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Expectation Maximization with Many Discrete Variables

EM iterations take the form

Θt+1 = argmax
Θ

{∑
H

αH log p(O,H | Θ)

}
,

and with multiple MAR variables {H1, H2, . . . ,Hm} this means

Θt+1 = argmax
Θ

∑
H1

∑
H2

· · ·
∑
Hm

αH log p(O,H | Θ)

 ,

In mixture models, EM sums over all kn possible cluster assignments.

In binary semi-supervised learning, EM sums over all 2t assignments to ỹ.

But conditional independence allows efficient calculation in the above cases.
The H are independent given {O,Θ} which simplifies sums (see EM notes).
We’ll cover general case when we discuss probabilistic graphical models.
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Today: Continuous-Latent Variables

If H is continuous, the sums are replaceed by integrals,

log p(O | Θ) = log

(∫
H
p(O,H | Θ)dH

)
(log-likelihood)

Θt+1 = argmax
Θ

{∫
H
αH log p(O,H | Θ)dH

}
(EM update),

where if have 5 hidden varialbes
∫
H means

∫
H1

∫
H2

∫
H3

∫
H4

∫
H5

.

Even with conditional independence these might be hard.

Gaussian assumptions allow efficient calculation of these integrals.

We’ll cover general case when we get discuss Bayesian statistics.



Probabilistic PCA Factor Analysis Independent Component Analysis

Today: Continuous-Latent Variables

In mixture models, we have a discrete latent variable zi:

In mixture of Gaussians, if you know the cluster zi then p(xi | zi) is a Gaussian.

In latent-factor models, we have continuous latent variables zi:

In probabilistic PCA, if you know the latent-factors zi then p(xi | zi) is a Gaussian.

But what would a continuous zi be useful for?

Do we really need to start solving integrals?
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Today: Continuous-Latent Variables

Data may live in a low-dimensional manifold:

http://isomap.stanford.edu/handfig.html

Mixtures are inefficient at representing the 2D manifold.

http://isomap.stanford.edu/handfig.html
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Principal Component Analysis (PCA)
PCA replaces X with a lower-dimensional approximation Z.

Matrix Z has n rows, but typically far fewer columns.
PCA is used for:

Dimensionality reduction: replace X with a lower-dimensional Z.
Outlier detection: if PCA gives poor approximation of xi, could be outlier.
Basis for linear models: use Z as features in regression model.
Data visualization: display zi in a scatterplot.
Factor discovering: discover important hidden “factors” underlying data.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html
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PCA Notation

PCA approximates the original matrix by factor-loadings Z and latent-factors W ,

X ≈ ZW.

where Z ∈ Rn×k, W ∈ Rk×d, and we assume columns of X have mean 0.

We’re trying to split redundancy in X into its important “parts”.

We typically take k << d so this requires far fewer parameters:


︸ ︷︷ ︸
X∈Rn×d

≈




︸ ︷︷ ︸
Z∈Rn×k

[ ]
︸ ︷︷ ︸

W∈Rk×d

Also computationally convenient:
Xv costs O(nd) but Z(Wv) only costs O(nk + dk).



Probabilistic PCA Factor Analysis Independent Component Analysis

PCA Notation

Using X ≈ ZW , PCA approximates each examples xi as

xi ≈W T zi.

Usually we only need to estimate W :

If using least squares, then given W we can find zi from xi using

zi = argmin
z
‖xi −WT z‖2 = (WWT )−1Wxi.

We often assume that W T is orthogonal:

This means that WWT = I.
In this case we have zi = Wxi.

In standard formulations, solution only unique up to rotation:

Usually, we fit the rows of W sequentially for uniqueness.
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Two Classic Views on PCA

PCA approximates the original matrix by latent-variables Z and latent-factors W ,

X ≈ ZW.

where Z ∈ Rn×k, W ∈ Rk×d.
Two classical interpretations/derivations of PCA (equivalent for orthogonal W T ):

1 Choose latent-factors W to minimize error (“synthesis view”):

argmin
Z∈Rn×k,W∈Rk×d

‖X − ZW‖2F =

n∑
i=1

d∑
j=1

(xij − (wj)
T zi)2.

2 Choose latent-factors WT to maximize variance (“analysis view”):

argmax
W∈Rk×d

=
n∑

i=1

‖zi − µz‖2 =
n∑

i=1

‖Wxi‖2 (zi = Wxi and µz = 0)

=
n∑

i=1

Tr((xi)TWTWxi) = Tr(WTW
n∑

i=1

xi(xi)T ) = Tr(WTWXTX),

and we note that XTX is n times sample covariance S because data is centered.
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Probabilistic PCA

With zero-mean (“centered”) data, in PCA we assume that

xi ≈W T zi.

In probabilistic PCA we assume that

xi ∼ N (W T zi, σ2I), zi ∼ N (0, I).

(we can actually use any Gaussian density for z)

We can treat zi as nuisance parameters integrate over them in likelihood,

p(xi |W ) =

∫
zi
p(xi, zi |W )dzi.

Looks ugly, but this is marginal of Gaussian so it’s Gaussian.

Regular PCA is obtained as the limit of σ2 going to 0.
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Manipulating Gaussians

From the assumptions of the previous slide we have (leaving out i superscripts):

p(x | z,W ) ∝ exp

(
−(x−W T z)T (x−W T z)

2σ2

)
, p(z) ∝ exp

(
−z

T z

2

)
.

Multiplying and expanding we get

p(x, z |W ) = p(x | z,W )p(z |W )

= p(x | z,W )p(z) (z ⊥W )

∝ exp

(
−(x−W T z)T (x−W T z)

2σ2
− zT z

2

)
= exp

(
−x

Tx− xTW T z − zTWx+ zTWW T z

2σ2
+
zT z

2

)
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Manipulating Gaussians
So the “complete” likelihood satsifies

p(x, z |W ) ∝ exp

(
−
xT x− xTWT z − zTWx+ zTWWT z

2σ2
+
zT z

2

)
= exp

(
−

1

2

(
xT
(

1

σ2
I

)
x+ xT

(
1

σ2
WT

)
z + zT

(
1

σ2
W

)
x+ zT

(
1

σ2
WWT + I

)
z

))
,

We can re-write the exponent as a quadratic form,

p(x, z |W ) ∝ exp

(
−1

2

[
xT zT

] [ 1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

] [
x
z

])
,

This has the form of a Gaussian distribution,

p(v |W ) ∝ exp

(
−1

2
(v − µ)TΣ−1(v − µ)

)
,

with v =

[
x
z

]
, µ = 0, and Σ−1 =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

]
.
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Manipulating Gaussians

Remember that if we write multivariate Gaussian in partitioned form,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

then the marginal distribution p(x) (integrating over z) is given by

x ∼ N (µx,Σxx).

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Manipulating Gaussians

Remember that if we write multivariate Gaussian in partitioned form,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

then the marginal distribution p(x) (integrating over z) is given by

x ∼ N (µx,Σxx).

For probabilistic PCA we assume µx = 0, but we partitioned Σ−1 instead of Σ.

To get Σ we can use a partitioned matrix inversion formula,

Σ =

[
1
σ2 I − 1

σ2W
T

− 1
σ2W

1
σ2WW T + I

]−1

=

[
W TW + σ2I W T

W I

]
,

which gives that solution to integrating over z is

x |W ∼ N (0,W TW + σ2I).
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Notes on Probabilistic PCA

NLL of observed data has the form

− log p(x |W ) =
n

2
Tr(SΘ)− n

2
log |Θ|+ const.,

where Θ = (W TW + σ2I)−1 and S is the sample covariance.

Not convex, but non-global stationary points are saddle points.
Equivalence with regular PCA:

Consider WT orthogonal so WWT = I (usual assumption).
Using matrix determinant lemma we have

|WTW + σ2I| = |I +
1

σ2
WWT︸ ︷︷ ︸

I

| · |σ2I| = const.

Using matrix inversion lemma we have

(WTW + σ2I)−1 =
1

σ2
I − 1

σ2(σ2 + 1)
WTW,

so minimizing NLL maximizes Tr(WTWS) as in PCA.
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Generalizations of Probabilistic PCA
Why do we need a probabilistic interpretation of PCA?

Good excuse to play with Gaussian identities and matrix formulas?
We now understand that PCA fits a Gaussian with restricted covariance:

Hope is that WTW + σI is a good approximation of full covariance XTX.
We can do fancy things like mixtures of PCA models.

http://www.miketipping.com/papers/met-mppca.pdf

We could consider different xi | zi distribution (but integrals are ugly).
E.g., Laplace of student if you want it to be robust.
E.g., logistic or softmax if you have discrete xi

j .

Lets us understand connection between PCA and factor analysis.

http://www.miketipping.com/papers/met-mppca.pdf
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Factor Analysis
Factor analysis (FA) is a method for discovering latent-factors.

A standard tool and widely-used across science and engineering.
Historical applications are measures of intelligence and personality traits.

Some controversy, like trying to find factors of intelligence due to race.
(without normalizing for socioeconomic factors)

https://new.edu/resources/big-5-personality-traits

“Big Five” aspects of personality (vs. non-evidence-based Myers-Briggs):
https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt

https://new.edu/resources/big-5-personality-traits
https://fivethirtyeight.com/features/most-personality-quizzes-are-junk-science-i-found-one-that-isnt
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Factor Analysis

FA approximates the original matrix by latent-variables Z and latent-factors W ,

X ≈ ZW.

Which should sound familiar...

Are PCA and FA the same?

Both are more than 100 years old.
People are still fighting about whether they are the same:

Doesn’t help that some software packages run PCA when you call FA.
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PCA vs. Factor Analysis

In probabilistic PCA we assume

xi | zi ∼ N (W T zi, σ2I), zi ∼ N (0, I),

and we obtain PCA as σ → 0.

In FA we assume

xi | zi ∼ N (W T zi, D), zi ∼ N (0, I),

where D is a diagonal matrix.

The difference is that you can have a noise variance for each dimension.

Repeating the previous exercise we get that

xi ∼ N (0,W TW +D).

So FA has extra degrees of freedom in variance of individual variables.
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PCA vs. Factor Analysis

We can write non-centered versions of both models:

Probabilistic PCA:

xi | zi ∼ N (WT zi + µ, σ2I), zi ∼ N (0, I),

Factor analysis:
xi | zi ∼ N (WT zi + µ,D), zi ∼ N (0, I),

where D is a diagonal matrix.

A different perspective is that these models assume

xi = W T zi + ε,

where PPCA has ε ∼ N (µ, σ2I) and FA has ε ∼ N (µ,D).
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PCA vs. Factor Analysis

In practice they usually give pretty similar results:

http:

//stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi

Remember in 340 that difference with PCA and ISOMAP/t-SNE was huge.

http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi
http://stats.stackexchange.com/questions/1576/what-are-the-differences-between-factor-analysis-and-principal-component-analysi


Probabilistic PCA Factor Analysis Independent Component Analysis

Factor Analysis Discussion

Similar to PCA, FA is invariant to rotation of W ,

W TW = W T QTQ︸ ︷︷ ︸
I

W = (WQ)T (WQ),

for orthogonal Q.

So as with PCA you can’t interpret multiple factors as being unique.

Differences with PCA:
Not affected by scaling individual features.

FA doesn’t chase large-noise features that are uncorrelated with other features.

But unlike PCA, it’s affected by rotation of the data.
No nice “SVD” approach for FA, you can get different local optima.
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Orthogonality and Sequential Fitting

The PCA and FA solutions are not unique.

Common heuristic:
1 Enforce that rows of W have a norm of 1.
2 Enforce that rows of W are orthogonal.
3 Fit the rows of W sequentially.

This leads to a unique solution up to sign changes.

But there are other ways to resolve non-uniqueness (Murphy’s Section 12.1.3):

Force W to be lower-triangular.
Choose an informative rotation.
Use a non-Gaussian prior (“independent component analysis”).
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Motivation for Independent Component Analysis (ICA)

Factor analysis has found an enormous number of applications.

People really want to find the “factors” that make up their data.

But factor analysis can’t even identify factor directions.

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf
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Motivation for Independent Component Analysis (ICA)

Factor analysis has found an enormous number of applications.

People really want to find the “factors” that make up their data.

But factor analysis can’t even identify factor directions.

We can rotate W and obtain the same model.

Independent component analysis (ICA) is a more recent approach

Around 30 years old instead of > 100.
Under certain assumptions it can identify factors.

The canonical application of ICA is blind source separation.
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Blind Source Separation
Input to blind source separation:

Multiple microphones recording multiple sources.

http://music.eecs.northwestern.edu/research.php

Each microphone gets different mixture of the sources.
Goal is to reconstruct sources (factors) from the measurements.

http://music.eecs.northwestern.edu/research.php
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Independent Component Analysis Applications

ICA is replacing PCA/FA in many applications.

It’s the only algorithm we didn’t cover in 340 from the list of
“The 10 Algorithms Machine Learning Engineers Need to Know”.

Recent work shows that ICA can often resolve direction of causality.
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Limitations of Matrix Factorization

As in PCA/FA, ICA is a matrix factorization method,

X ≈ ZW.

Let’s assume that X = ZW for a “true” W with k = d.

Different from PCA where we assume k << d.

There are only 3 issues stopping us from finding “true” W .
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3 Sources of Matrix Factorization Non-Uniquness

Label switching: get same model if we permute rows of W .

We can exchange row 1 and 2 of W (and same columns of Z).
Not a problem because we don’t care about order of factors.

Scaling: get same model if you scale a row.

If we multiply row 1 of W by α, could multiply column 1 of Z by 1/α.
Can’t identify scale/sign, but might hope to identify direction.

Rotataion: we the get same model if we rotate W (pre-multiply by orthogonal Q).

Rotation correspond to orthogonal matrices Q, such matrices have QTQ = I.
If we rotate W with Q, then we have (QW )T (QW ) = WTQTQW = WTW .

If we could address rotation, we could identify the directions.
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Another Unique Gaussian Property

Consider a prior that assumes the zic are independent,

p(zi) =

k∏
c=1

pc(z
i
c).

E.g., in PPCA and FA we use N (0, 1) for each zic.

If p(zi) is rotation-invariant, p(Qzi) = p(zi), then it must be Gaussian.

The (non-intuitive) magic behind ICA:
If the priors are all non-Gaussian, it isn’t rotationally symmetric.

Implication: we can identify factors W if at most 1 factor is Gaussian.
Up to permutation/sign/scaling (other rotations change distribution).
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PCA vs. ICA

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf

http://www.inf.ed.ac.uk/teaching/courses/pmr/lectures/ica.pdf
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Independent Component Analysis

In ICA we use the approximation,

X ≈ ZW

where we want zij to be non-Gaussian and independent across j.
Usually, we “center” and “whiten” the data before applying ICA.

A common strategy is maximum likelihood ICA assuming a heavy-tailed zij like

p(zij) =
1

π(exp(zij) + exp(−zij))
.

Another common strategy fits data while maximizing measure of non-Gaussianity:
Maximize kurtosis, which is minimizes by Gaussians.
Miniimize entropy, which is maximized with Gaussians.

The fastICA method is a popular Newton-like method maximizing kurtosis.
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ICA on Retail Purchase Data

Cash flow from 5 different stores over 3 years:

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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ICA on Retail Purchase Data
Factors found using ICA.

1-2 reflect “holiday season”, 3-4 are year-to-year, and 5 is summer dip in sales.

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf

http://www.stat.ucla.edu/~yuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
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Summary

PCA is a classic method for dimensionality reduction.

Probabilistic PCA is a continuous latent-variable probabilistic generalization.

Factor analysis extends probabilistic PCA with different noise in each dimension.

Independent component analysis: allows identifying non-Gaussian latent factors.
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