = p(S)p(V)p(R | V)p(W | S, R)p(G | V)p(D | G).



Hidden Markov Models Directed Acyclic Graphical Models

Graph Structure Examples

We can consider phylogeny (family trees):



Directed Acyclic Graphical Models

Summary

Message-passing allow efficient calculations with Markov chains.

Hidden Markov models model time-series with hidden per-time cluster.
e Tons of applications, typically more realistic than Markov models.

DAG models factorize joint distribution into product of conditionals.

e Assume conditionals depend on small number of “parents”.
e Joint distribution of models we've discussed can be written as DAG models.

Next time: the IID assumption as a graphical model?
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Computing Conditional Probabilities

@ Previously: Monte Carlo for approximating conditional probabilities
o For Gaussian/discrete Markov chains, we can do better than rejection sampling.
© We can generate exact samples from conditional distribution (bonus slide).
@ Rejection sampling is not needed, relies on “backwards sampling” in time.
© We can find conditional decoding max | xj,:cp(x):
o Run Viterbi decoding with M;/(c) =1 and M;:(¢') =0 for ¢ # ¢'.
© We can find univariate conditionals, p(z; | ;).

e Example of computing p(x1 = ¢ | 23 = 1) in a length-4 discrete Markov chain:

p(i=cl|zz=1)xp(z1=ca3=1)

= ZZp(xl =c,xo, w3 = 1,24),

T4 T2

where the normalizing constant is the marginal p(z3 = 1).
@ This is a sum over k%2 possible assighments to other variables.
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Distributing Sum across Product
o Fortunately, the Markov property makes the sums simplify as before:

S pler=cazazs=1za) =3 > > > plas|zs)p(es | z2)p(as | 21)p(z1)

2 2 o1 231 op #1mc
= %:T;l%p(m | 3)p(xs | z2) g::cp(wz | 21)p(21)
= 24: 321 p(s | 23 Zp z3 | @3) Y plw2 | 21)Mi(21)
_243 ;1 p(xq | z3) Zp z3 | 22) z\}g (2)
= 24: glp x4 | 23)Ms(z3)

= Z M4(J}4)’
x4

where M ;(x;) now sums over paths ending in x; instead of maximizing.
o And we set M;(c') =0if ¢ # c and Ms(¢’) =0 for ¢/ # 1.
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Conditionals via Backwards Messages

@ Performing our conditional calculation using backwards messages.

DD pl@i=cazaz=1lma)= Y > > > plaa|as)p(es | x2)p(@2 | z1)p(z1)

T4 T2 T1=c T2 x3=1 x4

= > pl@) ) plaz|x1) Y plas|22) ) plaa | x3)
785 =@ xo mE=il x4

= T xo | x x3 | x x4 | 23) Va(x
mz:jcp( n;m 2 | ”;lp( 3 | 2)%;17( 4| 3) 4:)

= > p(@1) D _pl@2 | x1) Y plxs | z2)Va(z3)
7wy =@ xo 3=l

= Z p(wl)zp(mz | 21)Va(z2)

—Z (z1)Vi(z1)-

aj| =@
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Forward-Backward Algorithm

@ Generic forward and backward messages for discrete marginals have the form

Mj(aj) = D p(s | 2j-0)Mja(zim1),  Vileg) = ) p(@se | 25)Vin (@)

Tj—1 Tji+1

@ We can compute p(z; = ¢ | js = ¢’) using only forward messages:
o Set Mj(c)=1and M;/(d) =1.

@ Why we would need backward messages?
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Forward-Backward Algorithm

o We can compute p(z; = ¢ | zj; = ) for all j in O(dk?) with both messages.

o First compute all message normally with M;/(¢') =1 and Vj/(¢) = 1.
(Other M;/, and V;: are set to 0)

@ We then have that

o M;(z;) sums up all the paths that end in state x; (with =, = ¢’).
o V;(x;) sums up all the paths that start in state z; (with z;; = ¢’).
o We can combine these values to get

p(xj | zj0) o< Mj(z5)Vj(z;),

o Computing all M; and Vj is called the forward-backward algorithm.
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Conditional Samples from Gaussian/Discrete Markov Chain

Generating exact conditional samples from Gaussian/discrete Markov chains:

o

2]

If we're only conditioning on first j states, x1.;, just fix these values and start
ancestral sampling from time (5 + 1).

If we have the marginals p(z;), we can get the “backwards” transition
probabilities using Bayes rule,

p(zj+1 | ffj)P(wj)’

p(zj | zj41) =
7 p(Tj+1)

which lets us run ancestral sampling in reverse: sample x4 from p(z4), then z4_1
from p(z4_1 | z4), and so on.

If we're only conditioning on last j states x4_;.q, run CK equations to get
marginals and then start ancestral sampling “backwards” starting from (d —j — 1)
to sample the earlier states.
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Conditional Samples from Gaussian/Discrete Markov Chain

Q If we're conditioning on contiguous states in the middle, x;.;;, run ancestral
sampling forward starting from position (5’ 4+ 1) and backwards starting from
position (5 — 1).

@ |If you condition on non-contiguous positions j and j’ with j < j’, need to do (i)
forward sampling starting from (j' + 1), (ii) backward sampling starting from
( — 1), and (iii) CK equations on the sequence (j : j') to get marginals
conditioned on value of j then backwards sampling back to j starting from
(G =1).

The above are all special cases of conditioning in an undirected graphical model
(UGM), followed by applying the “forward-filter backward-sampling” algorithm on each
of the resulting chain-structured UGMs.
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