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Expectation Maximization with Many Discrete Variables
@ EM iterations take the form

Ot = argmax {Z aplogp(O, H | @)} ,
(C]
H

and with multiple MAR variables { Hy, Ho, ..., H,,} this means

! = argmax ZZ‘--ZaHlogp(O,H | ©) ¢,
©

Hi H» Hp,

@ In mixture models, EM sums over all k™ possible cluster assignments.
@ In binary semi-supervised learning, EM sums over all 2! assignments to .

@ But conditional independence allows efficient calculation in the above cases.
o The H are independent given {O, ©} which simplifies sums (see EM notes).
o We'll cover general case when we discuss probabilistic graphical models.
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Today: Continuous-Latent Variables

e If H is continuous, the sums are replaceed by integrals,

logp(O | ©) = log (/ p(O, H | @)dH) (log-likelihood)
H
Ot = argmax {/ aplogp(O, H | @)dH} (EM update),
(C) H

where if have 5 hidden varialbes [, means [}, [, st fa, st.
@ Even with conditional independence these might be hard.

@ Gaussian assumptions allow efficient calculation of these integrals.
o We'll cover general case when we get discuss Bayesian statistics.
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Today: Continuous-Latent Variables

In mixture models, we have a discrete latent variable z*:
o In mixture of Gaussians, if you know the cluster 2% then p(z’ | 2%) is a Gaussian.

@ In latent-factor models, we have continuous latent variables z¢:
o In probabilistic PCA, if you know the latent-factors 2% then p(z® | 2%) is a Gaussian.

But what would a continuous z* be useful for?

Do we really need to start solving integrals?
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Today: Continuous-Latent Variables

@ Data may live in a low-dimensional manifold:

Fingers extension

Wrist rotation

http://isomap.stanford.edu/handfig.html

@ Mixtures are inefficient at representing the 2D manifold.


http://isomap.stanford.edu/handfig.html
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Principal Component Analysis (PCA)

o PCA replaces X with a lower-dimensional approximation Z.
e Matrix Z has n rows, but typically far fewer columns.
o PCA is used for:
Dimensionality reduction: replace X with a lower-dimensional Z.
Outlier detection: if PCA gives poor approximation of z*, could be outlier.
Basis for linear models: use Z as features in regression model.
Data visualization: display z* in a scatterplot.
Factor discovering: discover important hidden “factors” underlying data.

Gompanent 2 (0.08% variance)

Companent 1 (0.21% variance)

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html


http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

Probabilistic PCA

PCA Notation

@ PCA approximates the original matrix by factor-loadings Z and latent-factors W,
X = ZW.

where Z € Rk W € R¥*4 and we assume columns of X have mean 0.
@ We're trying to split redundancy in X into its important “parts”.
@ We typically take k << d so this requires far fewer parameters:

WeRkxd

— S—~—
XecRnxd ZcRnxk

@ Also computationally convenient:
o Xw costs O(nd) but Z(Ww) only costs O(nk + dk).
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PCA Notation

e Using X ~ ZW, PCA approximates each examples z* as

e W
@ Usually we only need to estimate W

o If using least squares, then given W we can find 2% from z? using
2t = argmin ||2" — WTz|? = (WWT) " twa'.
z

o We often assume that W7 is orthogonal:
o This means that WW7T = I.
o In this case we have 2/ = Wa'.

@ In standard formulations, solution only unique up to rotation:

o Usually, we fit the rows of W sequentially for uniqueness.
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Two Classic Views on PCA
@ PCA approximates the original matrix by latent-variables Z and latent-factors W,
X ~=ZW.

where Z € Rk W e RFxd,
o Two classical interpretations/derivations of PCA (equivalent for orthogonal WT):
@ Choose latent-factors W to minimize error (“synthesis view"):

n d
gmin X~ 2P = 303 (s, ()5
ZERNXK, W eRkxd P

@ Choose latent-factors W7 to maximize variance (“analysis view”):

n
argmax = E ll28 = pa)? = E [Wazi||2 (2* = Wa' and p, = 0)
W eRkXxd .

7ZTr( NWTwat) = Tr(WTWixi(;ri)T):Tr(WTWXTX),
i=1

and we note that X7 X is n times sample covariance S because data is centered.
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Two Classic Views on PCA
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Two Classic Views on PCA
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Two Classic Views on PCA
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Two Classic Views on PCA
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Independent Component Analysis

Two Classic Views on PCA
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Two Classic Views on PCA

Proof: “Synthesis” View = “Analysis” View (WWT = 1)

. The variance of the z; (maximized in “analysis” view):
lZ“z, "‘JA’LZHJ = i fo,H (,4(; 0 and 2= Wx‘ it W l=1 auf M{IW 0)

151 ]

_l _g W, = L zm wwy) =1 2ir(WTVl/xx,)

n‘ (W ng: I)— P ,r(WTWX X) r;{(:,;?,,,x
J;m-n;i‘ly of‘éj ¥ k_/x‘\_!rij Lle3
raré
* The distance to the hyper plane (minimized in “synthesis” view):

[ ZW-XIE = 11 xw W= XIF = T (xw™w =X)" (xw’w=X)) Soled {,
IAlE=7A) ] = T (WWXTXWW) = 2T (WWXTY) + TAYYK)  Same !

B e Tt T, g
I =
= ~T,(WWX'X)+ (cans‘f‘avﬂ)
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Probabilistic PCA

e With zero-mean (“centered”) data, in PCA we assume that
s WA
@ In probabilistic PCA we assume that
2t~ NWT2E 62D, 28~ N(0,1).

(we can actually use any Gaussian density for z)

@ We can treat 2’ as nuisance parameters integrate over them in likelihood,
pal | W) = [ plat, 2t | W)as
2t

@ Looks ugly, but this is marginal of Gaussian so it's Gaussian.
o Regular PCA is obtained as the limit of o2 going to 0.
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Manipulating Gaussians

@ From the assumptions of the previous slide we have (leaving out * superscripts):

plo | 2W) o p (L) ) s (7).

@ Multiplying and expanding we get

p(z, z | W) =p(z |z, W)p(z | W)
=p(z |z, W)p(z) (z L W)
x exp (_ (2 —WT)T(x —WT2) B sz>
202 2
2le —a"Wly = TWa + 2TWWT2 272
= exp (— 952 + )
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Manipulating Gaussians
@ So the “complete” likelihood satsifies

202 2
1 1 1 1 1
= exp (—5 (J:T (;I) z 4 a7 (;WT) z+ 2T (;W) z+ 27 (;WWT +I> z)) ,
@ We can re-write the exponent as a quadratic form,
Uig [ AT AW e
p(mvz | W) X exp <_2 [.%' z ] |:_o—12W %WWT +I Py )

@ This has the form of a Gaussian distribution,

T,  TwT,_ T T T T
p(w,z\W)cxexp(—x 2oz W z—z Watz WW z+g>

o | W) e (0= 0750 - )

S

. |z B 1
mthv-[z],,u—o,andz —[_Ugw %WWT—i—I
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Manipulating Gaussians

@ Remember that if we write multivariate Gaussian in partitioned form,

v () =)

then the marginal distribution p(x) (integrating over z) is given by

€T~ N(Mxy Exa:)'

(x)d

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Manipulating Gaussians

@ Remember that if we write multivariate Gaussian in partitioned form,

x Mo Ea;ac E:vz
(I REE)]
|:z:| Hz Yow Y
then the marginal distribution p(x) (integrating over z) is given by

o For probabilistic PCA we assume i, = 0, but we partitioned ¥~ ! instead of X.
@ To get X we can use a partitioned matrix inversion formula,

s [ & =& ]_1_[WTW+U2I wT

LW LwwT 41 w I’
which gives that solution to integrating over z is

x| W ~N©O,WIW + o).
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Notes on Probabilistic PCA

@ NLL of observed data has the form
—logp(z | W) = gTF(S@) - glog |©| + const.,

where © = (WTW + 02I)~! and S is the sample covariance.

@ Not convex, but non-global stationary points are saddle points.
@ Equivalence with regular PCA:

o Consider W orthogonal so WWT = T (usual assumption).

e Using matrix determinant lemma we have

1
T 27 _ T 27 _
[WEW +0°1| = |I+;WW | - |o°I| = const.
I
e Using matrix inversion lemma we have
1 1
o2 o2(c?2+1)

so minimizing NLL maximizes Tr(WZWS) as in PCA.

(WIW +o%1)7 = wrw,
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Generalizations of Probabilistic PCA

@ Why do we need a probabilistic interpretation of PCA?
e Good excuse to play with Gaussian identities and matrix formulas?

@ We now understand that PCA fits a Gaussian with restricted covariance:
e Hope is that WTW + o1 is a good approximation of full covariance X7 X.
e We can do fancy things like mixtures of PCA models.

PrGA Noture (-1.4266)

http://www.miketipping.com/papers/met-mppca.pdf
o We could consider different z¢ | 2% distribution (but integrals are ugly).
o E.g., Laplace of student if you want it to be robust.
e E.g., logistic or softmax if you have discrete ac§

@ Lets us understand connection between PCA and factor analysis.


http://www.miketipping.com/papers/met-mppca.pdf
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Factor Analysis

e Factor analysis (FA) is a method for discovering latent-factors.
e A standard tool and widely-used across science and engineering.

@ Historical applications are measures of intelligence and personality traits.
e Some controversy, like trying to find factors of intelligence due to race.

(without normalizing for socioeconomic factors)

Trait

Description

Being curious, original, intellectual, creative, and open to

Openness !
& new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness Sl ear:

Neuroticism Being anxious, irritable, temperamental, and moody.

https://new.edu/resources/big-5-personality-traits

e "Big Five" aspects of personality (vs. non-evidence-based Myers-Briggs):

@ https://fivethirtyeight.com/features/most-personality-quizzes-are- junk-science-i-found-one-that-isnt


https://new.edu/resources/big-5-personality-traits
https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt

Factor Analysis

Factor Analysis

@ FA approximates the original matrix by latent-variables Z and latent-factors W,
X~ ZW.

@ Which should sound familiar...

@ Are PCA and FA the same?

e Both are more than 100 years old.
e People are still fighting about whether they are the same:

@ Doesn’t help that some software packages run PCA when you call FA.
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Google

Factor Analysis
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PCA vs. Factor Analysis

In probabilistic PCA we assume
| 2~ NOWT 2 02T, 2"~ N(0,1),

and we obtain PCA as ¢ — 0.

@ In FA we assume
| 2~ N(WTZE D), 2~ N(0, 1),

where D is a diagonal matrix.

The difference is that you can have a noise variance for each dimension.

Repeating the previous exercise we get that

' ~ N(O,WIW + D).

So FA has extra degrees of freedom in variance of individual variables.
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PCA vs. Factor Analysis

@ We can write non-centered versions of both models:
e Probabilistic PCA:

2| 2~ NOWT 2 4,02, 24 ~ N(0,1),

e Factor analysis: o . ,
2 2~ NOWT2 4, D), 2~ N(0,1),

where D is a diagonal matrix.

o A different perspective is that these models assume
ot =WTa te

where PPCA has ¢ ~ N(p,021) and FA has € ~ N (p1, D).

Independent Component Analysis
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PCA vs. Factor Analysis

In practice they usually give pretty similar results:

Principal conponent. analysis Factor analysis
. .
3l
i
Lo
o
1t .
. 1r *
o L]
SIS 5
o 2 ol
4 e e
g
gt
s
ol
sl . * Barolo Baralo
. *  Grignoline 3l Grignolina
*  Zarbera Barbera
. !
5 4 3 2 0 1 2 3 4 5 5 4 3 -2z 1 [ 1 2 3 4 5
FC 1 Factor 1

http:

//stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi

Remember in 340 that difference with PCA and ISOMAP /t-SNE was huge.


http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi

Probabilistic PCA Factor Analysis Independent Component Analysis

Factor Analysis Discussion

@ Similar to PCA, FA is invariant to rotation of W,

wiw =wTQTQw = (WQ)T(WQ),
el

for orthogonal Q.
e So as with PCA you can't interpret multiple factors as being unique.

@ Differences with PCA:
o Not affected by scaling individual features.
o FA doesn’t chase large-noise features that are uncorrelated with other features.

e But unlike PCA, it's affected by rotation of the data.
e No nice "SVD" approach for FA, you can get different local optima.
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Orthogonality and Sequential Fitting

The PCA and FA solutions are not unique.

Common heuristic:

@ Enforce that rows of W have a norm of 1.
@ Enforce that rows of W are orthogonal.
© Fit the rows of W sequentially.

@ This leads to a unique solution up to sign changes.

But there are other ways to resolve non-uniqueness (Murphy's Section 12.1.3):
e Force W to be lower-triangular.
o Choose an informative rotation.
e Use a non-Gaussian prior (“independent component analysis”).
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Motivation for Independent Component Analysis (ICA)

@ Factor analysis has found an enormous number of applications.
e People really want to find the “factors” that make up their data.

@ But factor analysis can't even identify factor directions.

-2 -15 -1 -05 0 05 1 15

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf


http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf
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Motivation for Independent Component Analysis (ICA)

Factor analysis has found an enormous number of applications.
e People really want to find the “factors” that make up their data.

But factor analysis can't even identify factor directions.
o We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach

e Around 30 years old instead of > 100.
e Under certain assumptions it can identify factors.

@ The canonical application of ICA is blind source separation.
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Blind Source Separation

@ Input to blind source separation:
e Multiple microphones recording multiple sources.

o | Source 1 Source 2 H
'-—15 'u |‘.’|'| WA bk ]
L o i L‘f- W UL + ] i i
- Mixture *
= R\ 1A )r'w h
Cacaravava

!

| Source Separation |
Estimate 1 &~ ~a _Estimate 2
LA L]

I.r- W ‘.\, |__I

http://music.eecs.northwestern.edu/research.php

@ Each microphone gets different mixture of the sources.
e Goal is to reconstruct sources (factors) from the measurements.


http://music.eecs.northwestern.edu/research.php
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Independent Component Analysis Applications

e ICA is replacing PCA/FA in many applications.

Some ICA applications are listed below: !
« optical Imaging of neuronsl'7]
« neuronal spike sorting!'®!
« face recognition['¢]
« modeling receptive fields of primary visual neurons 0]
« predicting stock market prices(21]
« mobile phone communications [22]
« color based detection of the ripeness of tomatoes(2?!
« removing artifacts, such as eye blinks, from EEG data.[2*]

o It's the only algorithm we didn't cover in 340 from the list of
“The 10 Algorithms Machine Learning Engineers Need to Know".

@ Recent work shows that ICA can often resolve direction of causality.
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Limitations of Matrix Factorization

e As in PCA/FA, ICA is a matrix factorization method,
X =~ ZW.
@ Let's assume that X = ZW for a “true” W with k = d.

o Different from PCA where we assume k << d.

@ There are only 3 issues stopping us from finding “true” W.
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3 Sources of Matrix Factorization Non-Uniquness

@ Label switching: get same model if we permute rows of W.

o We can exchange row 1 and 2 of W (and same columns of Z).
o Not a problem because we don't care about order of factors.

Scaling: get same model if you scale a row.

o If we multiply row 1 of W by «, could multiply column 1 of Z by 1/c.
o Can't identify scale/sign, but might hope to identify direction.

@ Rotataion: we the get same model if we rotate 1V (pre-multiply by orthogonal @).

o Rotation correspond to orthogonal matrices @, such matrices have Q7Q = I.
o If we rotate W with @, then we have (QW)T(QW) = WTQTQW = WTW.

If we could address rotation, we could identify the directions.
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Another Unique Gaussian Property

o Consider a prior that assumes the z! are independent,
k
p(z') = [ pe(zD).
c=1
o E.g., in PPCA and FA we use N(0,1) for each 2.

o If p(2%) is rotation-invariant, p(Qz*) = p(z*), then it must be Gaussian.

@ The (non-intuitive) magic behind ICA:
o If the priors are all non-Gaussian, it isn't rotationally symmetric.

@ Implication: we can identify factors W if at most 1 factor is Gaussian.
o Up to permutation/sign/scaling (other rotations change distribution).
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PCA vs. ICA

-2 -15 -1 05 [} 05 1 15

Figure : Latent data is sampled from the prior p(x;) oc exp(—5 v/|x;]) with the mixing matrix A
shown in green to create the observed two dimensional vectors y = Ax. The red lines are
the mixing matrix estimated by ica.m based on the observations. For comparison, PCA
produces the blue (dashed) components. Note that the components have been scaled to
improve visualisation. As expected, PCA finds the orthogonal directions of maximal
variation. ICA however, correctly estimates the directions in which the components were
independently generated.

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf


http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf
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Independent Component Analysis
@ In ICA we use the approximation,
X ~=ZW

where we want zj- to be non-Gaussian and independent across j.
e Usually, we “center” and "whiten” the data before applying ICA.

@ A common strategy is maximum likelihood ICA assuming a heavy-tailed z;'- like

1
ﬂ(exp(z;-) + exp(—z;i)).

)

p(Zj) =

@ Another common strategy fits data while maximizing measure of non-Gaussianity:
e Maximize kurtosis, which is minimizes by Gaussians.
e Miniimize entropy, which is maximized with Gaussians.

@ The fastICA method is a popular Newton-like method maximizing kurtosis.
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Factor Analysis

[CA on Retail Purchase Data

@ Cash flow from 5 different stores over 3 years:
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Independent Component Analysis

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/Hyv000-icatut.pdf


http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

Probabilistic PCA

o 1-2 reflect “holiday season”

Factor Analysis

ICA on Retail Purchase Data
@ Factors found using ICA.

, 3-4 are year-to-year, and 5 is summer

Independent Component Analysis

dip in sales.
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Independent Component Analysis

Summary

PCA is a classic method for dimensionality reduction.
Probabilistic PCA is a continuous latent-variable probabilistic generalization.
Factor analysis extends probabilistic PCA with different noise in each dimension.

Independent component analysis: allows identifying non-Gaussian latent factors.
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