CPSC 540: Machine Learning Stochastic Average Gradient

Mark Schmidt

University of British Columbia

Winter 2019

Last Time: Better Methods for Smooth Objectives and Finite Datasets

- Stochastic methods:
 - $O(1/\epsilon)$ iterations but requires 1 gradient per iterations.
- Deterministic methods:
 - $O(\log(1/\epsilon))$ iterations but requires n gradients per iteration.
- Growing-batch ("batching") or "switching" methods:
 - $O(\log(1/\epsilon))$ iterations, requires fewer than n gradients in early iterations.

- Growing $|\mathcal{B}^k|$ eventually requires O(n) iteration cost.
- Can we have 1 gradient per iteration and only $O(\log(1/\epsilon))$ iterations?
 - YES! First method was the stochastic average gradient (SAG) algorithm in 2012.
- To motivate SAG, let's view gradient descent as performing the iteration

$$w^{k+1} = w^k - \frac{\alpha_k}{n} \sum_{i=1}^n \frac{v_i^k}{v_i^k},$$

where on each step we set $v_i^k = \nabla f_i(w^k)$ for all *i*.

- SAG method: only set $v_{i_k}^k = \nabla f_{i_k}(w^k)$ for a randomly-chosen i_k .
 - All other v_i^k are kept at their previous value.

• We can think of SAG as having a memory:

where v_i^k is the gradient $\nabla f_i(w^k)$ from the last k where i was selected.

- On each iteration we:
 - Randomly choose one of the v_i and update it to the current gradient.
 - We take a step in the direction of the average of these v_i .

- Basic SAG algorithm (maintains $g = \sum_{i=1}^{n} v_i$):
 - Set g = 0 and gradient approximation $v_i = 0$ for i = 1, 2, ..., n.
 - while(1)
 - Sample i from $\{1, 2, \ldots, n\}$.
 - Compute $\nabla f_i(w)$.

•
$$g = g - v_i + \nabla f_i(w).$$

•
$$v_i = \nabla f_i(w)$$
.

•
$$w = w - \frac{\alpha}{n}g$$
.

- $\bullet\,$ Iteration cost is O(d), and "lazy updates" allow O(z) with sparse gradients.
- For linear models where $f_i(w) = h(w^{\top}x^i)$, it only requires O(n) memory:

$$\nabla f_i(w) = \underbrace{h'(w^\top x^i)}_{\text{scalar}} \underbrace{x^i}_{\text{data}}.$$

• Least squares is $h(z) = \frac{1}{2}(z - y^i)^2$, logistic is $h(z) = \log(1 + \exp(-y^i z))$, etc.

• For neural networks, would need to store all activations (typically impractical).

• The SAG iteration is

$$w^{k+1} = w^k - \frac{\alpha_k}{n} \sum_{i=1}^n v_i^k,$$

where on each iteration we set $v_{i_k}^k = \nabla f_{i_k}(w^k)$ for a randomly-chosen i_k .

- Unlike batching, we use a gradient for every example.
 - But the gradients might out of date.
- Stochastic variant of earlier increment aggregated gradient (IAG).
 - Selects i_k cyclically, which destroys performance.
- Key proof idea: $v_i^k \to \nabla f_i(w^*)$ at the same rate that $w^k \to w^*$:
 - So the variance $\|e_k\|^2$ ("bad term") converges linearly to 0.

Convergence Rate of SAG

If each ∇f_i is L-continuous and f is strongly-convex, with $\alpha_k = 1/16L$ SAG has

$$\mathbb{E}[f(w^k) - f(w^*)] \leqslant O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^k\right)$$

- Number of ∇f_i evaluations to reach accuracy ϵ :
 - Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$.
 - Gradient: $O(n\frac{\dot{L}}{\mu}\log(1/\epsilon)).$
 - Nesterov: $O(n\sqrt{\frac{L}{\mu}}\log(1/\epsilon)).$
 - SAG: $O(\max\{n, \frac{L}{\mu}\}\log(1/\epsilon))$.

(Best when n is enormous)

(Best when n is small and L/μ is big)

• But note that the L values are again different between algorithms.

Comparing Deterministic and Stochastic Methods

• Two benchmark L2-regularized logistic regression datasets:

• Averaging makes SG work better, deterministic methods eventually catch up.

SAG Compared to Deterministic/Stochastic Methods

• Two benchmark L2-regularized logistic regression datasets:

• Starts like stochastic but linear rate, SAG step-size set to \hat{L} approximation.

Discussion of SAG and Beyond

- Bonus slides discuss practical issues related to SAG:
 - Setting step-size with an approximation to L.
 - Deciding when to stop.
 - Lipschitz sampling of training examples.
 - Improves rate for SAG, only changes constants for SG.
- There are now a bunch of stochastic algorithm with fast rates:
 - SDCA, MISO, mixedGrad, SVRG, S2GD, Finito, SAGA, etc.
 - Accelerated/Newton-like/coordinate-wise/proximal/ADMM versions.
 - Analysis in non-convex settings, including new algorithms for PCA.
 - You can apparently get medals for research:

https://ismp2018.sciencesconf.org/data/pages/_SJP8196.jpg

• Most notable variation is SVRG which gets rid of the memory...

Stochastic Variance-Reduced Gradient (SVRG)

SVRG algorithm: gets rid of memory by occasionally computing exact gradient.

• Start with w_0 • for s = 0, 1, 2...• $\nabla f(w_s) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_s)$ • $w^0 = w_s$ • for k = 0, 2, ..., m - 1• Randomly pick $i_k \in \{1, 2, ..., n\}$ • $w^{k+1} = w^k - \alpha_k (\nabla f_{i_k}(w^k) - \underbrace{\nabla f_{i_k}(w_s) + \nabla f(w_s)}_{\text{mean zero}}).$ • $w_{s+1} = w^m$.

Convergence properties similar to SAG (for suitable m).

- Unbiased: $\mathbb{E}[\nabla f_{i_k}(w_s)] = \nabla f(w_s)$ (special case of "control variate").
- Theoretically m depends on L, μ , and n (some analyses randomize it).
- In practice m = n seems to work well.
 - O(d) storage at average cost of 3 gradients per iteration.

Stochastic Gradient for Stochastic Objectives

- Our analysis of stochastic gradient only used two assumptions on $\nabla f_i(w^k)$:
 - **(**) Unbiased approximation of subgradient: $\mathbb{E}[\nabla f_i(w^k)] = \nabla f(w^k)$.
 - **2** Variance is bounded: $\mathbb{E}[\|\nabla f_i(w^k)\|^2] \leq \sigma^2$.
- Unlike SAG/SVRG, "classic" SGD does not need to assume dataset is finite.
- We can apply stochastic gradient to minimize objectives written as expectations,

 $\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}[f_i(w)],$

as long as we can sample unbiased estimates of the gradient.

- For example, drop out adds randomization to each example.
- Most important example is the test loss....

Stochastic Gradient Descent on the Test Error

- Consider a scenario where we have infinite number of IID samples:
 - We can optimize the test loss,

 $\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}[f_i(w)],$

by applying stochastic gradient on a new IID sample on each iteration.

- In this setting, we are directly optimizing test loss and cannot overfit.
- We require $O(1/\epsilon)$ iterations/samples to reach test loss accuracy of ϵ (under PL).
- Though keep in mind that the test loss may not be the test error.
 - Linear classifiers approximate 0-1 loss (test error) with logistic/hinge loss (test loss).

Infinite-Data Optimization ("Trade-Offs of Large-Scale Learning")

- Consider number of training examples so large we can't go through all examples.
 - Stochastic gradient gets within ϵ of optimal test loss after $t = O(1/\epsilon)$ iterations.
- How does this compare to sampling t examples and optimizing on these?
 - What we usually do: "minimize regularized training loss".
- How many samples t before training objective is within ϵ of test objective?
 - Minimum possible assumptions: $t = O(1/\epsilon^2)$.
 - Realistic assumptions: $t = O(1/\epsilon)$.
 - Strong assumptions: $t = O(\log(1/\epsilon))$.
- "Realistic": n iterations of stochastic gradient on n examples is optimal!?!
 - Almost always worse empirically than methods which do multiple passes.
 - Constants matter for test data (better optimization improves constants).

Strong Growth Condition

• Consider the following assumption ("strong growth condition"),

 $\mathbb{E}[\|\nabla f_i(x)\|^2] \le \sigma \|\nabla f(x)\|^2.$

- With this assumption, stochastic gradient converges faster (constant step-size):
 - O(1/t) rate for non-convex functions, instead of $O(1/\sqrt{t}.$
 - $O(\rho^t)$ rate for PL functions, instead of O(1/t).
 - Unlike usual stochastic setting, Nesterov acceleration works.
- Ridiculous assumption: $\nabla f(w) = 0$ implies $\nabla f_i(w) = 0$ (w^* minimizes all f_i).
 - You fit every data-point exactly (data is "interpolated").
 - Makes variance go to 0 as you approach w^* (no need for SAG/SVRG).
- Not-ridiculous assumption for over-parameterized models?
 - Universal kernels or deep neural networks where you can fit every data point.
 - $\bullet\,$ Why constant step-size SGD + momentum is tough to beat for deep learning?

End of Part 1: Key Ideas

• Typical ML problems are written as optimization problem

$$\operatorname*{argmin}_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w^\top x^i) + \lambda r(w).$$

- Convex optimization packages:
 - For the special case when F is convex and d is small.
 - Many objectives can be re-written as linear or quadratic programs.
- Gradient descent:
 - Applies when F is differentiable, yields iteration cost that is linear in d.
 - Needs $O(1/\epsilon)$ iterations in general, only $O(\log(1/\epsilon))$ for PL functions.
 - Faster versions like Nesterov's and Newton-like methods exist.
- Proximal gradient:
 - Applies when f_i is differentiable and r is "simple" (like L1-regularization).
 - $\bullet\,$ Similar convergence properties to gradient descent, even for non-smooth r.
 - Special case is projected gradient, which allows "simple" constraints.

End of Part 1: Key Ideas

• Typical ML problems are written as optimization problem

$$\operatorname*{argmin}_{w \in \mathbb{R}^d} F(w) = \frac{1}{n} \sum_{i=1}^n f_i(w^\top x^i) + \lambda r(w).$$

- Coordinate optimization:
 - Faster than gradient descent if iterations are *d*-times cheaper.
 - Allows non-smooth r if it's separable.
- Stochastic subgradient:
 - Iteration cost is *n*-times cheaper than [sub]gradient descent, and allows $n = \infty$.
 - For non-smooth problems, convergence rate is same as subgradient method.
 - For smooth problems, number of iterations is much higher than gradient descent.

• SAG and SVRG:

- Special case when F is smooth.
- Same low cost as stochastic gradient methods.
- But similar convergence rate to gradient descent.

Even Bigger Problems?

- What about datasets that don't fit on one machine?
 - We need to consider parallel and distributed optimization.
- New issues:
 - Synchronization: we may not want to wait for the slowest machine.
 - Communication: it's expensive to transfer data and parameters across machines.
 - Failures: in huge-scale settings, machine failure probability is non-trivial.
 - Batch size: for SGD is it better to get more parallelism or more iterations?
- "Embarassingly" parallel solution:
 - Split data across machines, each machine computes gradient of their subset.
 - Papers present more fancy methods, but always try this first ("linear speedup").
- Fancier methods:
 - Asyncronous stochastic subgradient (works fine if you make the step-size smaller).
 - Parallel coordinate optimization (works fine if you make the step-size smaller).
 - Decentralized gradient (needs a smaller step-size and an "EXTRA" trick).

Skipped Topics: Kernel Methods and Dual Methods

- In previous years, I've covered the following topics:
 - Mernel methods:
 - Allows using some exponential- or infinite-sized feature sets.
 - Allows defining a "similarity" between training examples rather than features.
 - Mercer's theorem and how to determine if a kernel is valid.
 - Representer theorem and models allowing kernel trick.
 - Multiple kernel learning and connection to structured sparsity.
 - Large-scale kernel approximations that avoid the high cost.
 - ② Dual methods:
 - Lagrangian function, dual function, and convex conjugate.
 - Fenchel dual for deriving duals of "loss plus regularizer" problems.
 - Connection between stochastic subgradient method and dual coordinate ascent.
 - Turning non-smooth problems into equivalent smooth problems.
 - Line-search for stochastic subgradient methods.
- If you're interested, I put the slides on these topics here:

Outline

2 Structured Prediction

Motivation: Structured Prediction

Classic supervised learning focuses on predicting single discrete/continuous label:

Output: "P"

Structured prediction allows general objects as labels:

Output: "Paris"

"Classic" ML for Structured Prediction

Input: Paris

Output: "Paris"

Two ways to formulate as "classic" machine learning:

- **1** Treat each word as a different class label.
 - Problem: there are too many possible words.
 - You will never recognize new words.
- Predict each letter individually:
 - Works if you are really good at predicting individual letters.
 - But some tasks don't have a natural decomposition.
 - Ignores dependencies between letters.

Structured Prediction

Motivation: Structured Prediction

• What letter is this?

• What are these letters?

Vancouver

- Predict each letter using "classic" ML and features from neighbouring images?
 - Can be good or bad depending on goal:
 - Good if you want to predict individual letters.
 - Bad if goal is to predict entire word.

Examples of Structured Prediction

Translate		8+ 🔳
English Spanish French Detect language v	÷.	English Spanish French - Translate
I moved to Canada in 2013, as indicated on my 2013 declaration of revenue. I received ho income from French sources in 2014. How can I owe 12 thousand Euros?	×	Je déménagé au Canada en 2013, comme indiqué sur ma déclaration de revenus 2013, Je recevais aucun revenu de source française en 2014. Comment puis-je dois 12 mille euros?
«I) IIII ~		☆ 🗐 4) 🖉 Wrong?

Structured Prediction

Examples of Structured Prediction

Structured Prediction

Examples of Structured Prediction

Does the brain do structured prediction?

Gestalt effect: "whole is other than the sum of the parts".

What do you see? By shifting perspective you might see an old woman or a young woman.

Summary

- Stochastic average gradient: $O(\log(1/\epsilon))$ iterations with 1 gradient per iteration.
- SVRG removes the memory requirement of SAG.
- Infinite datasets can be handle with stochastic subgradient methods.
 - This is theoretically "optimal" in some settings, not optimal in practice.
- Strong growth condition might be the right way to view neural network objectives.
- Structured prediction: supervised learning with complicated "labels".
- Next time: everyone's favourite distributions...

SAG Practical Implementation Issues

- Implementation tricks:
 - Improve performance at start using $\frac{1}{m}g$ instead of $\frac{1}{n}g$.
 - \bullet m is the number of examples visited.
 - Common to use $\alpha_k = 1/L$ and use adaptive L.
 - Start with $\hat{L}=1$ and double it whenever we don't satisfy

$$f_{i_k}\left(w^k - \frac{1}{\hat{L}}\nabla f_{i_k}(w^k)\right) \le f_{i_k}(w^k) - \frac{1}{2\hat{L}} \|\nabla f_{i_k}(w^k)\|^2,$$

and $\|\nabla f_{i_k}(w^k)\|$ is non-trivial. Costs O(1) for linear models in terms of n and d.

- Can use $\|w^{k+1} w^k\|/\alpha = \frac{1}{n}\|g\| \approx \|\nabla f(w^k)\|$ to decide when to stop.
- Lipschitz sampling of examples improves convergence rate:
 - As with coordinate descent, sample the ones that can change quickly more often.
 - For classic SG methods, this only changes constants.