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Convergence of EM Kernel Density Estimation

Last Time: Expectation Maximization

EM considers learning with observed data O and hidden data H.

In this case the “observed” log-likelihood has a nasty form,

logp(O | ©) = log (Z p(O, H | @)> :

H

EM applies when “complete” likelihood, p(O, H | ©), has a nice form.

EM iterations take the form of a weighted “complete” NLL,

Ot = argmax {Z aplogp(O, H | @)} ,
(C]
H

where oy = p(H | O,0%).

e For mixture models, has a closed-form solution for common distributions.
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Monotonicity of EM
@ Classic result is that EM iterations are monotonic:
logp(O | ©1) > log p(O | ),

@ We don’t need a step-size and this is useful for debugging.

@ We can show this by proving that the below picture is “correct”:
-Q(O @) +const ~lay do]6)

@ The @ function leads to a global bound on the original function.
e At O the bound matches original function.
e So if you improve on the @ function, you improve on the original function.
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Monotonicity of EM

@ Let's show that the ) function gives a global upper bound on NLL:

—logp(O | ®) = —log (Zp(O,H ] ®)> (marginalization rule)
H
= —log (ZH: aHW) (for ag # 0)
o (0. 6)
< %: HlOg ( an > )

because — log(z) is convex and the oy are a convex combination.
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Monotonicity of EM

@ Using that log turns multiplication into addition we get

—logp(O | ©) g_za 1og< p(O, H!@))

afg

= —ZaHlogp(O,H | ©) +ZaHlogaH
H H

Q(O | et negative entropy
= —Q(© ] ©") — entropy(a),
so we have the first part of the picture, —log p(O | ©!1) < —Q(©|O?%) + const.

e Entropy is a measure of how “random” the ay values are.
e Bound gets tighter for hidden data H that is more “predictable”.

@ Now we need to show that this holds with equality at ©°.
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Bound on Progress of Expectation Maximization

@ To show equality at ©! we use definition of conditional probability,

t
p<H|o,et>:W or logp(O | ©) = logp(O, H | ©') — log p(H | O, 6")

@ Multiply by ay and summing over H values,

> alogp(0]©") =) aylogp(O,H |6~ aglogp(H | 0,6").
H H H N

aH

Qe e
@ Which gives the result we want:

logp(O | ©%)) " ap = Q(O" | ©') + entropy(a),
H

——
=1
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Bound on Progress of Expectation Maximization
@ Thus we have the two bounds

logp(O | ©) > Q(O | ©") + entropy(«)
logp(O | ©Y) = Q(O" | O) + entropy(a).

@ Subtracting these and using © = ©'*! gives a stronger result,
logp(O | ©71) —logp(O | ©') > QO | ©") - Q&' | ©Y),

that we improve objective by at least the decrease in Q).

e Inequality holds for any choice of @'+!,
e Approximate M-steps are ok: we just need to decrease () to improve likelihood.

e For imputation, we instead improve “complete” log-likelihood, log p(O, H | ©Y).
e Which isn't quite what we want, treats hidden data as a “parameter”.
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Convergence of Expectation Maximization

@ We've shown that
logp(O | 1) —logp(0 | ©') > QO | ©°) — (O | B,

that guaranteed progress is at least as large as difference in Q.

@ Does this imply convergence?
e Yes, the algorithm can't keep improving if the likelihood is bounded above.

@ Does this imply convergence to a local optimum or a stationary point?
e No, although many papers wrongly say that it does.

e Could have maximum of 3 and objective values of 1,1.5,1.75,1.875, ...
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Convergence Rate of Expectation Maximization

@ Can we say EM converges to stationary point or analyze convergence rate?

e If logp(O | ©) is differentiable, then we can show that
Vlogp(O | ©°) =VQ(e' | "),
that gradient of bound agrees with gradient of function at ©°.

@ If the bound @ is L-Lipschitz continuous, then we have
1
Qe ") < —Q(e'| ) - EIIVQ(@tNﬁ

since optimizing () does at least as well as one iteration of gradient descent.
@ Using our relationships between () and objective f gives our usual progress bound

£(6) < £(8) ~ oIV A(ONP,

so EM has convergence rate at least as fast as gradient descent.
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Convergence Rate of Expectation Maximization

@ Expectation maximization decreases f at least much as gradient descent:

-Q@]@) + st ~la do/6)

@ Slight subtle point: we measure L across () values, rather than for f.
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Convergence Rate of Expectation Maximization

@ Expectation maximization decreases f at least much as gradient descent:

@ Slight subtle point: we measure L across () values, rather than for f.
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Convergence Rate of Expectation Maximization

@ Expectation maximization decreases f at least much as gradient descent:

@ Slight subtle point: we measure L across () values, rather than for f.
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A Non-Parametric Mixture Model

@ The classic parametric mixture model has the form

sz—c (z' | 2 = ¢).

@ A natural way to define a non-parametric mixture model is

Zp (@' | 2" = j),

where we have one mixture for every training example 7.
e Common example: 2’ is uniform and 2’ | z* is Gaussian with mean 27,

1 & S
Z—E N (2| 27, 0%I),
n
i=1

and we use a shared covariance 0% (o can be estimated by cross-validation).
@ This is a special case of kernel density estimation (or Parzen window).
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Histogram vs. Kernel Density Estimator

@ Think of kernel density estimator as a generalization of histogram:
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https://en.wikipedia.org/wiki/Kernel_density_estimation
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Kernel Density Estimator for Visualization

@ Visualization of people’s opinions about what “likely” and other words mean.
Perceptions of Probability
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created by uzoniation

http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html


http://blog.revolutionanalytics.com/2017/08/probably-more-probably-than-probable.html
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Violin Plot: Added KDE to a Boxplot
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F

@ Violin plot adds KDE to a boxplot:

#"

https://datavizcatalogue.com/methods/violin_plot.html
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Violin Plot: Added KDE to a Boxplot
@ Violin plot adds KDE to a boxplot:
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https://seaborn.pydata.org/generated/seaborn.violinplot.html
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Kernel Density Estimation
@ The 1D kernel density estimation (KDE) model uses

. 1 & . .
') = — ky (28 — 27),
)= 13k o)

where the PDF £k is the “kernel” and the parameter o is the “bandwidth”.
@ In the previous slide we used the (normalized) Gaussian kernel,

soe (o) 0= e ()
€exX -, r) = ex — .
o P 2 7 oV2m P 202

@ Note that we can add a "bandwith” (standard deviation) o to any PDF &y, using

bolr) =~k (£).

r
g

k‘l(T) =

from the change of variables formula for probabilities (|4 [Z] | = 1).
@ Under common choices of kernels, KDEs can model any continuous density.
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Efficient Kernel Density Estimation

KDE with the Gaussian kernel is slow at test time:
o We need to compute distance of test point to every training point.

A common alternative is the Epanechnikov kernel,

3
Fa(r) = § (L= Z[r| <1].
This kernel has two nice properties:

e Epanechnikov showed that it is asymptotically optimal in terms of squared error.
o It can be much faster to use since it only depends on nearby points (use hashing).

@ You can use hashing to quickly find neighbours in training data.

It is non-smooth at the boundaries but many smooth approximations exist.
e Quartic, triweight, tricube, cosine, etc.
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Visualization of Common Kernel
Histogram vs. Gaussian vs. Epanechnikov vs. tricube:
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https://en.wikipedia.org/wiki/Kernel_%28statistics%29
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Multivariate Kernel Density Estimation

@ The multivariate kernel density estimation (KDE) model uses

. 1 <& ) A
AN k |
p(l‘ ) n j§:1 A(ZL‘ x ,)a

@ The most common kernel is a product of independent Gaussians,

ky(r) = (2i)gexp (_”7’2’2) .

@ We can add a bandwith matrix A to any kernel using

— k(A7) (generalizes k. (r) = %lﬂ (Z)%

o

and in Gaussian case we get a multivariate Gaussian with ¥ = AA”.

@ To reduce number of parameters, we typically:
e Use a product of independent distributions and use A = oI for some o.



Convergence of EM Kernel Density Estimation

KDE vs. Mixture of Gaussian

e By fixing mean/covariance/k, we don't have to worry about local optima.

‘Gaussian (nil = 6.519) Mixture of Gaussian (nll = 4.998)

», 2
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KDE vs. Mixture of Gaussian

e By fixing mean/covariance/k, we don't have to worry about local optima.

Parzon Window (nil = 4.119) Mixture of Gaussian (nll = 4.998)
», E
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Mean-Shift Clustering

Mean-shift clustering uses KDE for clustering:
o Define a KDE on the training examples, and then for test example Z:
@ Run gradient descent to maximize p(z) starting from .

o Clusters are points that reach same local minimum.

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering

Not sensitive to initialization, no need to choose k, can find non-convex clusters.

Similar to density-based clustering from 340.

e But doesn't require uniform density within cluster.
e And can be used for vector quantization.

“The 5 Clustering Algorithms Data Scientists Need to Know":

e https://towardsdatascience.com/
the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68


https://spin.atomicobject.com/2015/05/26/mean-shift-clustering
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Continuous Mixture Models

@ We've been discussing mixture models where 2" is discrete,

k
z: Pl | 7 = o).

@ We can also consider mixtures models where 2’ is continuous,

pa) = [ Bl | 2 = c)as'

@ Unfortunately, computing the integral might be hard.

e But if both probabilities are Gaussian then it's straightforward.

Kernel Density Estimation
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Probabilistic PCA

In 340 we discussed PCA, which approximates (centered) z* by
= W2
In probabilistic PCA we assume that
t ~ NWT2 0T, 28~ N(0,1).
Continuous mixture integral will be marginal of a joint Gaussian, and gives
2| W~ NO,WIW + o).
Regular PCA is obtained as the limit of o2 going to 0.

e Shows that PCA is just fitting a multivariate Gaussian with a restricted form for X.
e Allows you to do things like mixture of PCAs.
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Factor Analysis

@ A related method for discovering latent factors is factor analysis (FA).
e A standard tool and widely-used across science and engineering.

Trait

Description

Being curious, original, intellectual, creative, and open to

Openness
- new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness Bl Watn:

Neuroticism Being anxious, irritable, temperamental, and moody.

https://new.edu/resources/big-5-personality-traits

@ Historical applications are measures of intelligence and personality traits.
e Some controversy, like trying to find factors of intelligence due to race.

(without normalizing for socioeconomic factors)


https://new.edu/resources/big-5-personality-traits
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Factor Analysis

o FA approximates (centered) z! by
W,

and assumes z' and z' | 2* are Gaussian.

@ Which should sound familiar...

@ Are PCA and FA the same?

e Both are more than 100 years old.

o There are many online discussions about whether they are the same.
@ Some software packages run PCA when you call their FA method.
@ Some online discussions claiming they are completely different.
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PCA vs. Factor Analysis
@ In probabilistic PCA we assume
| 2~ NWTZE 62D), 2t~ N(0,1),

and we obtain PCA as o — 0.

@ In FA we assume
| 2t~ NOWTZE, D), 28~ N(0,1),
where D is a diagonal matrix.

@ The difference is that you can have a noise variance for each dimension.

e So FA has extra degrees of freedom in variance of original variables.
e In practice there often isn't a huge difference.
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Summary

Monotonicity of EM: EM is guaranteed not to decrease likelihood.
e Very-recent results giving convergence rates.

Kernel density estimation: Non-parametric density estimation method.
e Allows smooth variations on histograms.

Probabilistic PCA:

e Continuous mixture models based on Gaussian assumptions.
e Factor analysis extends probabilistic PCA with different noise in each dimension.

@ Very similar but not identical to PCA.

Next time: the sad truth about rain in Vancouver.
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Alternate View of EM as BCD

o We showed that given a the M-step minimizes in © the function

F(©,a) = —E,[logp(O, H | ©)] — entropy(«).

(]

The E-step minimizes this function in terms of « given ©.
o Setting ay = p(H | O, ©) minimizes it.

Note that F' is not the NLL, but F' and the NLL have same stationary points.

From this perspective, we can view EM as a block coordinate descent method.

This perspective is also useful if you want to do approximate E-steps.
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Alternate View of EM as KL-Proximal

@ Using definitions of expectation and entropy and « in the last slide gives

F(©,0) =—> p(H|0,0")1ogp(O,H|©)+> p(H|O,6%logp(H | O,6")
H H

(O, H | 6)

p(H | 0, 60)

p(H | 0,0)p(O | 6)
p(H | 0,67

=—> p(H| 0,0 l0g
H

== p(H|0,0")log
H

p(H | O,0)

P — - ¢ »(H | O, 0t)
_ ;logp(o | ©) %p(H | 0,6 ”ng(HIO,et)

= NLL(®) + KL(p(H | 0,8") || p(H | O, 9)).

@ From this perspective, we can view EM as a “proximal point” method.
2 EM uses KL divergence.

o Classical proximal point method uses 1|6 — 6|
@ From this view we can see that EM doesn’t depend on parameterization of ©.

o If we linearize NLL and we multiply KL term by 1/«y, (step-size), we get the
natural gradient method.
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