CPSC 540: Machine Learning

Fundamentals of Learning
Winter 2019

Admin

- Auditing/registration forms:
 - Submit them at end of class, pick them up next class.
 - I may have written notes on your form (especially when I didn't sign).
- Website/Piazza:
 - http://www.cs.ubc.ca/~schmidtm/Courses/540-W19
 - https://piazza.com/ubc.ca/winterterm22018/cpsc540
- Tutorials: start Monday after class (no need to formally register).
- Office hours: start Wednesday after class.
- Assignment 1 due Friday.
 - Sign up for CS account so you can handin.

Supervised Learning Notation

We are given training data where we know labels:

Sick?	
1	
1	
0	
1	
1	

y =

 $\widetilde{y} =$

But the goal is to do well on any possible testing data:

Sick?	
?	
?	
?	

"Test Set" vs. "Test Error"

Formally, the "test error" is the expected error of our model:

$$E[[\hat{y} - \hat{y}]]$$

- Here I'm using absolute error between predictions and true labels.
 - But you could use squared error or other losses.
- The expectation is taken over distribution of test examples.
 - Think of this as the "error with infinite data".
- We assume that our training examples are drawn IID from this distribution.
 - Otherwise, "training" might not help to reduce "test error".
- Unfortunately, we cannot compute the test error.
 - We don't have access to the distribution over all test examples.

"Test Set" vs. "Test Error"

We often approximate "test error" with the error on a "test set":

- Here, we are using 't' examples drawn IID from the test distribution.
- Note that "test set error" is not the "test error".
 - The goal is have a low "test error", not "test set error".
- The "golden rule" of machine learning:
 - A "test set" cannot influence the "training" in any way.
 - Otherwise, "test set error" is not an unbiased "test error" approximation.
 - We run the risk of "overfitting" to the "test set".

Typical Supervised Learning Steps (Are Bad?)

- Given data {X,y}, a typical set of supervised learning steps:
 - Data splitting:
 - Split {X,y} into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.
 - We're going to use the validation set error as approximation of test error.
 - Tune hyper-parameters (number of hidden units, λ , polynomial degree, etc.):
 - For each candidate value " λ " of the hyper-parameters:
 - Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters " λ ".
 - Evaluate the model on the validation set {Xvalid, yvalid}.
 - Choose the model with the best performance on the validation set.
 - And maybe re-train using hyper-parameter " λ " on the full dataset.
- Can this overfit, even though we used a validation set?
 - Yes, we've violated the golden rule. But maybe it's not too bad...

Validation Error, Test Error, and Approximation Error

- 340 discusses the "Fundamental Trade-Off of Machine Learning".
 - Simple identity relating training set error to test error.
- We have a similar identity for the validation error.
 - If E_{test} is the test error and E_{valid} is the error on the validation set, then:

$$E_{\text{test}} = (E_{\text{test}} - E_{\text{valid}}) + E_{\text{valid}}$$

$$E_{\text{approx}}$$

- If E_{approx} is small, then E_{valid} is a good approximation of E_{test} .
 - We can't measure E_{test} , so how do we know if E_{approx} is small?

- Let's consider a simple case:
 - Labels yⁱ are binary, and we try 1 hyper-parameter setting.
 - IID assumption on validation set implies E_{valid} is unbiased: $E[E_{valid}] = E_{test}$.
- We can bound probability E_{approx} is greater than ε .
 - Assumptions: data is IID (so E_{valid} is unbiased) and loss is in [0,1].
 - By using <u>Hoeffding's inequality</u>:

$$\rho(|\mathcal{E}_{test} - \mathcal{E}_{valid}| 7 \mathcal{E}) \leq 2 \exp(-2 \mathcal{E}^2 t)$$

Chumber of examples in validation set

- Probability that E_{valid} is far from E_{test} goes down exponentially with 't'.
 - This is great: the bigger your validation set, the better approximation you get.

- Let's consider a slightly less-simple case:
 - Labels are binary, and we tried 'k' hyper-parameter values.
 - In this case it's unbiased for each 'k': $E[E_{valid(\lambda)}] = E_{test}$.
 - So for *each* validation error $E_{valid(\lambda)}$ we have:

$$\rho(|\mathcal{E}_{te,1} - \mathcal{E}_{volid(2)}| > \mathcal{E}) \leq 2 \exp(-2\mathcal{E}^2 t)$$

- But our final $E_{\text{valid}} = \min\{E_{\text{valid}(\lambda)}\}\$, which is biased.
 - We can't apply Hoeffding because we chose best among 'k' values.
- Fix: bound on probability that all $|E_{test} E_{valid(\lambda)}|$ values are $\leq \varepsilon$.
 - Since we showed it holds for all values, it holds for the best value.

• The "union bound" for any events $\{A_1, A_2, ..., A_k\}$ is that:

$$p(A, UA, U \cdots UA_K) \leq \sum_{i=1}^{K} p(A_i)$$

Combining with Hoeffding we can get:

$$\rho(|\mathcal{E}_{test} - \min_{\lambda} \{\mathcal{E}_{vol_{\lambda}(\lambda)} \}| > \mathcal{E}) \leq \rho(\mathcal{E}_{xists} \circ \lambda \text{ where } |\mathcal{E}_{test} - \mathcal{E}_{vol_{\lambda}(\lambda)}| > \mathcal{E}) \\
\leq \sum_{\lambda} \rho(|\mathcal{E}_{test} - \mathcal{E}_{vol_{\lambda}(\lambda)}| > \mathcal{E}) \\
\leq \sum_{\lambda} 2\exp(-2\mathcal{E}^{2}t) \\
= k 2\exp(-2\mathcal{E}^{2}t)$$

• So if we choose best $E_{valid(\lambda)}$ among 'k' λ values, we have:

$$P(|E_{test} - E_{valid(a)}| > \varepsilon \text{ for any } 1) \leq K 2 \exp(-2\varepsilon^2 t)$$

- So optimizing over 'k' models is ok if we have large 't'.
 - But if 'k' is too large or 't' is too small the validation error isn't useful.
- Examples:
 - If k=10 and t=1000, probability that $|E_{approx}| > .05$ is less than 0.14.
 - If k=10 and t=10000, probability that $|E_{approx}| > .05$ is less than 10^{-20} .
 - If k=10 and t=1000, probability that $|E_{approx}| > .01$ is less than 2.7 (useless).
 - If k=100 and t=100000, probability that $|E_{approx}| > .01$ is less than 10^{-6} .

- Validation error vs. test error for fixed 't'.
 - $-E_{valid}$ goes down as we increase 'k', but E_{approx} can go up.
 - Overfitting of validation set.

Discussion

- Bound is usually very loose, but data is probably not fully IID.
 - Similar bounds are possible for cross-validation.
- Similar arguments apply for the E_{approx} of the training error.
 - Value 'k' is the number of hyper-parameters you are optimizing over (even if don't try them all).
 - So 'k' is usually huge: you try out k=O(nd) decision stumps.
- What if we train by gradient descent?
 - We're optimizing on continuous space, so k=∞ and the bound is useless.
 - In this case, VC-dimension is one way to replace 'k' (doesn't need union bound).
 - "Simpler" models like decision stumps and linear models will have lower VC-dimension.
- Learning theory keywords if you want to go deeper into this topic:
 - Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC learning, VC dimension, Rademacher complexity.
 - A gentle place to start is the <u>Learning from Data book</u>.

(pause)

Generalization Error

- An alternative measure of performance is the generalization error:
 - Average error over the set of x^i values that are not seen in the training set.
 - "How well we expect to do for a completely unseen feature vector".
- Test error vs. generalization error when labels are deterministic:

"Best" and the "Good" Machine Learning Models

- Question 1: what is the "best" machine learning model?
 - The model that gets lower generalization error than all other models.
- Question 2: which models always do better than random guessing?
 - Models with lower generalization error than random for all problems.

No free lunch theorem:

- There is **no** "best" model achieving the best generalization error for every problem.
- If model A generalizes better to new data than model B on one dataset,
 there is another dataset where model B works better.

No Free Lunch Theorem

- Let's show the "no free lunch" theorem in a simple setting:
 - The x^i and y^i are binary, and y^i being a deterministic function of x^i .
- With 'd' features, each "learning problem" is a map from $\{0,1\}^d \rightarrow \{0,1\}$.
 - Assigning a binary label to each of the 2^d feature combinations.

Feature 1	Feature 2	Feature 3
0	0	0
0	0	1
0	1	0
		•••

Map 1	Map 2	Map 3	
0	1	0	•••
0	0	1	•••
0	0	0	

- Let's pick one of these maps ("learning problems") and:
 - Generate a set training set of 'n' IID samples.
 - Fit model A (convolutional neural network) and model B (naïve Bayes).

No Free Lunch Theorem

- Define the "unseen" examples as the $(2^d n)$ not seen in training.
 - Assuming no repetitions of x^i values, and $n < 2^d$.
 - Generalization error is the average error on these "unseen" examples.
- Suppose that model A got 1% error and model B got 60% error.
 - We want to show model B beats model A on another "learning problem".
- Among our set of "learning problems" find the one where:
 - The labels yⁱ agree on all training examples.
 - The labels yⁱ disagree on all "unseen" examples.
- On this other "learning problem":
 - Model A gets 99% error and model B gets 40% error.

No Free Lunch Theorem

- Further, across all "learning problems" with these 'n' examples:
 - Average generalization error of every model is 50% on unseen examples.
 - It's right on each unseen example in exactly half the learning problems.
 - With 'k' classes, the average error is (k-1)/k (random guessing).
- This is kind of depressing:
 - For general problems, no "machine learning" is better than "predict 0".

(pause)

Limit of No Free Lunch Theorem

- Fortunately, the world is structured:
 - Some "learning problems" are more likely than others.
- For example, it's usually the case that "similar" xi have similar yi.
 - Datasets with properties like this are more likely.
 - Otherwise, you probably have no hope of learning.
- Models with the right "similarity" assumptions can beat "predict 0".
- With assumptions like this, you can consider consistency:
 - As 'n' grows, model A converges to the optimal test error.

Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 - For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to further decompose E_{test} :

- This is similar to the bias-variance trade-off (bonus slide):
 - E_{approx} measures how sensitive we are to training data (like "variance").
 - E_{model} measures if our model is complicated enough to fit data (like "bias").
 - E_{best} measures how low can any model make test error ("irreducible" error).

Refined Fundamental Trade-Off

- Let E_{best} be the irreducible error (lowest possible error for *any* model).
 - For example, irreducible error for predicting coin flips is 0.5.
- Some learning theory results use E_{best} to further decompose E_{test} :

- This is similar to the bias-variance trade-off (bonus slide):
 - You need to trade between having low E_{approx} and having low E_{model} .
 - Powerful models have low E_{model} but can have high E_{approx} .
 - E_{best} does not depend on what model you choose.

Consistency and Universal Consistency

- A model is consistent for a particular learning problem if:
 - E_{test} converges to E_{best} as 'n' goes to infinity, for that particular problem.
- A model is universally consistent for a class of learning problems if:
 - E_{test} converges to E_{best} as 'n' goes to infinity, for all problems in the class.
- Typically, the class would consist of:
 - A continuity assumption on the labels y^i as a function of x^i .
 - E.g., if x^i is close to x^j then they are likely to receive the same label.
 - A boundedness assumption of the set of x^{i} .

K-Nearest Neighbours (KNN)

- Classical consistency results focus on k-nearest neighbours (KNN).
- To classify an object \tilde{x}_i :
 - 1. Find the 'k' training examples x_i that are "nearest" to \tilde{x}_i .
 - 2. Classify using the most common label of "nearest" examples.

Consistency of KNN

- KNN consistency properties (under reasonable assumptions):
 - As 'n' goes to ∞ , $E_{test} \le 2E_{best}$.
 - For fixed 'k' and binary labels.
- Stone's Theorem: KNN is "universally consistent".
 - If 'k' converges to ∞ as 'n' converges to ∞,
 but k/n converges to 0, E_{test} converges to E_{best}.
 - For example, $k = O(\log n)$.
 - First algorithm shown to have this property.
- Consistency says nothing about finite 'n'.
 - See "<u>Dont Trust Asymptotics</u>".

Consistency of Non-Parametric Models

- Universal consistency has been shown for several models:
 - Linear models with polynomial basis.
 - Linear models with Gaussian RBFs.
 - Neural networks with one hidden layer and standard activations.
 - Sigmoid, tanh, ReLU, etc.
- It's non-parametric versions that are consistent:
 - Size of model is a function of 'n'.
 - Examples:
 - KNN needs to store all 'n' training examples.
 - Degree of polynomial must grow with 'n' (not true for fixed polynomial).
 - Number of hidden units must grow with 'n' (not true for fixed neural network).

Parametric vs. Non-Parametric Models

Parametric vs. Non-Parametric Models

Summary

- Test error vs. test set error
 - What we care about is the test error.
- Overfitting hyper-parameters on a validation set:
 - Depends on how many hyper-parameters you try and number of validation examples.
- No free lunch theorem:
 - There is no "best" or even "good" machine learning models across all problems.
- Universal consistency:
 - Some non-parametric models can solve any continuous learning problem.
- Post-lecture bonus slides: bias-variance decomposition.
- Next time:
 - Besides least squares, what other problems can be solved in 1 line of code?

Bias-Variance Decomposition

Analysis of expected test error of any learning algorithm:

Assume
$$y_i = f(x_i) + E_i$$
 for some function 'f' and random error E with a mean of O and a variance of O .

Assume we have a "learner" that can take a training set $E(x_i,y_i),(x_i,y_i),...,(x_n,y_n)$.

Ond use these to make predictions $f(x_i)$.

Then for a new example (x_i,y_i) the error averaged over training sets is $E[E(y_i) - f(x_i)]^2 = B_i a_i [f(x_i)]^2 + Var[f(x_i)] + o^2$ error" best we can having wrong model.

Where $B_i a_i [f(x_i)] - E[f(x_i)] - f(x_i)$, hope for given the to the particular training set? $Var[f(x_i)] - E[f(x_i)]^2$ noise level.

Learning Theory

- Bias-variance decomposition is a bit weird:
 - Considers expectation over possible training sets.

- Bias-variance says nothing about your training set.
 - This is different than Hoeffding bounds:
 - Bound the test error based on your actual training set and training/validation error.