CPSC 540: Machine Learning Density Estimation

Mark Schmidt

University of British Columbia

Winter 2019

Supervised Learning vs. Structured Prediction

- In 340 we focused a lot on "classic" supervised learning:
 - Model $p(y \mid x)$ where y is a single discrete/continuous variable.
- In the next few classes we'll focus on density estimation:
 - Model p(x) where x is a vector or general object.
- Structured prediction is the logical combination of these:
 - Model $p(y \mid x)$ where y is a vector or general object.
 - Can be viewed as "conditional" density estimation.

3 Classes of Structured Prediction Methods

3 main approaches to structured prediction:

- **(** Generative models use $p(y \mid x) \propto p(y, x)$ as in naive Bayes.
 - Turns structured prediction into density estimation.
 - But we'll want to go beyond naive Bayes.
 - Examples: Gaussian discriminant analysis, mixtures and Markov models, VAEs.
- **2** Discriminative models directly fit $p(y \mid x)$ as in logistic regression.
 - View structured prediction as conditional density estimation.
 - $\bullet\,$ Lets you use complicated features x that make the task easier.
 - Examples: Conditional random fields, conditional RBMs, conditional neural fields.
- **③** Discriminant functions just try to map from x to y as in SVMs.
 - Now you don't even need to worry about calibrated probabilities.
 - Examples: Structured SVMs, fully-convolutional networks, RNNs.

Density Estimation

• The next topic we'll focus on is density estimation:

- What is probability of $[1 \ 0 \ 1 \ 1]$?
- Want to estimate probability of feature vectors x^i .
- For the training data this is easy:
 - Set $p(x^i)$ to "number of times x^i is in the training data" divided by n.
- We're interested in the probability of test data,
 - What is probability of seeing feature vector \tilde{x}^i for a new example *i*.

Density Estimation Applications

• Density estimation could be called a "master problem" in machine learning.

- Solving this problem lets you solve a lot of other problems.
- $\bullet~\mbox{If you have } p(x^i)$ then:
 - Outliers could be cases where $p(x^i)$ is small.
 - Missing data in x^i can be "filled in" based on $p(x^i)$.
 - Vector quantization can be achieved by assigning shorter code to high $p(x^i)$ values.
 - Association rules can be computed from conditionals $p(x_j^i \mid x_k^i)$.
- We can also do density estimation on (x^i,y^i) jointly:
 - Supervised learning can be done by conditioning to give $p(y^i \mid x^i)$.
 - Feature relevance can be analyzed by looking at $p(x^i \mid y^i)$.

Unsupervised Learning

- Density estimation is an unsupervised learning method.
 - We only have x^i values, but no explicit target labels.
 - You want to do "something" with them.
- Some unsupervised learning tasks from CPSC 340 (depending on semester):
 - Clustering: what types of x^i are there?
 - Association rules: which x_j and x_k occur together?
 - Outlier detection: is this a "normal" x^i ?
 - Latent-factors: what "parts" are x^i made from?
 - Data visualization: what do the high-dimensional x^i look like?
 - Ranking: which are the most important x^i ?

• You can probably address all these if you can do density estimation.

Bernoulli Distribution on Binary Variables

• Let's start with the simplest case: $x^i \in \{0,1\}$ (e.g., coin flips),

$$X = \begin{bmatrix} 1\\0\\0\\0\\1\end{bmatrix}$$

.

• For IID data the only choice is the Bernoulli distribution:

$$p(x^i = 1 \mid \theta) = \theta, \quad p(x^i = 0 \mid \theta) = 1 - \theta.$$

• We can write both cases

$$p(x^i \mid \theta) = \theta^{\mathcal{I}[x^i=1]} (1-\theta)^{\mathcal{I}[x^i=0]}, \text{ where } \mathcal{I}[y] = \begin{cases} 1 & \text{if } y \text{ is true} \\ 0 & \text{if } y \text{ is false} \end{cases}.$$

Maximum Likelihood with Bernoulli Distribution

• MLE for Bernoulli likelihood is

$$\begin{split} \underset{0 \leq \theta \leq 1}{\operatorname{argmax}} p(X \mid \theta) &= \underset{0 \leq \theta \leq 1}{\operatorname{argmax}} \prod_{i=1}^{n} p(x^{i} \mid \theta) \\ &= \underset{0 \leq \theta \leq 1}{\operatorname{argmax}} \prod_{i=1}^{n} \theta^{\mathcal{I}[x^{i}=1]} (1-\theta)^{\mathcal{I}[x^{i}=0]} \\ &= \underset{0 \leq \theta \leq 1}{\operatorname{argmax}} \underbrace{\frac{\theta^{1} \theta^{1} \cdots \theta^{1}}{\operatorname{number of } x_{i} = 1}}_{\substack{number of } x_{i} = 1} \underbrace{\frac{(1-\theta)(1-\theta) \cdots (1-\theta)}{\operatorname{number of } x_{i} = 0}}_{\substack{number of } x_{i} = 0} \end{split}$$

where n_1 is count of number of 1 values and n_0 is the number of 0 values.

- If you equate the derivative of the log-likelihood with zero, you get $\theta = \frac{n_1}{n_1 + n_0}$.
- So if you toss a coin 50 times and it lands heads 24 times, your MLE is 24/50.

Multinomial Distribution on Categorical Variables

• Consider the multi-category case: $x^i \in \{1, 2, 3, \dots, k\}$ (e.g., rolling di),

$$X = \begin{bmatrix} 2\\1\\1\\3\\1\\2 \end{bmatrix}$$

.

• The categorical distribution is

$$p(x^i = c \mid \theta_1, \theta_2, \dots, \theta_k) = \theta_c,$$

where $\sum_{c=1}^{k} \theta_c = 1$.

• We can write this for a generic x as

$$p(x^i \mid \theta_1, \theta_2, \dots, \theta_k) = \prod_{c=1}^k \theta_c^{\mathcal{I}[x^i=c]}.$$

Multinomial Distribution on Categorical Variables

• Using Lagrange multipliers (bonus) to handle constraints, the MLE is

$$heta_c = rac{n_c}{\sum_{c'} n_{c'}}.$$
 ("fraction of times you rolled a 4")

- If we never see category 4 in the data, should we assume θ₄ = 0?
 If we assume θ₄ = 0 and we have a 4 in test set, our test set likelihood is 0.
- To leave room for this possibility we often use "Laplace smoothing",

$$\theta_c = \frac{n_c + 1}{\sum_{c'} (n_{c'} + 1)}.$$

• This is like adding a "fake" example to the training set for each class.

MAP Estimation with Bernoulli Distributions

• In the binary case, a generalization of Laplace smoothing is

$$\theta = \frac{n_1 + \alpha - 1}{(n_1 + \alpha - 1) + (n_0 + \beta - 1)},$$

- We get the MLE when $\alpha = \beta = 1$, and Laplace smoothing with $\alpha = \beta = 2$.
- This is a MAP estimate under a beta prior,

$$p(\theta \mid \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1},$$

where the beta function B makes the probability integrate to one.

We want
$$\int_{\theta} p(\theta \mid \alpha, \beta) d\theta = 1$$
, so define $B(\alpha, \beta) = \int_{\theta} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta$.

• Note that $B(\alpha, \beta)$ is constant in terms of θ , it doesn't affect MAP estimate.

MAP Estimation with Categorical Distributions

• In the categorical case, a generalization of Laplace smoothing is

$$\theta_c = \frac{n_c + \alpha_c - 1}{\sum_{c'=1}^k (n_{c'} + \alpha_{c'} - 1)},$$

which is a MAP estimate under a Dirichlet prior,

$$p(\theta_1, \theta_2, \dots, \theta_k \mid \alpha_1, \alpha_2, \dots, \alpha_k) = \frac{1}{B(\alpha)} \prod_{c=1}^k \theta_c^{\alpha_c - 1},$$

where $B(\alpha)$ makes the multivariate distribution integrate to 1 over θ ,

$$B(\alpha) = \int_{\theta_1} \int_{\theta_2} \cdots \int_{\theta_{k-1}} \int_{\theta_k} \prod_{c=1}^k \left[\theta_c^{\alpha_c - 1} \right] d\theta_k d\theta_{k-1} \cdots d\theta_2 d\theta_1.$$

• Because of MAP-regularization connection, Laplace smoothing is regularization.

General Discrete Distribution

• Now consider the case where $x^i \in \{0,1\}^d$ (e..g, words in e-mails):

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

- Now there are 2^d possible values of vector x^i .
 - Can't afford to even store a θ for each possible vector $x^i.$
 - With n training examples we see at most n unique x^i values.
 - But unless we have a small number of repeated x^i values, we'll hopelessly overfit.
- With finite dataset, we'll need to make assumptions...

Product of Independent Distributions

• A common assumption is that the variables are independent:

$$p(x_1^i, x_2^i, \dots, x_d^i \mid \Theta) = \prod_{j=1}^d p(x_j^i \mid \theta_j).$$

• Now we just need to model each column of X as its own dataset:

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \rightarrow X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad X_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• A big assumption, but now you can fit Bernoulli for each variable.

• We used a similar independence assumption in CPSC 340 for naive Bayes.

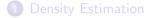
Density Estimation and Fundamental Trade-off

- "Product of independent" distributions (with *d* parameters):
 - Easily estimate each θ_c but can't model many distributions.
- General discrete distribution (with 2^d parameters):
 - Hard to estimate 2^d parameters but can model any distribution.
- An unsupervised version of the fundamental trade-off:
 - Simple models often don't fit the data well but don't overfit much.
 - Complex models fit the data well but often overfit.
- We'll consider models that lie between these extremes:
 - Mixture models.
 - 2 Markov models.
 - Graphical models.
 - Boltzmann machines.

Density Estimation

Continuous Distributions

Outline



2 Continuous Distributions

Univariate Gaussian

• Consider the case of a continuous variable $x \in \mathbb{R}$:

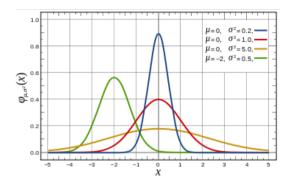
$$X = \begin{bmatrix} 0.53\\ 1.83\\ -2.26\\ 0.86 \end{bmatrix}.$$

- Even with 1 variable there are many possible distributions.
- Most common is the Gaussian (or "normal") distribution:

$$p(x^i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^i - \mu)^2}{2\sigma^2}\right) \quad \text{ or } \quad x^i \sim \mathcal{N}(\mu, \sigma^2),$$

for $\mu \in R$ and $\sigma > 0$.

Univariate Gaussian



https://en.wikipedia.org/wiki/Gaussian_function

- Mean parameter μ controls location of center of density.
- Variance parameter σ^2 controls how spread out density is.

Density Estimation

Univariate Gaussian

- Why use the Gaussian distribution?
 - Data might actually follow Gaussian.
 - Good justification if true, but usually false.
 - Central limit theorem: mean estimators converge in distribution to a Gaussian.
 - Bad justification: doesn't imply data distribution converges to Gaussian.
 - Distribution with maximum entropy that fits mean and variance of data (bonus).
 - "Makes the least assumptions" while matching first two moments of data.
 - But for complicated problems, just matching mean and variance isn't enough.
 - Closed-form maximum likelihood estimate (MLE).
 - MLE for the mean is the mean of the data ("sample mean" or "empirical mean").
 - MLE for the variance is the variance of the data ("sample variance").
 - "Fast and simple".

Univariate Gaussian (MLE for Mean)

 $\bullet\,$ Gaussian likelihood for an example x^i is

$$p(x^i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^i - \mu)^2}{2\sigma^2}\right).$$

 $\bullet\,$ So the negative log-likelihood for n IID examples is

$$-\log p(X \mid \mu, \sigma^2) = -\sum_{i=1}^n \log p(x^i \mid \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^n (x^i - \mu)^2 + n\log(\sigma) + \text{const.}$$

 $\bullet\,$ Setting derivative with respect to μ to 0 gives MLE of

$$\hat{\mu} = rac{1}{n}\sum_{i=1}^n x^i.$$
 (for any $\sigma>0$),

so the MLE is the mean of the samples.

Univariate Gaussian (MLE for Variance)

 $\bullet\,$ Gaussian likelihood for an example x^i is

$$p(x^i \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^i - \mu)^2}{2\sigma^2}\right).$$

 \bullet So the negative log-likelihood for n IID examples is

$$-\log p(X \mid \mu, \sigma^2) = -\sum_{i=1}^n \log p(x^i \mid \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^n (x^i - \mu)^2 + n\log(\sigma) + \text{const.}$$

• Plugging in $\hat{\mu} = \frac{1}{n}\sum_{i=1}^n x^i$ and setting derivative with respect to σ to zero gives

$$\sigma^2 = rac{1}{n} \sum_{i=1}^n (x^i - \hat{\mu})^2$$
, (variance of the samples)

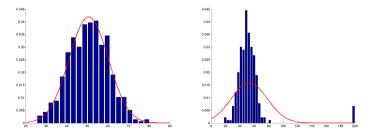
unless all x^i are equal (then NLL is not bounded below and MLE doesn't exist).

Alternatives to Univariate Gaussian

- Why not the Gaussian distribution?
 - $\bullet\,$ Negative log-likelihood is a quadratic function of $\mu,$

$$-\log p(X \mid \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^n (x^i - \mu)^2 + n\log(\sigma) + \text{const.}$$

so as with least squares the Gaussian is not robust to outliers.



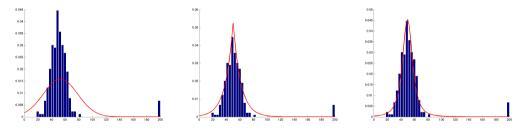
This is a histogram of the xⁱ values, and the red line is the estimated density.
 We say Gaussian is "Light-tailed": assumes most data is close to mean.

Density Estimation

Continuous Distributions

Alternatives to Univariate Gaussian

• Robust: Laplace distribution or student's t-distribution



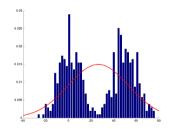
• "Heavy-tailed": has non-trivial probability that data is far from mean.

Density Estimation

Continuous Distributions

Alternatives to Univariate Gaussian

• Gaussian distribution is unimodal.

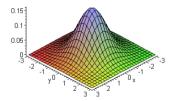


- Laplace and student t are also unimodal so don't fix this issue.
 - Next time we'll discuss "mixture models" that address this.

Multivariate Gaussian Distribution

• The generalization to multiple variables is the multivariate normal/Gaussian,

Bivariate Normal



http://personal.kenyon.edu/hartlaub/MellonProject/Bivariate2.html

We say that variables xⁱ ∈ ℝ^d follow a multivariate Gaussian distribution if:
 Linear combination a^Txⁱ is a univariate Gaussian for any a ∈ ℝ^d.

Multivariate Gaussian Distribution

• The probability density for the multivariate Gaussian is given by

$$p(x^{i}|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i}-\mu)^{T} \Sigma^{-1}(x^{i}-\mu)\right), \quad \text{ or } x^{i} \sim \mathcal{N}(\mu, \Sigma),$$

where $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma \succ 0$, and $|\Sigma|$ is the determinant.

- Derived as an affine transformation of univariate standard normals (bonus).
 Take zⁱ_i ~ N(0,1) and replace with xⁱ = Azⁱ + μ (where Σ = AA^T).
- If |∑| = 0 we say the Gaussian is degenerate (bonus).
 PDF does not integrate to 1 over all xⁱ.

Product of Independent Gaussians

• If we have d variables, we could make each follow an independent Gaussian,

 $x_j^i \sim \mathcal{N}(\mu_j, \sigma_j^2),$

 $\bullet\,$ In this case the joint density over all d variables is

$$\begin{split} \prod_{j=1}^{d} p(x_j^i \mid \mu_j, \sigma_j^2) &\propto \prod_{j=1}^{d} \exp\left(-\frac{(x_j^i - \mu_j)^2}{2\sigma_j^2}\right) \\ &= \exp\left(-\frac{1}{2}\sum_{j=1}^{d} \frac{1}{\sigma_j^2} (x_j^i - \mu_j)^2\right) \qquad (e^a e^b = e^{a+b}) \\ &= \exp\left(-\frac{1}{2} (x^i - \mu)^T \Sigma^{-1} (x - \mu)\right) \qquad \text{(matrix notation)} \end{split}$$

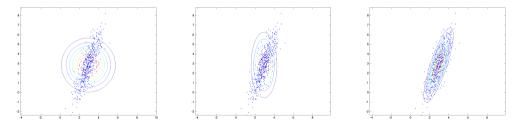
where $\mu = (\mu_1, \mu_2, \dots, \mu_d)$ and Σ is a diagonal matrix with diagonal elements σ_j^2 . • This is a special case of a multivariate Gaussian with a diagonal covariance Σ .

Product of Independent Gaussians

• The effect of a diagonal Σ on the multivariate Gaussian:

- If $\Sigma = \alpha I$ the level curves are circles: 1 parameter.
- If $\Sigma = D$ (diagonal) then axis-aligned ellipses: d parameters.
- If Σ is dense they do not need to be axis-aligned: d(d+1)/2 parameters.

(by symmetry, we only need upper-triangular part of Σ)



• Diagonal Σ assumes features are independent, dense Σ models dependencies.

Summary

- Density estimation: unsupervised modelling of probability of feature vectors.
- Categorical distribution for modeling discrete data.
 - Beta and Diricihlet priors as priors that give closed-form MAP ("Laplace smoothing").
- Product of independent distributions is simple/crude density estimation method.
- Gaussian distribution is a common distribution with many nice properties.
 - Closed-form MLE.
 - But unimodal and not robust.
- Next time: going beyond Gaussians.

Lagrangian Function for Optimization with Equality Constraints

• Consider minimizing a differentiable f with linear equality constraints,

 $\underset{Aw=b}{\operatorname{argmin}} f(w).$

• The Lagrangian of this problem is defined by

$$L(w,v) = f(w) + v^T (Aw - b),$$

for a vector $v \in \mathbb{R}^m$ (with A being m by d).

• At a solution of the problem we must have

 $\nabla_w L(w,v) = \nabla f(w) + A^T v = 0 \quad \text{(gradient is orthogonal to constraints)}$ $\nabla_v L(w,v) = Aw - b = 0 \quad \text{(constraints are satisfied)}$

• So solution is stationary point of Lagrangian.

Lagrangian Function for Optimization with Equality Constraints

• Scans from Bertsekas discussing Lagrange multipliers (also see CPSC 406).

3.1 NECESSARY CONDITIONS FOR EQUALITY CONSTRAINTS

In this section we consider problems with equality constraints of the form

minimize
$$f(x)$$

subject to $h_i(x) = 0$, $i = 1, ..., m$. (ECP)

We assume that $f: \Re \to \Re, h: \Re \to \Im, i = 1, ..., m, are continuously differentiable functions. All the necessary and the sufficient conditions of this chapter relating to a laced minimum can also be shown to hold if f and h, are defined and are continuously differentiable utilin just an open set containing the local minimum. The proofs are essentially identical to those given here.$

For notational convenience, we introduce the constraint function h: $\Re^n \mapsto \Re^m$, where

 $h = (h_1, ..., h_m).$

We can then write the constraints in the more compact form

$$(x) = 0.$$
 (3.1)

Our basic Lagrange multiplier theorem states that for a given local minimum x^{*}, there exist scalars $\lambda_1, \ldots, \lambda_m$, called Lagrange multipliers, such that

$$7f(x^*) + \sum_{i=1}^{m} \lambda_i \nabla h_i(x^*) = 0.$$
 (

There are two ways to interpret this equation:

- (a) The cost gradient ∇f(x*) belongs to the subspace spanned by the constraint gradients at x*. The example of Fig. 3.1.1 illustrates this interpretation.
- (b) The cost gradient ∇f(x*) is orthogonal to the subspace of first order feasible variations

$$V(x^*) = {\Delta x | \nabla h_i(x^*)' \Delta x = 0, i = 1, ..., m}.$$

This is the subspace of variations Δx for which the vector $x = x^* + \Delta x$ satisfies the constraint h(x) = 0 up to first order. Thus, according to the Lagrange multiplier condition of Eq. (3.2), at the local minimum x^* , the first order cost variation $\nabla f(x^*)'\Delta x$ is zero for all variations

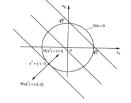


Figure 3.1.1. Illustration of the Lagrange multiplier condition (3.1) for the problem

minimize $x_1 + x_2$

subject to $x_1^2 + x_2^2 = 2$.

At the local minimum $x^* = (-1, -1)$, the cost gradient $\nabla f(x^*)$ is normal to the constraint surface and is therefore, collinear with the constraint gradient $\nabla h(x^*) = (-2, -2)$. The Lagrange multiplier is $\lambda = 1/2$.

 Δx in this subspace. This statement is analogous to the "zero gradient condition" $\nabla f(x^*) = 0$ of unconstrained optimization.

Here is a formal statement of the main Lagrange multiplier theorem.

Proposition 3.1.1: (Lagrange Multiplier Theorem – Necessary Conditions) Let x^* be a local minimum of f subject to h(x) = 0, and assume that the constraint gradients $\nabla h_1(x^*), \dots, \nabla \nabla h_m(x^*)$ are linearly independent. Then there exists a unique vector $\lambda^* = (\lambda^*_1, \dots, \lambda^*_m)$ called a Lagrange multipler vector, such that

$$\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) = 0.$$
 (3.3)

If in addition f and h are twice continuously differentiable, we have

Lagrangian Function for Optimization with Equality Constraints

• We can use these optimality conditions,

 $\nabla_w L(w,v) = \nabla f(w) + A^T v = 0 \quad \text{(gradient is orthogonal to constraints)}$ $\nabla_v L(w,v) = Aw - b = 0 \quad \text{(constraints are satisfied)}$

to solve some constrained optimization problems.

- A typical approach might be:
 - **(**) Solve for w in the equation $\nabla_w L(w, v) = 0$ to get w = g(v) for some function g.
 - 2 Plug this w = g(v) into the the equation $\nabla_v L(w, v) = 0$ to solve for v.
 - **③** Use this v in g(v) to get the optimal w.

• But note that these are necessary conditions (may need to check it's a min).

MAP for Univariate Gaussian Mean

- Assume $x^i \sim \mathcal{N}(\mu, \sigma^2)$ and assume $\mu \sim \mathcal{N}(\mu_0, 1)$.
- $\bullet\,$ The MAP estimate of μ under these assumptions can be written as

$$\hat{\mu} = \frac{n}{n+\sigma^2}\bar{x} + \frac{\sigma^2}{n+\sigma^2}\mu_0,$$

where \bar{x} is the sample mean, $\frac{1}{n} \sum_{i=1}^{n} x^{i}$ (which is the MLE).

- The MAP estimate is a convex combination of the MLE and prior mean μ_0 .
 - Regularizer moves us in a straight line away from MLE towards $\mu_0.$

Maximum Entropy and Gaussian

- $\bullet\,$ Consider trying to find the PDF p(x) that
 - **(**) Agrees with the sample mean and sample covariance of the data.
 - Maximizes entropy subject to these constraints,

$$\max_p \left\{ -\int_{-\infty}^{\infty} p(x) \log p(x) dx \right\}, \quad \text{subject to } \mathbb{E}[x] = \mu, \ \mathbb{E}[(x-\mu)^2] = \sigma^2.$$

- Solution is the Gaussian with mean μ and variance σ^2 .
 - Beyond fitting mean/variance, Gaussian makes fewest assumptions about the data.
- This is proved using the convex conjugate (see duality lecture).
 - Convex conjugate of Gaussian negative log-likelihood is entropy.
 - Same result holds in higher dimensions for multivariate Gaussian.

Degenerate Gaussians

- If $|\Sigma| = 0$, we say the Gaussian is degenerate.
- In this case the PDF only integrates to 1 along a subspace of the original space.
- With d = 2 degnerate Gaussians only have non-zero probability along a line (or just one point).

Multivariate Gaussian from Univariate Gaussians

• Consider a joint distribution that is the product univariate standard normals:

$$p(z^i) = \prod_{j=1}^d \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(z_j^i)^2\right)$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(\frac{1}{2}\langle z^i, z^i\rangle\right).$$

- Now define $x^i = Az^i + \mu$ for some (non-singular) matrix A and vector μ .
- The change of variables formula for multivariate probabilities is

$$p(x^i) = p(z^i) \left| \frac{\partial z^i}{\partial x^i} \right|.$$

• Plug in
$$z^i = A^{-1}(x^i - \mu)$$
 and $\frac{\partial z^i}{\partial x^i} = A^{-1}...$

Multivariate Gaussian from Univariate Gaussians

• This gives

$$p(x^{i} \mid \mu, A) = \frac{1}{(2\pi)^{\frac{d}{2}}} \exp\left(\frac{1}{2} \langle A^{-1}(x^{i} - \mu), A^{-1}(x^{i}\mu) \rangle\right) |\det(A^{-1})|$$
$$= \frac{1}{(2\pi)^{\frac{d}{2}} |\det(A)|} \exp\left(\frac{1}{2} (x^{i} - \mu)A^{-\top}A^{-1}(x^{i} - \mu)\right).$$

• Define $\Sigma = AA^{\top}$ (so $\Sigma^{-1} = A^{-\top}A^{-1}$ and $\det \Sigma = (\det A)^2$) to get

$$p(x^{i} \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x^{i} - \mu)^{\top} \Sigma^{-1}(x^{i} - \mu)\right)$$

• So multivariate Gaussian is an affine transformtation of independent Gaussians.