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Convergence of EM Kernel Density Estimation

Last Time: Expectation Maximization

EM considers learning with observed data O and hidden data H.

In this case the “observed” log-likelihood has a nasty form,

log p(O | Θ) = log

(∑
H

p(O,H | Θ)

)
.

EM applies when “complete” likelihood, p(O,H | Θ), has a nice form.

EM iterations take the form of a weighted “complete” NLL,

Θt+1 = argmax
Θ

{∑
H

αH log p(O,H | Θ)

}
,

where αH = p(H | O,Θt).

For mixture models, has a closed-form solution for common distributions.
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Monotonicity of EM
Classic result is that EM iterations are monotonic:

log p(O | Θt+1) ≥ log p(O | Θt),

We don’t need a step-size and this is useful for debugging.

We can show this by proving that the below picture is “correct”:

The Q function leads to a global bound on the original function.
At Θt the bound matches original function.

So if you improve on the Q function, you improve on the original function.
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Monotonicity of EM

Let’s show that the Q function gives a global upper bound on NLL:

− log p(O | Θ) = − log

(∑
H

p(O,H | Θ)

)
(marginalization rule)

= − log

(∑
H

αH
p(O,H | Θ)

αH

)
(for αH 6= 0)

≤ −
∑
H

αH log

(
p(O,H | Θ)

αH

)
,

because − log(z) is convex and the αH are a convex combination.
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Monotonicity of EM

Using that log turns multiplication into addition we get

− log p(O | Θ) ≤ −
∑
H

αH log

(
p(O,H | Θ)

αH

)
= −

∑
H

αH log p(O,H | Θ)︸ ︷︷ ︸
Q(Θ | Θt)

+
∑
H

αH logαH︸ ︷︷ ︸
negative entropy

= −Q(Θ | Θt)− entropy(α),

so we have the first part of the picture, − log p(O | Θt+1) ≤ −Q(Θ|Θt) + const.

Entropy is a measure of how “random” the αH values are.
Bound gets tighter for hidden data H that is more “predictable”.

Now we need to show that this holds with equality at Θt.
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Bound on Progress of Expectation Maximization

To show equality at Θt we use definition of conditional probability,

p(H | O,Θt) =
p(O,H | Θt)

p(O | Θt)
or log p(O | Θt) = log p(O,H | Θt)− log p(H | O,Θt).

Multiply by αH and summing over H values,∑
H

αH log p(O | Θt) =
∑
H

αH log p(O,H | Θt

︸ ︷︷ ︸
Q(Θt | Θt)

−
∑
H

αH log p(H | O,Θt)︸ ︷︷ ︸
αH

.

Which gives the result we want:

log p(O | Θt)
∑
H

αH︸ ︷︷ ︸
=1

= Q(Θt | Θt) + entropy(α),
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Bound on Progress of Expectation Maximization

Thus we have the two bounds

log p(O | Θ) ≥ Q(Θ | Θt) + entropy(α)

log p(O | Θt) = Q(Θt | Θt) + entropy(α).

Subtracting these and using Θ = Θt+1 gives a stronger result,

log p(O | Θt+1)− log p(O | Θt) ≥ Q(Θt+1 | Θt)−Q(Θt | Θt),

that we improve objective by at least the decrease in Q.

Inequality holds for any choice of Θt+1.
Approximate M-steps are ok: we just need to decrease Q to improve likelihood.

For imputation, we instead improve “complete” log-likelihood, log p(O,H | Θt).
Which isn’t quite what we want, treats hidden data as a “parameter”.
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Convergence of Expectation Maximization

We’ve shown that

log p(O | Θt+1)− log p(O | Θt) ≥ Q(Θt+1 | Θt)−Q(Θt | Θt),

that guaranteed progress is at least as large as difference in Q.

Does this imply convergence?

Yes, the algorithm can’t keep improving if the likelihood is bounded above.

Does this imply convergence to a local optimum or a stationary point?

No, although many papers wrongly say that it does.

Could have maximum of 3 and objective values of 1, 1.5, 1.75, 1.875, . . .
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Convergence Rate of Expectation Maximization
Can we say EM converges to stationary point or analyze convergence rate?

If log p(O | Θ) is differentiable, then we can show that

∇ log p(O | Θt) = ∇Q(Θt | Θt),

that gradient of bound agrees with gradient of function at Θt.

If the bound Q is L-Lipschitz continuous, then we have

−Q(Θt+1 | Θt) ≤ −Q(Θt | Θt)− 1

2L
‖∇Q(Θt)‖2,

since optimizing Q does at least as well as one iteration of gradient descent.

Using our relationships between Q and objective f gives our usual progress bound

f(Θt+1) ≤ f(Θt)− 1

2L
‖∇f(Θt)‖2,

so EM has convergence rate at least as fast as gradient descent.



Convergence of EM Kernel Density Estimation

Convergence Rate of Expectation Maximization

Expectation maximization decreases f at least much as gradient descent:

Slight subtle point: we measure L across Q values, rather than for f .
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2 Kernel Density Estimation
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A Non-Parametric Mixture Model
The classic parametric mixture model has the form

p(xi) =

k∑
c=1

p(zi = c)p(xi | zi = c).

A natural way to define a non-parametric mixture model is

p(xi) =

n∑
j=1

p(zi = j)p(xi | zi = j),

where we have one mixture for every training example i.
Common example: zi is uniform and xi | zi is Gaussian with mean xj ,

p(xi) =
1

n

n∑
j=1

N (xi | xj , σ2I),

and we use a shared covariance σ2I (σ can be estimated by cross-validation).
This is a special case of kernel density estimation (or Parzen window).
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Histogram vs. Kernel Density Estimator

Think of kernel density estimator as a generalization of histogram:

https://en.wikipedia.org/wiki/Kernel_density_estimation

https://en.wikipedia.org/wiki/Kernel_density_estimation
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Kernel Density Estimator for Visualization

Visualization of people’s opinions about what “likely” and other words mean.

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html
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Violin Plot: Added KDE to a Boxplot

Violin plot adds KDE to a boxplot:

https://datavizcatalogue.com/methods/violin_plot.html

https://datavizcatalogue.com/methods/violin_plot.html
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Violin Plot: Added KDE to a Boxplot

Violin plot adds KDE to a boxplot:

https://seaborn.pydata.org/generated/seaborn.violinplot.html

https://seaborn.pydata.org/generated/seaborn.violinplot.html
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Kernel Density Estimation

The 1D kernel density estimation (KDE) model uses

p(xi) =
1

n

n∑
j=1

kσ (xi − xj︸ ︷︷ ︸
r

),

where the PDF k is the “kernel” and the parameter σ is the “bandwidth”.

In the previous slide we used the (normalized) Gaussian kernel,

k1(r) =
1√
2π

exp

(
−r

2

2

)
, kσ(r) =

1

σ
√

2π
exp

(
− r2

2σ2

)
.

Note that we can add a “bandwith” (standard deviation) σ to any PDF k1, using

kσ(r) =
1

σ
k1

( r
σ

)
,

from the change of variables formula for probabilities (| ddr
[
r
σ

]
| = 1

σ ).

Under common choices of kernels, KDEs can model any continuous density.
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Efficient Kernel Density Estimation

KDE with the Gaussian kernel is slow at test time:

We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

k1(r) =
3

4

(
1− r2

)
I [|r| ≤ 1] .

This kernel has two nice properties:

Epanechnikov showed that it is asymptotically optimal in terms of squared error.
It can be much faster to use since it only depends on nearby points (use hashing).

You can use hashing to quickly find neighbours in training data.

It is non-smooth at the boundaries but many smooth approximations exist.

Quartic, triweight, tricube, cosine, etc.
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Visualization of Common Kernel Functions
Histogram vs. Gaussian vs. Epanechnikov vs. tricube:

https://en.wikipedia.org/wiki/Kernel_%28statistics%29

https://en.wikipedia.org/wiki/Kernel_%28statistics%29
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Multivariate Kernel Density Estimation
The multivariate kernel density estimation (KDE) model uses

p(xi) =
1

n

n∑
j=1

kA(xi − xj︸ ︷︷ ︸
r

),

The most common kernel is a product of independent Gaussians,

kI(r) =
1

(2π)
d
2

exp

(
−‖r‖

2

2

)
.

We can add a bandwith matrix A to any kernel using

kA(r) =
1

|A|
k1(A−1r) (generalizes kσ(r) =

1

σ
k1

( r
σ

)
),

and in Gaussian case we get a multivariate Gaussian with Σ = AAT .

To reduce number of parameters, we typically:
Use a product of independent distributions and use A = σI for some σ.
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KDE vs. Mixture of Gaussian
By fixing mean/covariance/k, we don’t have to worry about local optima.
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Mean-Shift Clustering

Mean-shift clustering uses KDE for clustering:
Define a KDE on the training examples, and then for test example x̂:

Run gradient descent to maximize p(x) starting from x̂.

Clusters are points that reach same local minimum.

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Not sensitive to initialization, no need to choose k, can find non-convex clusters.

Similar to density-based clustering from 340.
But doesn’t require uniform density within cluster.
And can be used for vector quantization.

“The 5 Clustering Algorithms Data Scientists Need to Know”:
https://towardsdatascience.com/

the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68


Convergence of EM Kernel Density Estimation

Continuous Mixture Models

We’ve been discussing mixture models where zi is discrete,

p(xi) =

k∑
zi=1

p(zi)p(xi | zi = c).

We can also consider mixtures models where zi is continuous,

p(xi) =

∫
zi
p(zi)p(xi | zi = c)dzi.

Unfortunately, computing the integral might be hard.

But if both probabilities are Gaussian then it’s straightforward.
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Probabilistic PCA

In 340 we discussed PCA, which approximates (centered) xi by

xi ≈W T zi.

In probabilistic PCA we assume that

xi ∼ N (W T zi, σ2I), zi ∼ N (0, I).

Continuous mixture integral will be marginal of a joint Gaussian, and gives

xi |W ∼ N (0,W TW + σ2I).

Regular PCA is obtained as the limit of σ2 going to 0.

Shows that PCA is just fitting a multivariate Gaussian with a restricted form for Σ.
Allows you to do things like mixture of PCAs.
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Factor Analysis

A related method for discovering latent factors is factor analysis (FA).

A standard tool and widely-used across science and engineering.

https://new.edu/resources/big-5-personality-traits

Historical applications are measures of intelligence and personality traits.

Some controversy, like trying to find factors of intelligence due to race.
(without normalizing for socioeconomic factors)

https://new.edu/resources/big-5-personality-traits
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Factor Analysis

FA approximates (centered) xi by

xi ≈W T zi,

and assumes zi and xi | zi are Gaussian.

Which should sound familiar...

Are PCA and FA the same?

Both are more than 100 years old.
There are many online discussions about whether they are the same.

Some software packages run PCA when you call their FA method.
Some online discussions claiming they are completely different.
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PCA vs. Factor Analysis

In probabilistic PCA we assume

xi | zi ∼ N (W T zi, σ2I), zi ∼ N (0, I),

and we obtain PCA as σ → 0.

In FA we assume

xi | zi ∼ N (W T zi, D), zi ∼ N (0, I),

where D is a diagonal matrix.

The difference is that you can have a noise variance for each dimension.

So FA has extra degrees of freedom in variance of original variables.
In practice there often isn’t a huge difference.



Convergence of EM Kernel Density Estimation

Summary

Monotonicity of EM: EM is guaranteed not to decrease likelihood.

Very-recent results giving convergence rates.

Kernel density estimation: Non-parametric density estimation method.

Allows smooth variations on histograms.

Probabilistic PCA:

Continuous mixture models based on Gaussian assumptions.
Factor analysis extends probabilistic PCA with different noise in each dimension.

Very similar but not identical to PCA.

Next time: the sad truth about rain in Vancouver.
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Alternate View of EM as BCD

We showed that given α the M-step minimizes in Θ the function

F (Θ, α) = −Eα[log p(O,H | Θ)]− entropy(α).

The E-step minimizes this function in terms of α given Θ.

Setting αH = p(H | O,Θ) minimizes it.

Note that F is not the NLL, but F and the NLL have same stationary points.

From this perspective, we can view EM as a block coordinate descent method.

This perspective is also useful if you want to do approximate E-steps.
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Alternate View of EM as KL-Proximal

Using definitions of expectation and entropy and α in the last slide gives

F (Θ, α) = −
∑
H

p(H | O, θt) log p(O,H | Θ) +
∑
H

p(H | O, θt) log p(H | O, θt)

= −
∑
H

p(H | O, θt) log
p(O,H | θ)
p(H | O, θt)

= −
∑
H

p(H | O, θt) log
p(H | O, θ)p(O | θ)

p(H | O, θt)

= −
∑
H

log p(O | Θ)−
∑
H

p(H | O, θt) log
p(H | O, θ)
p(H | O, θt)

= NLL(Θ) + KL(p(H | O, θt) || p(H | O, θ)).

From this perspective, we can view EM as a “proximal point” method.

Classical proximal point method uses 1
2‖θ

t − θ‖2, EM uses KL divergence.

From this view we can see that EM doesn’t depend on parameterization of Θ.

If we linearize NLL and we multiply KL term by 1/αk (step-size), we get the
natural gradient method.
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