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Properties of Multivariate Gaussian Mixture Models

Last Time: Multivariate Gaussian

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

The multivariate normal/Gaussian distribution models PDF of vector xi as

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
where µ ∈ Rd and Σ ∈ Rd×d and Σ � 0.
Motivated by CLT, maximum entropy, computational properties.
Diagonal Σ implies independence between variables.

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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MLE for Multivariate Gaussian (Mean Vector)

With a multivariate Gaussian we have

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
,

so up to a constant our negative log-likelihood for n examples xi is

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|.

This is a strongly-convex quadratic in µ, setting gradient to zero gives

µ =
1

n

n∑
i=1

xi,

which is the unique solution (strong-convexity is due to Σ � 0).
MLE for µ is the average along each dimension, and it doesn’t depend on Σ.



Properties of Multivariate Gaussian Mixture Models

MLE for Multivariate Gaussians (Covariance Matrix)

To get MLE for Σ we re-parameterize in terms of precision matrix Θ = Σ−1,

1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) +
n

2
log |Σ|

=
1

2

n∑
i=1

(xi − µ)>Θ(xi − µ) +
n

2
log |Θ−1| (ok because Σ is invertible)

=
1

2

n∑
i=1

Tr
(

(xi − µ)>Θ(xi − µ)
)

+
n

2
log |Θ|−1 (scalar y>Ay = Tr(y>Ay))

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)>Θ)− n

2
log |Θ| (Tr(ABC) = Tr(CAB))

Where the trace Tr(A) is the sum of the diagonal elements of A.

That Tr(ABC) =Tr(CAB) when dimensions match is the cyclic property of trace.
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MLE for Multivariate Gaussians (Covariance Matrix)

From the last slide we have in terms of precision matrix Θ that

=
1

2

n∑
i=1

Tr((xi − µ)(xi − µ)>Θ)− n

2
log |Θ|

We can exchange the sum and trace (trace is a linear operator) to get,

=
1

2
Tr

(
n∑
i=1

(xi − µ)(xi − µ)>Θ

)
− n

2
log |Θ|

∑
i

Tr(AiB) = Tr

(∑
i

AiB

)

=
n

2
Tr


 1

n

n∑
i=1

(xi − µ)(xi − µ)>︸ ︷︷ ︸
sample covariance ‘S’

Θ

− n

2
log |Θ|.

(∑
i

AiB

)
=

(∑
i

Ai

)
B
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MLE for Multivariate Gaussians (Covariance Matrix)

So the NLL in terms of the precision matrix Θ and sample covariance S is

f(Θ) =
n

2
Tr(SΘ)− n

2
log |Θ|, with S =

1

n

n∑
i=1

(xi − µ)(xi − µ)>

Weird-looking but has nice properties:

Tr(SΘ) is linear function of Θ, with ∇Θ Tr(SΘ) = S.
(it’s the matrix version of an inner-product s>θ)

Negative log-determinant is strictly-convex and has ∇Θ log |Θ| = Θ−1.
(generalizes ∇ log |x| = 1/x for for x > 0).

Using these two properties the gradient matrix has a simple form:

∇f(Θ) =
n

2
S − n

2
Θ−1.
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MLE for Multivariate Gaussians (Covariance Matrix)

Gradient matrix of NLL with respect to Θ is

∇f(Θ) =
n

2
S − n

2
Θ−1.

The MLE for a given µ is obtained by setting gradient matrix to zero, giving

Θ = S−1 or Σ = S =
1

n

n∑
i=1

(xi − µ)(xi − µ)>.

The constraint Σ � 0 means we need positive-definite sample covariance, S � 0.

If S is not invertible, NLL is unbounded below and no MLE exists.
This is like requiring “not all values are the same” in univariate Gaussian.

In d-dimensions, you need d linearly-independent xi values.

For most distributions, the MLEs are not the sample mean and covariance.
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MAP Estimation in Multivariate Gaussian (Covariance Matrix)

A classic regularizer for Σ is to add a diagonal matrix to S and use

Σ = S+λI,

which satisfies Σ � 0 by construction (eigenvalues at least λ).

This corresponds to a regularizer that penalizes diagonal of the precision,

f(Θ) = Tr(SΘ)− log |Θ|+ λTr(Θ)

= Tr(SΘ+λΘ)− log |Θ|
= Tr((S + λI)Θ)− log |Θ|.

L1-regularization of diagonals of inverse covariance.

But doesn’t set to exactly zero as it must be positive-definite.
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Graphical LASSO

A popular generalization called the graphical LASSO,

f(Θ) = Tr(SΘ)− log |Θ|+ λ‖Θ‖1.

where we are using the element-wise L1-norm.

Gives sparse off-diagonals in Θ.

Can solve very large instances with proximal-Newton and other tricks (“QUIC”).

It’s common to draw the non-zeroes in Θ as a graph.

Has an interpretation in terms on conditional independence (we’ll cover this later).
Examples: https://normaldeviate.wordpress.com/2012/09/17/

high-dimensional-undirected-graphical-models

https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
https://normaldeviate.wordpress.com/2012/09/17/high-dimensional-undirected-graphical-models
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Closedness of Multivariate Gaussian

Multivariate Gaussian has nice properties of univariate Gaussian:

Closed-form MLE for µ and Σ given by sample mean/variance.
Central limit theorem: mean estimates of random variables converge to Gaussians.
Maximizes entropy subject to fitting mean and covariance of data.

A crucial computation property: Gaussians are closed under many operations.
1 Affine transformation: if p(x) is Gaussian, then p(Ax+ b) is a Gaussian1.
2 Marginalization: if p(x, z) is Gaussian, then p(x) is Gaussian.
3 Conditioning: if p(x, z) is Gaussian, then p(x | z) is Gaussian.
4 Product: if p(x) and p(z) are Gaussian, then p(x)p(z) is proportional to a Gaussian.

Most continuous distributions don’t have these nice properties.

1Could be degenerate with |Σ| = 0 dependending on A.
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Affine Property: Special Case of Shift

Assume that random variable x follows a Gaussian distribution,

x ∼ N (µ,Σ).

And consider an shift of the random variable,

z = x+ b.

Then random variable z follows a Gaussian distribution

z ∼ N (µ+ b,Σ),

where we’ve shifted the mean.
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Affine Property: General Case

Assume that random variable x follows a Gaussian distribution,

x ∼ N (µ,Σ).

And consider an affine transformation of the random variable,

z = Ax+ b.

Then random variable z follows a Gaussian distribution

z ∼ N (Aµ+ b, AΣA>),

although note we might have |AΣA>| = 0.
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Marginalization of Gaussians

Consider partitioning multivariate Gaussian variables into two sets,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
,

so our dataset would be something like

X =

x1 x2 z1 z2

 .
If I want the marginal distribution p(x), I can use the affine property,

x =
[
I 0

]︸ ︷︷ ︸
A

[
x
z

]
+ 0︸︷︷︸

b

,

to get that
x ∼ N (µx,Σxx).
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Marginalization of Gaussians

In a picture, ignoring a subset of the variables gives a Gaussian:

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

This seems less intuitive if you use usual marginalization rule:

p(x) =

∫
z1

∫
z2

· · ·
∫
zd

1

(2π)
d
2

∣∣∣∣[Σxx Σxz
Σzx Σzz

]∣∣∣∣ 12
exp

(
−

1

2

([
x
z

]
−
[
µx
µz

]) [
Σxx Σxz
Σzx Σzz

]−1 ([x
z

]
−
[
µx
µz

]))
dzddzd−1 . . . dz1.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Conditioning in Gaussians

Consider partitioning multivariate Gaussian variables into two sets,[
x
z

]
∼ N

([
µx
µz

]
,

[
Σxx Σxz

Σzx Σzz

])
.

The conditional probabilities are also Gaussian,

x | z ∼ N (µx | z,Σx | z),

where

µx | z = µx + ΣxzΣ
−1
zz (z − µz), Σx | z = Σxx − ΣxzΣ

−1
zz Σzx.

“For any fixed z, the distribution of x is a Gaussian”.

Notice that if Σxz = 0 then x and z are independent (µx | z = µx, Σx | z = Σx).
We previously saw the special case where Σ is diagonal (all variables independent).
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Product of Gaussian Densities

Let f1(x) and f2(x) be Gaussian PDFs defined on variables x.
Let (µ1,Σ1) be parameters of f1 and (µ2,Σ2) for f2.

The product of the PDFs f1(x)f2(x) is proportional to a Gaussian density,

covariance of Σ = (Σ−11 + Σ−12 )−1.

mean of µ = ΣΣ−11 µ1 + ΣΣ−12 µ2,

although this density may not be normalized (may not integrate to 1 over all x).

But if we can write a probability as p(x) ∝ f1(x)f2(x) for 2 Gaussians,
then p is a Gaussian with the above mean/covariance.

Can be to derive MAP estimate if f1 is likelihood and f2 is prior.
Can be used in Gaussian Markov chains models (later).
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Product of Gaussian Densities

If Σ1 = I and Σ2 = I then product has Σ = 1
2I and µ = µ1+µ2

2 .
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Properties of Multivariate Gaussians

A multivariate Gaussian “cheat sheet” is here:
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

For a careful discussion of Gaussians, see the playlist here:
https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34

https://www.youtube.com/watch?v=TC0ZAX3DA88&t=2s&list=PL17567A1A3F5DB5E4&index=34
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Problems with Multivariate Gaussian

Why not the multivariate Gaussian distribution?
Still not robust, may want to consider multivariate Laplace or multivariate T.

These require numerical optimization to compute MLE/MAP.



Properties of Multivariate Gaussian Mixture Models

Problems with Multivariate Gaussian

Why not the multivariate Gaussian distribution?

Still not robust, may want to consider multivariate Laplace of multivariate T.
Still unimodal, which often leads to very poor fit.
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Outline

1 Properties of Multivariate Gaussian

2 Mixture Models
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1 Gaussian for Multi-Modal Data

Major drawback of Gaussian is that it’s uni-modal.

It gives a terrible fit to data like this:

If Gaussians are all we know, how can we fit this data?
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2 Gaussians for Multi-Modal Data

We can fit this data by using two Gaussians

Half the samples are from Gaussian 1, half are from Gaussian 2.
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Mixture of Gaussians
Our probability density in this example is given by

p(xi | µ1, µ2,Σ1,Σ2) =
1

2
p(xi | µ1,Σ1)︸ ︷︷ ︸
PDF of Gaussian 1

+
1

2
p(xi | µ2,Σ2)︸ ︷︷ ︸
PDF of Gaussian 2

,

We need the (1/2) factors so it still integrates to 1.
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Mixture of Gaussians

If data comes from one Gaussian more often than the other, we could use

p(xi | µ1, µ2,Σ1,Σ2, π1, π2) = π1 p(x
i | µ1,Σ1)︸ ︷︷ ︸

PDF of Gaussian 1

+π2 p(x
i | µ2,Σ2)︸ ︷︷ ︸

PDF of Gaussian 2

,

where π1 and π2 and are non-negative and sum to 1.
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Mixture of Gaussians

In general we might have a mixture of k Gaussians with different weights.

p(x | µ,Σ, π) =

k∑
c=1

πc p(x | µc,Σc)︸ ︷︷ ︸
PDF of Gaussian c

,

Where the πc are non-negative and sum to 1.
We can use it to model complicated densities with Gaussians (like RBFs).

“Universal approximator”: can model any continuous density on compact set.
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Mixture of Gaussians

Gaussian vs. mixture of 2 Gaussian densities in 2D:

Marginals will also be mixtures of Gaussians.
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Mixture of Gaussians

Gaussian vs. Mixture of 4 Gaussians for 2D multi-modal data:
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Mixture of Gaussians

Gaussian vs. Mixture of 5 Gaussians for 2D multi-modal data:
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Mixture of Gaussians

Given parameters {πc, µc,Σc}, we can sample from a mixture of Gaussians using:
1 Sample cluster c based on prior probabilities πc (categorical distribution).
2 Sample example x based on mean µc and covariance Σc.

We usually fit these models with expectation maximization (EM):

EM is a general method for fitting models with hidden variables.
For mixture of Gaussians: we treat cluster c as a hidden variable.
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Summary

Multivariate Gaussian generalizes univariate Gaussian for multiple variables.

Closed-form MLE given by sample mean and covariance.
Closed under affine transformations, marginalization, conditioning, and products.
But unimodal and not robust.

Mixture of Gaussians writes probability as convex comb. of Gaussian densities.

Can model arbitrary continuous densities.

Next time: dealing with missing data.
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Positive-Definiteness of Θ and Checking Positive-Definiteness

If we define centered vectors x̃i = xi − µ then empirical covariance is

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)> =
1

n

n∑
i=1

x̃i(x̃i)> =
1

n
X̃>X̃ � 0,

so S is positive semi-definite but not positive-definite by construction.

If data has noise, it will be positive-definite with n large enough.

For Θ � 0, note that for an upper-triangular T we have

log |T | = log(prod(eig(T ))) = log(prod(diag(T ))) = Tr(log(diag(T ))),

where we’ve used Matlab notation.

So to compute log |Θ| for Θ � 0, use Cholesky to turn into upper-triangular.

Bonus: Cholesky fails if Θ � 0 is not true, so it checks positive-definite constraint.
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