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Properties of Multivariate Gaussian Mixture Models

Last Time: Multivariate Gaussian

Bivariate Norrmal
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http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

e The multivariate normal/Gaussian distribution models PDF of vector z* as
» 1 1
p(z" | p, X) = clleXp( o\
(2m)5[5)3
where ;1 € R? and ¥ € R¥*? and ¥ > 0.

@ Motivated by CLT, maximum entropy, computational properties.
@ Diagonal ¥ implies independence between variables.


http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

Properties of Multivariate Gaussian

MLE for Multivariate Gaussian (Mean Vector)

@ With a multivariate Gaussian we have
% ) — # _1 i Tz—l i
pla' | pX) = ———sexp | —5(@" —p) (@' = p) ),
(2m)3 |z}
so up to a constant our negative log-likelihood for n examples 2 is
1 i Tyl n
5 2 @ =) 57 (@' — ) + S log [,
i=1
@ This is a strongly-convex quadratic in u, setting gradient to zero gives
R
u = ; ;.ﬁlf ;

which is the unique solution (strong-convexity is due to 3 > 0).

e MLE for u is the average along each dimension, and it doesn't depend on X.
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Properties of Multivariate Gaussian Mixture Models

MLE for Multivariate Gaussians (Covariance Matrix)

o To get MLE for ¥ we re-parameterize in terms of precision matrix © = ¥ ~1,
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@ Where the trace Tr(A) is the sum of the diagonal elements of A.
e That Tr(ABC) =Tr(C AB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)

@ From the last slide we have in terms of precision matrix © that
¢ i i T n
=5 3 TH(@ — i — 1)) — logl@)
i=1

@ We can exchange the sum and trace (trace is a linear operator) to get,

:%Tr (Z(:{:’ — )z — M)T@> - glog |©] ZTr A;B) (ZA B)

i=1

=2 | E e - wet - mT | e | - Dloglel (ZAiff):(ZAi)B

=1

sample covariance 'S’
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MLE for Multivariate Gaussians (Covariance Matrix)

@ So the NLL in terms of the precision matrix © and sample covariance S is

n

f(©) = gTr(S@) - glog\e)\, with S = %Z(x’ — )t — )T

=1

@ Weird-looking but has nice properties:
o Tr(SO) is linear function of O, with Vg Tr(S0) = S.

(it's the matrix version of an inner-product s ' 6)
o Negative log-determinant is strictly-convex and has Vg log |0 = ©~ 1.
(generalizes Vlog |z| = 1/z for for z > 0).

@ Using these two properties the gradient matrix has a simple form:

n n_._
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Properties of Multivariate Gaussian

MLE for Multivariate Gaussians (Covariance Matrix)

@ Gradient matrix of NLL with respect to © is

V(O) = gs - g@q_

@ The MLE for a given p is obtained by setting gradient matrix to zero, giving

1 < . .
=451 — Qg — i _ i )T
or T=S=-3% (@ -p-p
=1
@ The constraint X > 0 means we need positive-definite sample covariance, S >~ 0

e If S is not invertible, NLL is unbounded below and no MLE exists.
e This is like requiring “not all values are the same” in univariate Gaussian.

@ In d-dimensions, you need d linearly-independent z* values.

@ For most distributions, the MLEs are not the sample mean and covariance.
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MAP Estimation in Multivariate Gaussian (Covariance Matrix)

@ A classic regularizer for X is to add a diagonal matrix to S and use
Y= S+,

which satisfies ¥ > 0 by construction (eigenvalues at least \).

@ This corresponds to a regularizer that penalizes diagonal of the precision,
f(©) =Tr(SO) —log|O| + ATr(O)
= Tr(S©+\0O) — log |O]
=Tr((S+ A)O) —log|O|.

@ Ll-regularization of diagonals of inverse covariance.
o But doesn't set to exactly zero as it must be positive-definite.
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Graphical LASSO

@ A popular generalization called the graphical LASSO,
f(©) =Tr(50) —log 6] + A|[O]]1.

where we are using the element-wise L1-norm.

@ Gives sparse off-diagonals in ©.
o Can solve very large instances with proximal-Newton and other tricks (“QUIC").

@ It's common to draw the non-zeroes in © as a graph.

e Has an interpretation in terms on conditional independence (we'll cover this later).
o Examples: https://normaldeviate.wordpress.com/2012/09/17/
high-dimensional-undirected-graphical-models


https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Closedness of Multivariate Gaussian

@ Multivariate Gaussian has nice properties of univariate Gaussian:

o Closed-form MLE for 4 and ¥ given by sample mean /variance.
o Central limit theorem: mean estimates of random variables converge to Gaussians.
e Maximizes entropy subject to fitting mean and covariance of data.

@ A crucial computation property: Gaussians are closed under many operations.

@ Affine transformation: if p(z) is Gaussian, then p(Az + b) is a Gaussian?.

@ Marginalization: if p(z, z) is Gaussian, then p(z) is Gaussian.
© Conditioning: if p(x, z) is Gaussian, then p(x | z) is Gaussian.
@ Product: if p(x) and p(z) are Gaussian, then p(z)p(z) is proportional to a Gaussian.

@ Most continuous distributions don't have these nice properties.

!Could be degenerate with |X| = 0 dependending on A.
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Affine Property: Special Case of Shift

@ Assume that random variable z follows a Gaussian distribution,

x~N(u,X).
@ And consider an shift of the random variable,
z=ux+b.
@ Then random variable z follows a Gaussian distribution
2~ N(pn+b,%),

where we've shifted the mean.
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Affine Property: General Case

@ Assume that random variable x follows a Gaussian distribution,
x~N(p, ).
@ And consider an affine transformation of the random variable,
z= Az +b.
@ Then random variable z follows a Gaussian distribution
2~ N(Ap+b, ASAT),

although note we might have |[AXAT| = 0.
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Marginalization of Gaussians

@ Consider partitioning multivariate Gaussian variables into two sets,

v (Gl )

so our dataset would be something like

X = Tr1 T2 21 <2

e If | want the marginal distribution p(x), | can use the affine property,

to get that
x~ N (g, Xor)-

Mixture Models
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Marginalization of Gaussians

@ In a picture, ignoring a subset of the variables gives a Gaussian:

(x)d

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

@ This seems less intuitive if you use usual marginalization rule:

p(z) = /z1 /22 /Zd (27‘_)% ngi Emz] % exp (*% ([Z] - [Z:]) [gzz g:j]71 ([2] - [Zj])) dzqdzq_q ... dz1.

zx PP



https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians
o Consider partitioning multivariate Gaussian variables into two sets,
T b %
(B B )
@ The conditional probabilities are also Gaussian,
x|z~ Ny 220 2)s
where

P |z = Ha + szzz_zl(z — ), X |z = Yga — Exzzz?zlzza:'

@ "For any fixed z, the distribution of = is a Gaussian”.

o Notice that if ¥,. = 0 then x and z are independent (py | > = fie, Xg | = Xz).
o We previously saw the special case where ¥ is diagonal (all variables independent).
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Product of Gaussian Densities

@ Let fi(x) and fa(x) be Gaussian PDFs defined on variables x.
o Let (u1,21) be parameters of f; and (ug, 32) for fs.

@ The product of the PDFs fi(x) fa(z) is proportional to a Gaussian density,

covariance of ¥ = (7' + 25 h) 7L

mean of p = EZflm + ZE;l,ug,

although this density may not be normalized (may not integrate to 1 over all x).

e But if we can write a probability as p(x) o fi(z) fa(x) for 2 Gaussians,
then p is a Gaussian with the above mean/covariance.
o Can be to derive MAP estimate if f; is likelihood and fs is prior.
o Can be used in Gaussian Markov chains models (later).
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Product of Gaussian Densities
e If ¥ =1 and Xy = I then product has ¥ = %I and p = W

= |
o
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Properties of Multivariate Gaussians

@ A multivariate Gaussian “cheat sheet” is here:

@ https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

@ For a careful discussion of Gaussians, see the playlist here:
@ https://www.youtube.com/watch?v=TCOZAX3DA88&t=2s&1ist=PL17567A1A3F5DB5E4&index=34


https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

Properties of Multivariate Gaussian

Problems with Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?
e Still not robust, may want to consider multivariate Laplace or multivariate T.

@ These require numerical optimization to compute MLE/MAP.

25+

200

Gaussian (nll = 6.220)

20

Multivariate T (estimated dof) (nll = 4.836)
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Problems with Multivariate Gaussian

@ Why not the multivariate Gaussian distribution?

e Still not robust, may want to consider multivariate Laplace of multivariate T.
e Still unimodal, which often leads to very poor fit.

Gaussian (nll = 7.100)
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1 Gaussian for Multi-Modal Data

@ Major drawback of Gaussian is that it's uni-modal.
e It gives a terrible fit to data like this:

o If Gaussians are all we know, how can we fit this data?
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2 Gaussians for Multi-Modal Data

@ We can fit this data by using two Gaussians

0.03

0.025

0.0151

0.005

@ Half the samples are from Gaussian 1, half are from Gaussian 2.
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Mixture of Gaussians
@ Our probability density in this example is given by

, 1 A 1 A
px' | p1, po, X1, 32) = 5 p(z' | p1,X1) +5 p( | p2, X2) ,

PDF of Gaussian 1 PDF of Gaussian 2

o We need the (1/2) factors so it still integrates to 1.

0.03
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Mixture of Gaussians

o If data comes from one Gaussian more often than the other, we could use

p(a’ | pn, p2, 21, Bo, 71, m2) =m0 p(at | pa, 1)+ p(at | pg, Te)
PDF of Gaussian 1 PDF of Gaussian 2

where 71 and w3 and are non-negative and sum to 1.
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Mixture of Gaussians

@ In general we might have a mixture of £ Gaussians with different weights.

k
pla| ) =Y me p(@ | pie; Te)
—_———

e=1 PDF of Gaussian ¢

e Where the 7. are non-negative and sum to 1.
o We can use it to model complicated densities with Gaussians (like RBFs).

e "“Universal approximator”: can model any continuous density on compact set.
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Mixture of Gaussians

@ Gaussian vs. mixture of 2 Gaussian densities in 2D:

-2 o 2 4 -5 o 5 10 15

e Marginals will also be mixtures of Gaussians.
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Mixture of Gaussians

@ Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:

20+

20

Gaussian (nll = 7.100)

20

20

Mixture of Gaussian (nll = 5.108)

Mixture Models
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Mixture of Gaussians

@ Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:

20+

20

Gaussian (nll = 7.100)

20

20

Mixture of Gaussian (nll = 5.050)

Mixture Models
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Mixture of Gaussians

e Given parameters {7, jic, ¢}, we can sample from a mixture of Gaussians using:

@ Sample cluster ¢ based on prior probabilities 7. (categorical distribution).
@ Sample example = based on mean p. and covariance X..

e We usually fit these models with expectation maximization (EM):

e EM is a general method for fitting models with hidden variables.
e For mixture of Gaussians: we treat cluster ¢ as a hidden variable.
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Summary

@ Multivariate Gaussian generalizes univariate Gaussian for multiple variables.

o Closed-form MLE given by sample mean and covariance.
@ Closed under affine transformations, marginalization, conditioning, and products.
e But unimodal and not robust.

@ Mixture of Gaussians writes probability as convex comb. of Gaussian densities.
o Can model arbitrary continuous densities.

@ Next time: dealing with missing data.
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Positive-Definiteness of © and Checking Positive-Definiteness

o If we define centered vectors Z* = x* — pu then empirical covariance is

n

1 3 SRS
S=— zt — p)(zt — XX =0,
PICEECER) Z -
so S is positive semi-definite but not positive-definite by construction.
@ If data has noise, it will be positive-definite with n large enough.

@ For © > 0, note that for an upper-triangular 7" we have

log |T| = log(prod(eig(T"))) = log(prod(diag(T))) = Tr(log(diag(T))),

where we've used Matlab notation.
@ So to compute log |O| for © = 0, use Cholesky to turn into upper-triangular.
e Bonus: Cholesky fails if © > 0 is not true, so it checks positive-definite constraint.
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