
Stochastic Average Gradient Structured Prediction

CPSC 540: Machine Learning
Stochastic Average Gradient

Mark Schmidt

University of British Columbia

Winter 2019

Stochastic Average Gradient Structured Prediction

Last Time: Better Methods for Smooth Objectives and Finite Datasets

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

hybridlo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

time

Stochastic methods:
O(1/ε) iterations but requires 1 gradient per iterations.

Deterministic methods:
O(log(1/ε)) iterations but requires n gradients per iteration.

Growing-batch (“batching”) or “switching” methods:
O(log(1/ε)) iterations, requires fewer than n gradients in early iterations.

Stochastic Average Gradient Structured Prediction

Stochastic Average Gradient

Growing |Bk| eventually requires O(n) iteration cost.

Can we have 1 gradient per iteration and only O(log(1/ε)) iterations?
YES! First method was the stochastic average gradient (SAG) algorithm in 2012.

To motivate SAG, let’s view gradient descent as performing the iteration

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each step we set vki = ∇fi(wk) for all i.

SAG method: only set vkik = ∇fik(wk) for a randomly-chosen ik.

All other vki are kept at their previous value.

Stochastic Average Gradient Structured Prediction

Stochastic Average Gradient

We can think of SAG as having a memory:
v1
v2
...
vn

 ,
where vki is the gradient ∇fi(wk) from the last k where i was selected.

On each iteration we:

Randomly choose one of the vi and update it to the current gradient.
We take a step in the direction of the average of these vi.

Stochastic Average Gradient Structured Prediction

Stochastic Average Gradient
Basic SAG algorithm (maintains g =

∑n
i=1 vi):

Set g = 0 and gradient approximation vi = 0 for i = 1, 2, . . . , n.
while(1)

Sample i from {1, 2, . . . , n}.
Compute ∇fi(w).
g = g − vi +∇fi(w).
vi = ∇fi(w).
w = w − α

n
g.

Iteration cost is O(d), and “lazy updates” allow O(z) with sparse gradients.

For linear models where fi(w) = h(w>xi), it only requires O(n) memory:

∇fi(w) = h′(w>xi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

Least squares is h(z) = 1
2 (z − yi)2, logistic is h(z) = log(1 + exp(−yiz)), etc.

For neural networks, would need to store all activations (typically impractical).

Stochastic Average Gradient Structured Prediction

Stochastic Average Gradient

The SAG iteration is

wk+1 = wk − αk

n

n∑
i=1

vki ,

where on each iteration we set vkik = ∇fik(wk) for a randomly-chosen ik.

Unlike batching, we use a gradient for every example.

But the gradients might out of date.

Stochastic variant of earlier increment aggregated gradient (IAG).

Selects ik cyclically, which destroys performance.

Key proof idea: vki → ∇fi(w∗) at the same rate that wk → w∗:

So the variance ‖ek‖2 (“bad term”) converges linearly to 0.

Stochastic Average Gradient Structured Prediction

Convergence Rate of SAG

If each ∇fi is L−continuous and f is strongly-convex, with αk = 1/16L SAG has

E[f(wk)− f(w∗)] 6 O

((
1−min

{
µ

16L
,
1

8n

})k
)

Number of ∇fi evaluations to reach accuracy ε:

Stochastic: O(Lµ (1/ε)). (Best when n is enormous)

Gradient: O(nLµ log(1/ε)).

Nesterov: O(n
√

L
µ log(1/ε)). (Best when n is small and L/µ is big)

SAG: O(max{n, Lµ } log(1/ε)).

But note that the L values are again different between algorithms.

Stochastic Average Gradient Structured Prediction

Comparing Deterministic and Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SGASG

IAG

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

Averaging makes SG work better, deterministic methods eventually catch up.

Stochastic Average Gradient Structured Prediction

SAG Compared to Deterministic/Stochastic Methods

Two benchmark L2-regularized logistic regression datasets:

0 10 20 30 40 50

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFGS

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Starts like stochastic but linear rate, SAG step-size set to L̂ approximation.

Stochastic Average Gradient Structured Prediction

Discussion of SAG and Beyond

Bonus slides discuss practical issues related to SAG:

Setting step-size with an approximation to L.
Deciding when to stop.
Lipschitz sampling of training examples.

Improves rate for SAG, only changes constants for SG.

There are now a bunch of stochastic algorithm with fast rates:

SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
Analysis in non-convex settings, including new algorithms for PCA.
You can apparently get medals for research:
https://ismp2018.sciencesconf.org/data/pages/_SJP8196.jpg

Most notable variation is SVRG which gets rid of the memory...

https://ismp2018.sciencesconf.org/data/pages/_SJP8196.jpg

Stochastic Average Gradient Structured Prediction

Stochastic Variance-Reduced Gradient (SVRG)
SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

Start with w0

for s = 0, 1, 2 . . .
∇f(ws) = 1

n

∑n
i=1∇fi(ws)

w0 = ws
for k = 0, 2, . . .m− 1

Randomly pick ik ∈ {1, 2, . . . , n}
wk+1 = wk − αk(∇fik (w

k)−∇fik (ws) +∇f(ws)︸ ︷︷ ︸
mean zero

).

ws+1 = wm.

Convergence properties similar to SAG (for suitable m).

Unbiased: E[∇fik(ws)] = ∇f(ws) (special case of “control variate”).

Theoretically m depends on L, µ, and n (some analyses randomize it).
In practice m = n seems to work well.

O(d) storage at average cost of 3 gradients per iteration.

Stochastic Average Gradient Structured Prediction

Stochastic Gradient for Stochastic Objectives

Our analysis of stochastic gradient only used two assumptions on ∇fi(wk):
1 Unbiased approximation of subgradient: E[∇fi(wk)] = ∇f(wk).
2 Variance is bounded: E[‖∇fi(wk)‖2] ≤ σ2.

Unlike SAG/SVRG, “classic” SGD does not need to assume dataset is finite.

We can apply stochastic gradient to minimize objectives written as expectations,

argmin
w∈Rd

E[fi(w)],

as long as we can sample unbiased estimates of the gradient.

For example, drop out adds randomization to each example.

Most important example is the test loss....

Stochastic Average Gradient Structured Prediction

Stochastic Gradient Descent on the Test Error

Consider a scenario where we have infinite number of IID samples:

We can optimize the test loss,

argmin
w∈Rd

E[fi(w)],

by applying stochastic gradient on a new IID sample on each iteration.
In this setting, we are directly optimizing test loss and cannot overfit.
We require O(1/ε) iterations/samples to reach test loss accuracy of ε (under PL).

Though keep in mind that the test loss may not be the test error.

Linear classifiers approximate 0-1 loss (test error) with logistic/hinge loss (test loss).

Stochastic Average Gradient Structured Prediction

Infinite-Data Optimization (“Trade-Offs of Large-Scale Learning”)

Consider number of training examples so large we can’t go through all examples.

Stochastic gradient gets within ε of optimal test loss after t = O(1/ε) iterations.

How does this compare to sampling t examples and optimizing on these?

What we usually do: “minimize regularized training loss”.

How many samples t before training objective is within ε of test objective?

Minimum possible assumptions: t = O(1/ε2).
Realistic assumptions: t = O(1/ε).
Strong assumptions: t = O(log(1/ε)).

“Realistic”: n iterations of stochastic gradient on n examples is optimal!?!

Almost always worse empirically than methods which do multiple passes.
Constants matter for test data (better optimization improves constants).

Stochastic Average Gradient Structured Prediction

Strong Growth Condition

Consider the following assumption (“strong growth condition”),

E[‖∇fi(x)‖2] ≤ σ‖∇f(x)‖2.

With this assumption, stochastic gradient converges faster (constant step-size):
O(1/t) rate for non-convex functions, instead of O(1/

√
t.

O(ρt) rate for PL functions, instead of O(1/t).
Unlike usual stochastic setting, Nesterov acceleration works.

Ridiculous assumption: ∇f(w) = 0 implies ∇fi(w) = 0 (w∗ minimizes all fi).
You fit every data-point exactly (data is “interpolated”).
Makes variance go to 0 as you approach w∗ (no need for SAG/SVRG).

Not-ridiculous assumption for over-parameterized models?
Universal kernels or deep neural networks where you can fit every data point.
Why constant step-size SGD + momentum is tough to beat for deep learning?

Stochastic Average Gradient Structured Prediction

End of Part 1: Key Ideas
Typical ML problems are written as optimization problem

argmin
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w
>xi) + λr(w).

Convex optimization packages:
For the special case when F is convex and d is small.
Many objectives can be re-written as linear or quadratic programs.

Gradient descent:
Applies when F is differentiable, yields iteration cost that is linear in d.
Needs O(1/ε) iterations in general, only O(log(1/ε)) for PL functions.
Faster versions like Nesterov’s and Newton-like methods exist.

Proximal gradient:
Applies when fi is differentiable and r is “simple” (like L1-regularization).
Similar convergence properties to gradient descent, even for non-smooth r.
Special case is projected gradient, which allows “simple” constraints.

Stochastic Average Gradient Structured Prediction

End of Part 1: Key Ideas
Typical ML problems are written as optimization problem

argmin
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w
>xi) + λr(w).

Coordinate optimization:
Faster than gradient descent if iterations are d-times cheaper.
Allows non-smooth r if it’s separable.

Stochastic subgradient:
Iteration cost is n-times cheaper than [sub]gradient descent, and allows n =∞.
For non-smooth problems, convergence rate is same as subgradient method.
For smooth problems, number of iterations is much higher than gradient descent.

SAG and SVRG:
Special case when F is smooth.
Same low cost as stochastic gradient methods.
But similar convergence rate to gradient descent.

Stochastic Average Gradient Structured Prediction

Even Bigger Problems?
What about datasets that don’t fit on one machine?

We need to consider parallel and distributed optimization.

New issues:
Synchronization: we may not want to wait for the slowest machine.
Communication: it’s expensive to transfer data and parameters across machines.
Failures: in huge-scale settings, machine failure probability is non-trivial.
Batch size: for SGD is it better to get more parallelism or more iterations?

“Embarassingly” parallel solution:
Split data across machines, each machine computes gradient of their subset.
Papers present more fancy methods, but always try this first (“linear speedup”).

Fancier methods:
Asyncronous stochastic subgradient (works fine if you make the step-size smaller).
Parallel coordinate optimization (works fine if you make the step-size smaller).
Decentralized gradient (needs a smaller step-size and an “EXTRA” trick).

Stochastic Average Gradient Structured Prediction

Skipped Topics: Kernel Methods and Dual Methods

In previous years, I’ve covered the following topics:
1 Kernel methods:

Allows using some exponential- or infinite-sized feature sets.
Allows defining a “similarity” between training examples rather than features.
Mercer’s theorem and how to determine if a kernel is valid.
Representer theorem and models allowing kernel trick.
Multiple kernel learning and connection to structured sparsity.
Large-scale kernel approximations that avoid the high cost.

2 Dual methods:

Lagrangian function, dual function, and convex conjugate.
Fenchel dual for deriving duals of “loss plus regularizer” problems.
Connection between stochastic subgradient method and dual coordinate ascent.
Turning non-smooth problems into equivalent smooth problems.
Line-search for stochastic subgradient methods.

If you’re interested, I put the slides on these topics here:
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Stochastic Average Gradient Structured Prediction

Outline

1 Stochastic Average Gradient

2 Structured Prediction

Stochastic Average Gradient Structured Prediction

Motivation: Structured Prediction

Classic supervised learning focuses on predicting single discrete/continuous label:

Structured prediction allows general objects as labels:

Stochastic Average Gradient Structured Prediction

“Classic” ML for Structured Prediction

Two ways to formulate as “classic” machine learning:
1 Treat each word as a different class label.

Problem: there are too many possible words.
You will never recognize new words.

2 Predict each letter individually:

Works if you are really good at predicting individual letters.
But some tasks don’t have a natural decomposition.
Ignores dependencies between letters.

Stochastic Average Gradient Structured Prediction

Motivation: Structured Prediction

What letter is this?

What are these letters?

Predict each letter using “classic” ML and features from neighbouring images?
Can be good or bad depending on goal:

Good if you want to predict individual letters.
Bad if goal is to predict entire word.

Stochastic Average Gradient Structured Prediction

Examples of Structured Prediction

Stochastic Average Gradient Structured Prediction

Examples of Structured Prediction

Stochastic Average Gradient Structured Prediction

Examples of Structured Prediction

Stochastic Average Gradient Structured Prediction

Does the brain do structured prediction?

Gestalt effect: “whole is other than the sum of the parts”.

Stochastic Average Gradient Structured Prediction

Summary

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

SVRG removes the memory requirement of SAG.

Infinite datasets can be handle with stochastic subgradient methods.

This is theoretically “optimal” in some settings, not optimal in practice.

Strong growth condition might be the right way to view neural network objectives.

Structured prediction: supervised learning with complicated “labels”.

Next time: everyone’s favourite distributions...

Stochastic Average Gradient Structured Prediction

SAG Practical Implementation Issues

Implementation tricks:
Improve performance at start using 1

mg instead of 1
ng.

m is the number of examples visited.

Common to use αk = 1/L and use adaptive L.

Start with L̂ = 1 and double it whenever we don’t satisfiy

fik

(
wk − 1

L̂
∇fik (w

k)

)
≤ fik (w

k)− 1

2L̂
‖∇fik (w

k)‖2,

and ‖∇fik (w
k)‖ is non-trivial. Costs O(1) for linear models in terms of n and d.

Can use ‖wk+1 − wk‖/α = 1
n‖g‖ ≈ ‖∇f(wk)‖ to decide when to stop.

Lipschitz sampling of examples improves convergence rate:

As with coordinate descent, sample the ones that can change quickly more often.
For classic SG methods, this only changes constants.

	Stochastic Average Gradient
	Structured Prediction

