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Supervised Learning vs. Structured Prediction

In 340 we focused a lot on “classic” supervised learning:

Model p(y | x) where y is a single discrete/continuous variable.

In the next few classes we’ll focus on density estimation:

Model p(x) where x is a vector or general object.

Structured prediction is the logical combination of these:

Model p(y | x) where y is a vector or general object.
Can be viewed as “conditional” density estimation.
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3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:
1 Generative models use p(y | x) ∝ p(y, x) as in naive Bayes.

Turns structured prediction into density estimation.

But we’ll want to go beyond naive Bayes.

Examples: Gaussian discriminant analysis, mixtures and Markov models, VAEs.

2 Discriminative models directly fit p(y | x) as in logistic regression.
View structured prediction as conditional density estimation.

Lets you use complicated features x that make the task easier.

Examples: Conditional random fields, conditional RBMs, conditional neural fields.

3 Discriminant functions just try to map from x to y as in SVMs.

Now you don’t even need to worry about calibrated probabilities.
Examples: Structured SVMs, fully-convolutional networks, RNNs.
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Density Estimation

The next topic we’ll focus on is density estimation:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 X̃ =


? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?


What is probability of [1 0 1 1]?
Want to estimate probability of feature vectors xi.

For the training data this is easy:
Set p(xi) to “number of times xi is in the training data” divided by n.

We’re interested in the probability of test data,
What is probability of seeing feature vector x̃i for a new example i.
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Density Estimation Applications

Density estimation could be called a “master problem” in machine learning.

Solving this problem lets you solve a lot of other problems.

If you have p(xi) then:

Outliers could be cases where p(xi) is small.
Missing data in xi can be “filled in” based on p(xi).
Vector quantization can be achieved by assigning shorter code to high p(xi) values.
Association rules can be computed from conditionals p(xij | xik).

We can also do density estimation on (xi, yi) jointly:

Supervised learning can be done by conditioning to give p(yi | xi).
Feature relevance can be analyzed by looking at p(xi | yi).
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Unsupervised Learning

Density estimation is an unsupervised learning method.

We only have xi values, but no explicit target labels.
You want to do “something” with them.

Some unsupervised learning tasks from CPSC 340 (depending on semester):

Clustering: what types of xi are there?
Association rules: which xj and xk occur together?
Outlier detection: is this a “normal” xi?
Latent-factors: what “parts” are xi made from?
Data visualization: what do the high-dimensional xi look like?
Ranking: which are the most important xi?

You can probably address all these if you can do density estimation.
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Bernoulli Distribution on Binary Variables

Let’s start with the simplest case: xi ∈ {0, 1} (e.g., coin flips),

X =



1
0
0
0
0
1

 .

For IID data the only choice is the Bernoulli distribution:

p(xi = 1 | θ) = θ, p(xi = 0 | θ) = 1− θ.

We can write both cases

p(xi | θ) = θI[xi=1](1− θ)I[xi=0], where I[y] =

{
1 if y is true

0 if y is false
.
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Maximum Likelihood with Bernoulli Distribution

MLE for Bernoulli likelihood is

argmax
0≤θ≤1

p(X | θ) = argmax
0≤θ≤1

n∏
i=1

p(xi | θ)

= argmax
0≤θ≤1

n∏
i=1

θI[xi=1](1− θ)I[xi=0]

= argmax
0≤θ≤1

θ1θ1 · · · θ1︸ ︷︷ ︸
number of xi = 1

(1− θ)(1− θ) · · · (1− θ)︸ ︷︷ ︸
number of xi = 0

= argmax
0≤θ≤1

θn1(1− θ)n0 ,

where n1 is count of number of 1 values and n0 is the number of 0 values.

If you equate the derivative of the log-likelihood with zero, you get θ = n1
n1+n0

.

So if you toss a coin 50 times and it lands heads 24 times, your MLE is 24/50.
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Multinomial Distribution on Categorical Variables
Consider the multi-category case: xi ∈ {1, 2, 3, . . . , k} (e.g., rolling di),

X =



2
1
1
3
1
2

 .

The categorical distribution is

p(xi = c | θ1, θ2, . . . , θk) = θc,

where
∑k

c=1 θc = 1.
We can write this for a generic x as

p(xi | θ1, θ2, . . . , θk) =

k∏
c=1

θI[xi=c]
c .
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Multinomial Distribution on Categorical Variables

Using Lagrange multipliers (bonus) to handle constraints, the MLE is

θc =
nc∑
c′ nc′

. (“fraction of times you rolled a 4”)

If we never see category 4 in the data, should we assume θ4 = 0?

If we assume θ4 = 0 and we have a 4 in test set, our test set likelihood is 0.

To leave room for this possibility we often use “Laplace smoothing”,

θc =
nc + 1∑
c′(nc′ + 1)

.

This is like adding a “fake” example to the training set for each class.
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MAP Estimation with Bernoulli Distributions

In the binary case, a generalization of Laplace smoothing is

θ =
n1 + α− 1

(n1 + α− 1) + (n0 + β − 1)
,

We get the MLE when α = β = 1, and Laplace smoothing with α = β = 2.

This is a MAP estimate under a beta prior,

p(θ | α, β) =
1

B(α, β)
θα−1(1− θ)β−1,

where the beta function B makes the probability integrate to one.

We want

∫
θ
p(θ | α, β)dθ = 1, so define B(α, β) =

∫
θ
θα−1(1− θ)β−1dθ.

Note that B(α, β) is constant in terms of θ, it doesn’t affect MAP estimate.
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MAP Estimation with Categorical Distributions

In the categorical case, a generalization of Laplace smoothing is

θc =
nc + αc − 1∑k

c′=1(nc′ + αc′ − 1)
,

which is a MAP estimate under a Dirichlet prior,

p(θ1, θ2, . . . , θk | α1, α2, . . . , αk) =
1

B(α)

k∏
c=1

θαc−1
c ,

where B(α) makes the multivariate distribution integrate to 1 over θ,

B(α) =

∫
θ1

∫
θ2

· · ·
∫
θk−1

∫
θk

k∏
c=1

[
θαc−1
c

]
dθkdθk−1 · · · dθ2dθ1.

Because of MAP-regularization connection, Laplace smoothing is regularization.
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General Discrete Distribution

Now consider the case where xi ∈ {0, 1}d (e..g, words in e-mails):

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 .

Now there are 2d possible values of vector xi.

Can’t afford to even store a θ for each possible vector xi.
With n training examples we see at most n unique xi values.
But unless we have a small number of repeated xi values, we’ll hopelessly overfit.

With finite dataset, we’ll need to make assumptions...
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Product of Independent Distributions

A common assumption is that the variables are independent:

p(xi1, x
i
2, . . . , x

i
d | Θ) =

d∏
j=1

p(xij | θj).

Now we just need to model each column of X as its own dataset:

X =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1
1 0 1 1

 → X1 =


1
0
0
0
1

 , X2 =


0
1
0
1
0

 , X3 =


0
0
1
0
1

 , X4 =


0
0
0
1
1

 .
A big assumption, but now you can fit Bernoulli for each variable.

We used a similar independence assumption in CPSC 340 for naive Bayes.
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Density Estimation and Fundamental Trade-off

“Product of independent” distributions (with d parameters):

Easily estimate each θc but can’t model many distributions.

General discrete distribution (with 2d parameters):

Hard to estimate 2d parameters but can model any distribution.

An unsupervised version of the fundamental trade-off:

Simple models often don’t fit the data well but don’t overfit much.
Complex models fit the data well but often overfit.

We’ll consider models that lie between these extremes:
1 Mixture models.
2 Markov models.
3 Graphical models.
4 Boltzmann machines.
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Outline

1 Density Estimation

2 Continuous Distributions
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Univariate Gaussian

Consider the case of a continuous variable x ∈ R:

X =


0.53
1.83
−2.26
0.86

 .
Even with 1 variable there are many possible distributions.

Most common is the Gaussian (or “normal”) distribution:

p(xi | µ, σ2) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
or xi ∼ N (µ, σ2),

for µ ∈ R and σ > 0.
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Univariate Gaussian

https://en.wikipedia.org/wiki/Gaussian_function

Mean parameter µ controls location of center of density.

Variance parameter σ2 controls how spread out density is.

https://en.wikipedia.org/wiki/Gaussian_function
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Univariate Gaussian

Why use the Gaussian distribution?

Data might actually follow Gaussian.
Good justification if true, but usually false.

Central limit theorem: mean estimators converge in distribution to a Gaussian.
Bad justification: doesn’t imply data distribution converges to Gaussian.

Distribution with maximum entropy that fits mean and variance of data (bonus).
“Makes the least assumptions” while matching first two moments of data.
But for complicated problems, just matching mean and variance isn’t enough.

Closed-form maximum likelihood estimate (MLE).
MLE for the mean is the mean of the data (“sample mean” or “empirical mean”).
MLE for the variance is the variance of the data (“sample variance”).
“Fast and simple”.
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Univariate Gaussian (MLE for Mean)

Gaussian likelihood for an example xi is

p(xi | µ, σ2) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
.

So the negative log-likelihood for n IID examples is

− log p(X | µ, σ2) = −
n∑
i=1

log p(xi | µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 + n log(σ)+const.

Setting derivative with respect to µ to 0 gives MLE of

µ̂ =
1

n

n∑
i=1

xi. (for any σ > 0),

so the MLE is the mean of the samples.
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Univariate Gaussian (MLE for Variance)

Gaussian likelihood for an example xi is

p(xi | µ, σ2) =
1

σ
√

2π
exp

(
−(xi − µ)2

2σ2

)
.

So the negative log-likelihood for n IID examples is

− log p(X | µ, σ2) = −
n∑
i=1

log p(xi | µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 + n log(σ)+const.

Plugging in µ̂ = 1
n

∑n
i=1 x

i and setting derivative with respect to σ to zero gives

σ2 =
1

n

n∑
i=1

(xi − µ̂)2, (variance of the samples)

unless all xi are equal (then NLL is not bounded below and MLE doesn’t exist).
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Alternatives to Univariate Gaussian
Why not the Gaussian distribution?

Negative log-likelihood is a quadratic function of µ,

− log p(X | µ, σ2) =
1

2σ2

n∑
i=1

(xi − µ)2 + n log(σ) + const.

so as with least squares the Gaussian is not robust to outliers.

This is a histogram of the xi values, and the red line is the estimated density.
We say Gaussian is “Light-tailed”: assumes most data is close to mean.



Density Estimation Continuous Distributions

Alternatives to Univariate Gaussian

Robust: Laplace distribution or student’s t-distribution

“Heavy-tailed”: has non-trivial probability that data is far from mean.
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Alternatives to Univariate Gaussian

Gaussian distribution is unimodal.

Laplace and student t are also unimodal so don’t fix this issue.

Next time we’ll discuss “mixture models” that address this.
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Multivariate Gaussian Distribution

The generalization to multiple variables is the multivariate normal/Gaussian,

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

We say that variables xi ∈ Rd follow a multivariate Gaussian distribution if:

Linear combination aTxi is a univariate Gaussian for any a ∈ Rd.

http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html
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Multivariate Gaussian Distribution

The probability density for the multivariate Gaussian is given by

p(xi|µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)TΣ−1(xi − µ)

)
, or xi ∼ N (µ,Σ),

where µ ∈ Rd, Σ ∈ Rd×d and Σ � 0, and |Σ| is the determinant.

Derived as an affine transformation of univariate standard normals (bonus).

Take zij ∼ N (0, 1) and replace with xi = Azi + µ (where Σ = AAT ).

If |Σ| = 0 we say the Gaussian is degenerate (bonus).

PDF does not integrate to 1 over all xi.
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Product of Independent Gaussians

If we have d variables, we could make each follow an independent Gaussian,

xij ∼ N (µj , σ
2
j ),

In this case the joint density over all d variables is

d∏
j=1

p(xij | µj , σ2
j ) ∝

d∏
j=1

exp

(
−

(xij − µj)2

2σ2
j

)

= exp

−1

2

d∑
j=1

1

σ2
j

(xij − µj)2

 (eaeb = ea+b)

= exp

(
−1

2
(xi − µ)TΣ−1(x− µ)

)
(matrix notation)

where µ = (µ1, µ2, . . . , µd) and Σ is a diagonal matrixwith diagonal elements σ2
j .

This is a special case of a multivariate Gaussian with a diagonal covariance Σ.
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Product of Independent Gaussians

The effect of a diagonal Σ on the multivariate Gaussian:

If Σ = αI the level curves are circles: 1 parameter.
If Σ = D (diagonal) then axis-aligned ellipses: d parameters.
If Σ is dense they do not need to be axis-aligned: d(d+ 1)/2 parameters.

(by symmetry, we only need upper-triangular part of Σ)

Diagonal Σ assumes features are independent, dense Σ models dependencies.
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Summary

Density estimation: unsupervised modelling of probability of feature vectors.

Categorical distribution for modeling discrete data.

Beta and Diricihlet priors as priors that give closed-form MAP (“Laplace
smoothing”).

Product of independent distributions is simple/crude density estimation method.

Gaussian distribution is a common distribution with many nice properties.

Closed-form MLE.
But unimodal and not robust.

Next time: going beyond Gaussians.
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Lagrangian Function for Optimization with Equality Constraints

Consider minimizing a differentiable f with linear equality constraints,

argmin
Aw=b

f(w).

The Lagrangian of this problem is defined by

L(w, v) = f(w) + vT (Aw − b),

for a vector v ∈ Rm (with A being m by d).

At a solution of the problem we must have

∇wL(w, v) = ∇f(w) +AT v = 0 (gradient is orthogonal to constraints)

∇vL(w, v) = Aw − b = 0 (constraints are satisfied)

So solution is stationary point of Lagrangian.
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Lagrangian Function for Optimization with Equality Constraints

Scans from Bertsekas discussing Lagrange multipliers (also see CPSC 406).
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Lagrangian Function for Optimization with Equality Constraints

We can use these optimality conditions,

∇wL(w, v) = ∇f(w) +AT v = 0 (gradient is orthogonal to constraints)

∇vL(w, v) = Aw − b = 0 (constraints are satisfied)

to solve some constrained optimization problems.

A typical approach might be:
1 Solve for w in the equation ∇wL(w, v) = 0 to get w = g(v) for some function g.
2 Plug this w = g(v) into the the equation ∇vL(w, v) = 0 to solve for v.
3 Use this v in g(v) to get the optimal w.

But note that these are necessary conditions (may need to check it’s a min).
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MAP for Univariate Gaussian Mean

Assume xi ∼ N (µ, σ2) and assume µ ∼ N (µ0, 1).

The MAP estimate of µ under these assumptions can be written as

µ̂ =
n

n+ σ2
x̄+

σ2

n+ σ2
µ0,

where x̄ is the sample mean, 1
n

∑n
i=1 x

i (which is the MLE).

The MAP estimate is a convex combination of the MLE and prior mean µ0.

Regularizer moves us in a straight line away from MLE towards µ0.
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Maximum Entropy and Gaussian

Consider trying to find the PDF p(x) that
1 Agrees with the sample mean and sample covariance of the data.
2 Maximizes entropy subject to these constraints,

max
p

{
−
∫ ∞
−∞

p(x) log p(x)dx

}
, subject to E[x] = µ, E[(x− µ)2] = σ2.

Solution is the Gaussian with mean µ and variance σ2.

Beyond fitting mean/variance, Gaussian makes fewest assumptions about the data.

This is proved using the convex conjugate (see duality lecture).

Convex conjugate of Gaussian negative log-likelihood is entropy.
Same result holds in higher dimensions for multivariate Gaussian.
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Degenerate Gaussians

If |Σ| = 0, we say the Gaussian is degenerate.

In this case the PDF only integrates to 1 along a subspace of the original space.

With d = 2 degnerate Gaussians only have non-zero probability along a line (or
just one point).
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Multivariate Gaussian from Univariate Gaussians

Consider a joint distribution that is the product univariate standard normals:

p(zi) =

d∏
j=1

1√
2π

exp

(
−1

2
(zij)

2

)

=
1

(2π)
d
2

exp

(
1

2
〈zi, zi〉

)
.

Now define xi = Azi + µ for some (non-singular) matrix A and vector µ.

The change of variables formula for multivariate probabilities is

p(xi) = p(zi)

∣∣∣∣∂zi∂xi

∣∣∣∣ .
Plug in zi = A−1(xi − µ) and ∂zi

∂xi
= A−1...
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Multivariate Gaussian from Univariate Gaussians

This gives

p(xi | µ,A) =
1

(2π)
d
2

exp

(
1

2
〈A−1(xi − µ), A−1(xiµ)〉

)
| det(A−1)|

=
1

(2π)
d
2 | det(A)|

exp

(
1

2
(xi − µ)A−>A−1(xi − µ)

)
.

Define Σ = AA> (so Σ−1 = A−>A−1 and det Σ = (detA)2) to get

p(xi | µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
(xi − µ)>Σ−1(xi − µ)

)
So multivariate Gaussian is an affine transformtation of independent Gaussians.
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