CPSC 540: Machine Learning Message Passing

Mark Schmidt

University of British Columbia

Winter 2019

Last Time: Monte Carlo Methods

• If we want to approximate expectations of random functions,

$$\mathbb{E}[g(x)] = \underbrace{\sum_{x \in \mathcal{X}} g(x)p(x)}_{\text{discrete } x} \quad \text{or} \quad \underbrace{\mathbb{E}[g(x)] = \int_{x \in \mathcal{X}} g(x)p(x)dx}_{\text{continuous } x},$$

discrete x

the Monte Carlo estimate is

$$\mathbb{E}[g(x)] \approx \frac{1}{n} \sum_{i=1}^{n} g(x^{i}),$$

where the x^i are independent samples from p(x).

• We can use this to approximate marginals,

$$p(x_j = c) = \frac{1}{n} \sum_{i=1}^n \mathcal{I}[x_j^i = c].$$

Exact Marginal Calculation

- In typical settings Monte Carlo has sublinear converngece like stochastic gradient.
 - O(1/t) convergence rate where constant is variance of samples.
 - If all samples look the same, it converges quickly.
 - If samples look very different, it can be painfully slow.
- For discrete-state Markov chains, we can actually compute marginals directly:
 - We're given initial probabilities $p(x_1 = s)$ for all s as part of the definition.
 - We can use transition probabilities to compute $p(x_2 = s)$ for all s:

$$p(x_2) = \underbrace{\sum_{x_1=1}^k p(x_2, x_1)}_{\text{marginalization rule}} = \sum_{x_1=1}^k \underbrace{p(x_2 \mid x_1) p(x_1)}_{\text{product rule}}.$$

• We can repeat this calculation to obtain $p(x_3 = s)$ and subsequent marginals.

Exact Marginal Calculation

• Recursive formula for maginals at time j:

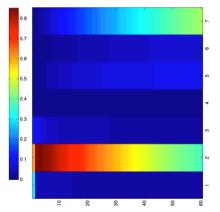
$$p(x_j) = \sum_{x_{j-1}=1}^k p(x_j \mid x_{j-1}) p(x_{j-1}),$$

called the Chapman-Kolmogorov (CK) equations.

- Cost:
 - Given previous time, CK equations for one x_j costs O(k).
 - Given previous time, to compute $p(x_j)$ for all k states costs $O(k^2)$.
 - Can be written as matrix-vector product with k imes k transition probabilities matrix.
 - So cost to compute marginals up to time d is $O(dk^2)$.
 - An example of dynamic programming: efficiently sums over k^d paths.

Marginals in CS Grad Career

• CK equations can give all marginals $p(x_j = c)$ from CS grad Markov chain:



• Each row j is a state and each column c is a year.

Continuous-State Markov Chains

• The CK equations also apply if we have continuous states:

$$p(x_j) = \int_{x_{j-1}} p(x_j \mid x_{j-1}) p(x_{j-1}),$$

but this integral may not have a closed-form solution.

- Gaussian probabilities are an important special case:
 - If $p(x_{j-1})$ and $p(x_j | x_{j-1})$ are Gaussian, then $p(x_j)$ is Gaussian.
 - So we can write $p(x_j)$ in closed-form in terms of mean and variance.
- If the probabilities are non-Gaussian, usually can't represent $p(x_j)$ distribution.
 - You are stuck using Monte Carlo or other approximations.

Stationary Distribution

• A stationary distribution of a homogeneous Markov chain is a vector π satisfying

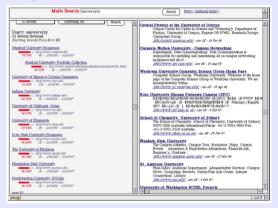
$$\pi(c) = \sum_{c'} p(x_j = c \mid x_{j-1} = c') \pi(c').$$

• "The probabilities don't change across time" (also called "invariant" distribution).

- Under certain conditions, marginals converge to a stationary distribution.
 - $p(x_j = c) \rightarrow \pi(c)$ as j goes to ∞ .
 - If we fit a Markov chain to the rain example, we have $\pi(\text{``rain''})=0.41.$
 - In the CS grad student example, we have $\pi(\text{``dead''})=1.$
- Stationary distribution is basis for Google's PageRank algorithm.

Application: PageRank

• Web search before Google:

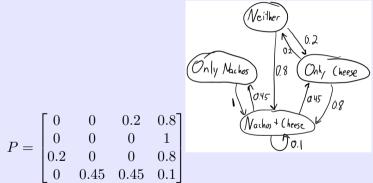


http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

It was also easy to fool search engines by copying popular websites.

State Transition Diagram

• State transition diagrams are common for visualizing homogenous Markov chains:



- Each node is a state, each edge is a non-zero transition probability.
 - For web-search, each node will be a webpage.
- Cost of CK equations is only O(z) if you have only z edges.

Application: PageRank

- Wikipedia's cartoon illustration of Google's PageRank:
 - Large face means higher rank.



https://en.wikipedia.org/wiki/PageRank

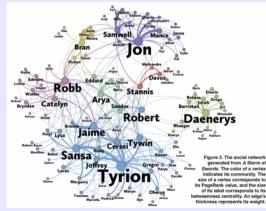
- "Important webpages are linked from other important webpages".
- "Link is more meaningful if a webpage has few links".

Application: PageRank

- Google's PageRank algorithm for measuring the importance of a website:
 - Stationary probability in "random surfer" Markov chain:
 - With probability α , surfer clicks on a random link on the current webpage.
 - Otherwise, surfer goes to a completely random webpage.
- To compute the stationary distribution, they use the power method:
 - Repeatedly apply the CK equations.
 - Iterations are faster than ${\cal O}(k^2)$ due to sparsity of links.
 - Can be easily parallelized.
 - Achieves a linear convergence rate.
- More recent works have shown coordinate optimization can be faster.

Application: Game of Thrones

- PageRank can be used in other applications.
- "Who is the main character in the Game of Thrones books?"



Existence/Uniqueness of Stationary Distribution

- Does a stationary distribution π exist and is it unique?
- A sufficient condition for existence/uniqueness is that all p(x_j = c | x_{j'} = c') > 0.
 PageRank satisfies this by adding probability α of jumping to a random page.
- Weaker sufficient conditions for existence and uniqueness ("ergodic"):
 - "Irreducible" (doesn't get stuck in part of the graph).
 - (2) "Aperiodic" (probability of returning to state isn't on fixed intervals).

Outline

Decoding: Maximizing Joint Probability

• Decoding in density models: finding x with highest joint probability:

$$\underset{x_1, x_2, \dots, x_d}{\operatorname{argmax}} p(x_1, x_2, \dots, x_d).$$

- For CS grad student (d = 60) the decoding is "industry" for all years.
 - The decoding often doesn't look like a typical sample.
 - The decoding can change if you increase d.
- Decoding is easy for independent models:
 - We can just optimize each x_j independently.
 - For example, with four variables we have

$$\max_{x_1, x_2, x_3, x_4} \left\{ p(x_1) p(x_2) p(x_3) p(x_4) \right\} = \left(\max_{x_1} p(x_1) \right) \left(\max_{x_2} p(x_2) \right) \left(\max_{x_3} p(x_3) \right) \left(\max_{x_4} p(x_4) \right)$$

• Can we also maximize the marginals to decode a Markov chain?

Example of Decoding vs. Maximizing Marginals

• Consider the "plane of doom" 2-variable Markov chain:

$$X = \begin{bmatrix} ``land" ``alive" \\ ``land" ``alive" \\ ``crash" ``dead" \\ ``explode" ``dead" \\ ``crash" ``dead" \\ ``land" ``alive" \\ \vdots & \vdots \end{bmatrix}$$

- $\bullet~40\%$ of the time the plane lands and you live.
- 30% of the time the plane crashes and you die.
- $\bullet~30\%$ of the time the plane crashes and you die.

Example of Decoding vs. Maximizing Marginals

• Initial probabilities are given by

$$p(x_1 = \text{``land''}) = 0.4, \quad p(x_1 = \text{``crash''}) = 0.3, \quad p(x_1 = \text{``explode''}) = 0.3,$$

and x_2 is "alive" iff x_1 is "land".

• If we apply the CK equations we get

$$p(x_2 = \text{``alive''}) = 0.4, \quad p(x_2 = \text{``dead''}) = 0.6,$$

so maximizing the marginals $p(x_j)$ independently gives ("land", "dead").

- This actually has probability 0.
- Decoding considers the joint assignment to x1 and x2 maximizing probability.
 In this case it's ("land", "alive"), which has probability 0.4.

Distributing Max across Product

- Note that decoding can't be done forward in time as in CK equations.
 - We need to optimize over all k^d assignments to all variables.
 - Even if $p(x_1 = 1) = 0.99$, the most likely sequence could have $x_1 = 2$.
- Fortunately, the Markov property makes the max simplify:

$$\begin{aligned} \max_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4) &= \max_{x_1, x_2, x_3, x_4} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \max_{x_4} \max_{x_3} \max_{x_2} \max_{x_1} p(x_4 \mid x_3) p(x_3 \mid x_2) p(x_2 \mid x_1) p(x_1) \\ &= \max_{x_4} \max_{x_3} \max_{x_2} p(x_4 \mid x_3) p(x_3 \mid x_2) \max_{x_1} p(x_2 \mid x_1) p(x_1) \\ &= \max_{x_4} \max_{x_3} p(x_4 \mid x_3) \max_{x_2} p(x_3 \mid x_2) \max_{x_1} p(x_2 \mid x_1) p(x_1), \end{aligned}$$

where we're using that $\max_i \alpha a_i = \alpha \max_i a_i$ for non-negative α .

Decoding with Memoization

• The Markov property writes decoding as a sequence of max problems:

 $\max_{x_1,x_2,x_3,x_4} p(x_1,x_2,x_3,x_4) = \max_{x_4} \max_{x_3} p(x_4 \mid x_3) \max_{x_2} p(x_3 \mid x_2) \max_{x_1} p(x_2 \mid x_1) p(x_1),$

but note that we can't just "solve" \max_{x_1} once because it's a function of x_2 .

• Instead, we'll memoize solution $M_2(x_2) = \max_{x_1} p(x_2 \mid x_1) p(x_1)$ for all x_2 ,

 $\max_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4) = \max_{x_4} \max_{x_3} p(x_4 \mid x_3) \max_{x_2} p(x_3 \mid x_2) M_2(x_2).$

• Now we memoize solution $M_3(x_3) = \max_{x_2} p(x_3 \mid x_2) M_2(x_2)$ for all x_3 ,

$$\max_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4) = \max_{x_4} \max_{x_3} p(x_4 \mid x_3) M_3(x_3).$$

• And defining $M_4(x_4) = \max_{x_3} p(x_4 \mid x_3) M_2(x_3)$ the maximum value is given by

$$\max_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4) = \max_{x_4} M_4(x_4).$$

Example: Decoding the Plane of Doom

• We have $M_1(x_1) = p(x_1)$ so in "plane of doom" we have

 $M_1(\text{``land''}) = 0.4, \quad M_1(\text{``crash''}) = 0.3, \quad M_1(\text{``explode''}) = 0.3.$

• We have $M_2(x_2) = \max_{x_1} p(x_2 \mid x_1) M_1(x_1)$ so we get

$$M_2(\text{``alive''}) = 0.4, \quad M_2(\text{``dead''}) = 0.3.$$

- $M_2(2) \neq p(x_2 = 2)$ because we needed to choose either "crash" or "explode".
- We maximize $M_2(x_2)$ to find that the optimal decoding ends with "alive".
 - We now need to backtrack to find the state that lead to "alive", giving "land".

Viterbi Decoding

- What is $M_j(x_j)$ in words?
 - "Probability of most likely length-j sequence that ends in x_j (ignoring future)".
- The Viterbi decoding algorithm (special case of dynamic programming):

1 Set
$$M_1(x_1) = p(x_1)$$
 for all x_1 .

- 2 Compute $M_2(x_2)$ for all x_2 , store value of x_1 leading to the best value of each x_2 .
- Compute M₃(x₃) for all x₃, store value of x₂ leading to the best value of each x₃.
 ...
- **(3)** Maximize $M_d(x_d)$ to find value of x_d in a decoding.
- **(**) Bactrack to find the value of x_{d-1} that lead to this x_d .
- **②** Backtrack to find the value of x_{d-2} that lead to this x_{d-1} . **③** ...
- Computing all $M_j(x_j)$ given all $M_{j-1}(x_{j-1})$ costs $O(k^2)$.
 - Total cost is only $O(dk^2)$ to search over all k^d paths.
 - Has numerous applications like decoding digital TV.

Application: Voice Photoshop

• Application: Adobe VoCo uses Viterbi as part of synthesizing voices:

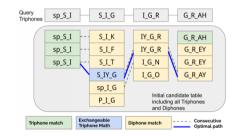


Fig. 7. Dynamic triphone preselection. For each query triphone (top) we find a candidate set of good potential matches (columns below). Good paths through this set minimize differences from the query, number and severity of breaks, and contextual mismatches between neighboring triphones.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/Jin2017-VoCo-paper.pdf

• https://www.youtube.com/watch?v=I314XLZ59iw

Summary

- Chapman-Kolmogorov equations compute exact univariate marginals.
 - For discrete or Gaussian Markov chains.
- Stationary distribution of homogenous Markov chain.
 - Marginals as time goes to ∞ .
 - Basis of Google's PageRank method.
- Decoding is task of finding most probable x.
- Viterbi decoding allow efficient decoding with Markov chains.
- Next time: measuring defence in the NBA.

Label Propagation as a Markov Chain Problem

- Basic label propagation method has a Markov chain interpretation.
 - We have n + t states, one for each [un]labeled example.
- Monte Carlo approach to label propagation ("adsorption"):
 - At time t = 0, set the state to the node you want to label.
 - At time t > 0 and on a labeled node, output the label.
 - Labeled nodes are absorbing states.
 - At time t > 0 and on an unlabeled node i:
 - Move to neighbour j with probability proportional w_{ij} (or \bar{w}_{ij}).
- Final predictions are probabilities of outputting each label.
 - Nice if you only need to label one example at a time (slow if labels are rare).
 - Common hack is to limit random walk time to bound runtime.