Kernel Trick

Valid Kernels and Representer Theorem Fenchel Duality

CPSC 540: Machine Learning
Kernel Methods and Fenchel Duality

Mark Schmidt

University of British Columbia

Winter 2019

Large-Scale Kernel Methods

Kernel Trick

Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Motivation: Multi-Dimensional Polynomial Basis
Consider quadratic polynomial basis with only have two features (z* € R?):
i = wo + wiz + warh + wa () + ws(xh)? + wextxl.

In 340 we saw that we can fit this model using a change of basis:

0.2 0.3 1 02 03 (02?2 (03?2 02-03
X=|1 05|=Z=|1 1 05 (1) (0.5)2 1-05
-0.5 —0.1 1 -05 —0.1 (-0.5)2 (-0.1)> —-0.5--0.1

If you have d = 100 and p = 5, there are O(100°) possible degree-5 terms:
(1), (@) b, (1) 2, (21)(23)°, (@1)(2D)%, - (2)) P, .

How can we do this when number of features k in basis is huge?

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality

The "Other” Normal Equations

@ Recall the L2-regularized least squares model with basis Z,
1 A
argmin | 70—y + S o]
veERd
@ By solving for V f(v) = 0 we get that
_ T “1,T
v=(Z Z+Nq) 7'y,
E by k
where I; is the k by k identity matrix.
@ An equivalent way to write the solution is:
_ 5T T -1
v=27 (ZZ +A,) vy,
n by n

by using a variant of the matrix inversion lemma (bonus slide).
e Computing v with this formula is faster if n << k:
o ZZT isn by nwhile ZTZ is k by k.

Large-Scale Kernel Methods

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods
Predictions using Equivalent Form

o Given test data X, we predict § using:

!

v

=272 (22" + A\, Yy

g

“other” normal equations
o If we define K = ZZ" (Gram matrix) and K = ZZ T, then we have
§=K(K+ A, 'y,

where K isn x n and K is t x n.

@ Key observation behind kernel trick:
e If we can directly compute K and K, we don't need to form Z or Z.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Gram Matrix

@ The Gram matrix K is defined by:

—)T —
kezzm = |7 0 Tk o
(21, 21) (21, 2?) (21, 2™) k(zt, 2ty k(b 2?) - k(zt, ™)
B (22,2Y) (22, 2%) (22,27 B k(z? 2') k(2% 22) - k(z?, ™)
<z”,z1> <z",.z2> <z”,z”> k(z" zb) k(z", 2?) E(x™, ™)

@ K contains the inner products between all training examples in basis z

e K contains the inner products between training and test examples.
o Kernel trick: if we can compute k(z%, 27) = (2%, 27), we don't need 2’ and 27.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Polynomial Kernel

@ In 340 we saw the polynomial kernel of degree p,
E(z' 2?) = (14 (2%, 27))P,

which corresponds to a general degree-p polynomial 2’

@ You can make predictions with these 2’ using
§=K(K+M)"y.

e Total cost is only O(n?d + n?) even though number of features is O(dP).

o Kernel trick:
o We have kernel function k(x?, z7) that gives (2%, 27).
e Skip forming Z and directly form K and K.
e Size of K is n by n even if Z has exponential or infinite columns.

Kernel Trick

Guasian-RBF Kernels

@ The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,
i 2
i) _ |z* — 7|
k(z', x)—exp(52 :
@ What features z; would lead to this as the inner-product?
e To simplify, assume d =1 and o =1,
i g Lo i g L. g L i\e i j L e
k(z',z’) = exp —5(93)- +xta? — i(x]) = exp —i(x)% | exp(z’a?) exp —5(:5]))
so we need z; = exp(—1(2%)?)u; where w;u; = exp(2'z7).
o For this to work for all z* and :vj, z; must be infinite-dimensional.
o If we use that

2 (VR (i)k
eXp(inj):Z()k(')’

e
o

then we obtain

e 4 4 i
ziexp(z(x)2> {1 %IE ﬁ(xf %(z)g]

Kernel Trick

Kernel Trick for Structured Data

@ Kernel trick can be useful for structured data:
o Consider data doesn't look like this:

0.5377 0.3188 3.5784 +1

X — 1.8339 —1.3077 2.7694 |1
T |—2.2588 —0.4336 —1.3499|° YT |-1|"

0.8622 0.3426 3.0349 +1

but instead looks like this:

Do you want to go for a drink sometime? +1
J'achete du pain tous les jours. —1

X = . , Y=
Fais ce que tu veux. —1
There are inner products between sentences? +1

o It might be easier to define a “similarity” between sentences than to define features.

Kernel Trick

Kernel Trick for Structured Data

@ A classic “string kernel”:
o We want to compute k(“cat”, “cart”).
e Find common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
o Weight them by total length in original strings:
e ‘c’is has lengths (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and son.

Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart’) = iyl 4y lyl b ylql 42y 4 a2y® £ aBat | aBa4
M~ M M~ M~ M~ ——
‘c! ‘a’ ‘t' ‘ca’ ‘at’ ‘ct’ ‘cat’
where v is a hyper-parameter controlling influence of length.

Corresponds to exponential feature set (counts/lengths of all subsequences).
o But kernel can be computed in linear time by dynamic programming.

@ Many variations exist. And there are “image kernels”, “graph kernels”, and so on.

o You can turn probabilities over examples (second half of course) into kernels.
e A survey on the topic is here.

http://homepages.rpi.edu/~bennek/class/mmld/papers/p49-gartner.pdf

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Valid Kernels

e Can we use any function k for our kernel/similarity function k(z*, 27)?

@ We need to have kernel k£ be an inner product in some space:
o There exists transformation z¢ = ¢(z*) such that k(z%, 27) = (p(z%), p(27)).

We can decompose a (continuous or finite-domain) function k into

k(z',2%) = (¢(2), (7)),

iff it is symmetric and for any finite {x', 2%, ... 2"} we have K = 0.

@ For finite domains you can show existence of ¢ using spectral theorem (bonus).
o The general case is called Mercer's Theorem.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Valid Kernels

@ Mercer's Theorem is nice in theory, what do we do in practice?

o You could show explicitly that k(z?, 27) = ((¢(z?), ¢(27)) for some function ¢.
e You could that K is positive semi-definite by construction.
e Or you can show k is constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Constructing Valid Kernels

o If ky(2%,27) and ko(z?, 27) are valid kernels, then the following are valid kernels:
o Non-negative scaling: aki(z¢,27) for a > 0.
o Sum: ky(z*,29) + ko(at, 27).
o Product: ki (z*, 27)ka(2*,27). .
o Special case: ¢(x*)k1(z",x?)¢p(x’) for any function ¢.
o Exponentiation: exp(k;(z¢,27)).
o Recursion: ki (¢(z%), ¢(27)) for any function ¢.

@ Example: Gaussian-RBF kernel:

- ot — 27)? BTN,
K@, %) = exp (—202] (L P e

e (Y o [L) | e (T
202 o2 2 202)
b > ™ b(a)
exp(valid)

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Models allowing Kernel Trick

@ Besides L2-regularized least squares, when can we apply the kernel trick?
o Distance-based methods from CPSC 340:

l* = 2717 = (2%, 2°) — 2(a", 27) + (7, 27)

= k(') 2") — 2k(z", 27) + k(27 27).

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Distance-based outlier detection (KNN-based, outlier ratio)
“Amazon product recommendation” .
Multi-dimensional scaling (ISOMAP, t-SNE).
o Label propagation.
o L2-regularized linear models (today).
e Eigenvalue methods:
@ Principle component analysis (need trick for centering in high-dimensional space).
o Canonical correlation analysis.
e Spectral clustering.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Representer Theorem

@ Consider L2-regularized loss only depending on Xw,
: A 2
argmin f(Xw) + —||w||*.
weR? 2
@ Setting the gradient equal to zero we get
0=X"r+ \w,
where r = V f(Aw).
@ So any solution w* be can written as a linear combination of features 2,

1
w* = _XXTT =X "v,

where v = 17 (this means we can restrict to w satisfying w = X "v).

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Representer Theorem

@ Since we know w* = X "v for some v, let's optimize over v instead of w:

A
argmin f(Xw) + waHQ
weR? 2

A
=argmin f(XXTv) + 2| X Tvl?
veER™ 2

A
=argmin f(XXTv) + 0T XXTv
veRn 2

A
= argmin f(Kv) + v Kv.
veER™ 2

@ Which is a kernelized version of the problem.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality

Representer Theorem

e Using w = X "v, at test time we use

1y =

or that each ¢’ = >y v;k(3, 7).

Large-Scale Kernel Methods

@ That prediction is a linear combination of kernels is called representer theorem.
e It holds under more general conditions, including non-smooth f; like SVMs.

Valid Kernels and Representer Theorem

Multiple Kernel Learning

@ We can kernelize L2-regularized linear models,

argmin f(Xuw,y) + 5 [w]]? < argmin f(Kv,y) + 3 o]k,
weRd 2 veR™ 2
under fairly general conditions.
@ What if we have multiple potential kernels and don't know which to use?
e Obvious approach: cross-validation to choose the best one.
@ What if we have multiple potentially-relevant kernels?
o Multiple kernel learning:

k k
) 1
argmin f <ZKCUC7:U> + izACHUHKC'
c=1 c=1

v1 ER™,v2€R™,... v, ER™

o Defines a valid kernel and is convex if f is convex (affine function).
o Group L1-regularization of parameters associated with each kernel.
@ Selects a sparse set of kernels.
e Hiearchical kernel learning:
@ Use structured sparsity to search through exponential number of kernels.

Outline

@ Kernel Trick
Q Valid Kernels and Representer Theorem
© Fenchel Duality

@ Large-Scale Kernel Methods

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Motvation: Getting Rid of the Step-Size

@ SVMs are a widely-used model but objective is non-differentiable.

e The non-differentiable part is the loss, which isn't nice like L1-regularization.
e We can't apply coordinate optimization or proximal-gradient or SAG.

@ Stochastic subgradient methods achieve O(1/¢) without dependence on n.
e But choosing the step-size is painful.

@ Can we develop a method where choosing the step-size is easy?
e To do this, we first need the concept of the Lagrangian...

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Lagrangian Function for Equality Constraints

o Consider minimizing a differentiable f with linear equality constraints,

argmin f(x).
Ax=b

@ The Lagrangian of this problem is defined by
L(z,2) = f(z) + 2" (Az — D),

for a vector z € R™ (with A being n by d).
@ At a solution of the problem we must have

V.L(z,2) =Vf(x)+ AT2=0 (gradient is orthogonal to constraints)
V.L(z,z) = Az —b=0 (constraints are satisfied)

@ So solution is stationary point of Lagrangian.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Dual Function

@ But we can't just minimize with respect to x and z.

@ The solution for convex f is actually a saddle point,

max min L(z, 2).
z T

(in cases where the max and min have solutions)

@ One way to solve this is to eliminate z,

max D(z),

where D(z) = min, L(x, z) is called the dual function.

@ Another method is eliminate constraints (see Michael Friedlander’s course).

(find a feasible x, find basis for null-space of A, optimize f over null-space.)

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Digression: Supremum and Infimum

To handle case where min, f(x) is not achieved for any x, we can use infimum.

@ Generalization of min that includes limits:

minz? =0, inf 22 =0,

T€R zeR
but
mine® = DNE, inf e* = 0.
T€R r€eR
@ The infimum of a function f is its largest lower-bound,
inf f(x) = max
(=) y | y<f(z)
@ The analogy for max is called the supremum (sup).

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Dual function
@ Even for non-smooth convex f solution is a saddle point of the Lagrangian,

maxinf f(z) + 2" (Az —b).

L(z,2)

(restricted to z where the max is finite)

@ We're going to eliminate = by working with the dual function,

max D(z),
z

with D(z) = inf {f(z) + 2z (Az — b)}.

(D is concave for any f, so —D is convex)

o If f is strongly-convex, dual is smooth (not obvious).
e Dual sometimes has sparse kernel representation.
e Dual has fewer variables if n < d.
e Dual gives lower bound, D(z) < f(x) (weak duality).
o We can solve dual instead of primal, D(z*) = f(z*) (strong duality).
(see Michael Friedlander's class for details/conditions.)

Kernel Trick

Valid Kernels and Representer Theorem

Fenchel Duality

Convex Conjugate
@ The convex conjugate f* of a function f is given by

F*(y) = sup{y '@ — f(2)},
TEX

where X is values where sup is finite.

f(@)

i

|
|
|
|
|

0, - ()

Large-Scale Kernel Methods

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

@ It's the maximum that the linear function 3"z can get above f(z).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Convex Conjugate

@ The convex conjugate f* of a function f is given by

Fy) = sup{y'x — f(2)},

reX
where X is values where sup is finite.

1)

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
e If f is differentable, then sup occurs at x where y = V f(x).
o Note that f* is convex even if f is not (but we may lose strong duality).
o If fis convex then f** = f (“closed” f).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods
Convex Conjugate Examples

o If f(z) = ||z we have

o f*(y) =sup,{y "z — %[|z||*} or equivalently (by taking derivative and setting to 0):
0=y—ux,
and pluggin in x = y we get
1 1
SR U N TINTE S TR
P =vTy - gl = 5l
o If f(z) =a'z we have

0 y=a

Fly) = Sl;p{yTw —a'z} = sup{(y — a)'z} = {OO theruice.

@ For other examples, see Boyd & Vandenberghe.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Fenchel Dual

@ In machine learning our primal problem is usually (for convex f and r)

argmin f(Xw) + r(w).
weR?

@ If we introduce equality constraints,

argmin f(v) + r(w).

v=Xw

then dual has a special form called the Fenchel dual,

argmax D(z) = —f*(—2) — r*(X " 2),
z€R™

where we're maximizing the (negative) convex conjugates f* and r*.
(bonus slide)

@ If r is strongly-convex, dual will be smooth...

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Fenchel Dual of SVMs

o Consider support vector machines,

argmanmax{O 1—yw' o} + = HwH2
weR? i=1

@ The Fenchel dual is given by

1
argmaszz X TYz|?,
0<z<1 ;= A N—

=1 TYXXTYz

with w* = X TY 2z* and constraints coming from f* < co.
@ A couple magical things have happened:
o We can apply kernel trick.
o Non-negativity makes dual variables z sparse (non-zeroes are “support vectors”):
o Can give faster training and testing.
o Dual is differentiable (though not strongly-convex).
@ And for this function coordinate optimization is efficient.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Stochastic Dual Coordinate Ascent

o If we have an L2-regularized linear model,

n
_ A
argmin E filw x) + §||w!|2,
weR? ;)

then Fenchel dual is a problem where we can apply coordinate optimization,

n
1
argmax— 3 f; (21) —5 | X 2l
= =l 2TXXT2
separable

@ It's known as stochastic dual coordinate ascent (SDCA):
e Only needs to looks at one training example on each iteration.
o Obtains O(log(1/¢)) rate if Vf; are L-Lipschitz.
o Performance similar to SAG for many problems, worse if © >> A.
o Obtains O(1/¢) rate for non-smooth f:
@ Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.

Outline

@ Kernel Trick
Q Valid Kernels and Representer Theorem
© Fenchel Duality

@ Large-Scale Kernel Methods

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Large-Scale Kernel Methods

@ Let's go back to the basic L2-regularized least squares setting,
§=K(K+) ty.

@ Obvious drawback of kernel methods: we can’'t compute/store K.
o It has O(n?) elements.

@ Standard general approaches:
@ Kernels with special structure.
@ Subsampling methods.
© Explicit feature construction.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Kernels with Special Structure

@ The bottleneck in fitting the model is O(n?) cost of solving the linear system
(K+X)v=y.
@ Consider using the “identity” kernel,
k(z', 2?) = T[z' = 27].

@ In this case /K is diagonal so we can solve linear system in O(n).

@ More interesting special K structures that support fast linear algebra:
Band-diagonal matrices.

Sparse matrices (via conjugate gradient).

Diagonal plus low-rank, D + UV T.

Toeplitz matrices.

Kronecker product matrices.

Fast Gauss transform.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Subsampling Methods

In subsampling methods we only use a subset of the kernels.

For example, some loss functions have support vectors.
e But this mainly helps at testing time, and some problems have O(n) support vectors.

Nystrom approximation chooses a random and fixed subset of training examples.
e Many variations exist such as greedily choosing kernels.

@ A common variation is the subset of regressors approach....

Large-Scale Kernel Methods

Subsampling Methods
o Consider partitioning our matrices as

K1 Ko

K =
[Km Koo

]:[Kl K], K=[K K,

where K11 corresponds to a set of m training examples
o Kism by m, Ky isn by m.
@ In subset of regressors we use the approximation
K~KK;'K], K~KKjK/.
@ Which for L2-regularized least squares can be shown to give

Kl (K;—Kl +)\Kll)_lKFy.

v

]

e Given K7 and K11, computing v costs O(m?n + m3) which is cheap for small m.

Large-Scale Kernel Methods

Explicit Feature Construction
@ In explicit feature methods, we form Z such that 77 ~ K.

o But where Z has a small number of columns of m.

@ We then use our non-kernelized approach with features Z,
w=(Z"Z+) (Z"y).

@ Random kitchen sinks approach does this for translation-invariant kernels,
E(x', x?) = k(2" — 27,0),

by sampling elements of inverse Fourier transform (not obvious).
@ In the special case of the Gaussian RBF kernel this gives Z = exp(iX R).

e Ris a d by m matrix with elements sampled from the Gaussian (same variance).
e i is v/—1 and exp is taken element-wise.

Large-Scale Kernel Methods

Summary

Kernel trick: allows working with “similarity” instead of features.
e Also allows exponential- or infinite-sized feature spaces.

Valid kernels are typically constructed from other valid kernels.
Representer theorem allows kernel trick for L2-regularized linear models.
Fenchel dual re-writes sum of convex functions with convex conjugates:

e Dual may have nice structure: differentiable, sparse, coordinate optimization.
Large-scale kernel methods is an active research area.

e Special K structures, subsampling methods, explicit feature construction.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Equivalent Form of Ridge Regression

Note that X and Y are the same on the left and right side, so we only need to show that
(XTX +AD7XT = XT(XXT 4 A~ (1)
A version of the matrix inversion lemma (Equation 4.107 in MLAPP) is
(F-FH'G)'FH Y = E7'F(H -GE~'F)™!

Since matrix addition is commutative and multiplying by the identity matrix does nothing, we can re-write
the left side of (1) as

(XTXHAD) ' XT = (MHXTX) T XT = WHXTIX)7XT = (I =-XT(=DX) ' XT = - A= XT (=D X) ' X7 (-1)

Now apply the matrix inversion with £ = Al (so E=* = (}) 1), F = X7, H = —I (so H™! = —I t00), and
G=X:

(M = XT(-DX)'XT(-I) = —(%)IXT(—I -X (%) XL

Now use that (1/a)A™! = (@A)~!, to push the (—1/)) inside the sum as —\,

7(§)1XT(717XG> XNy = XTI+ XXT) L= XT(XXT + A1) !

Large-Scale Kernel Methods

Constructing Feature Space (Finite Domain)

@ Why is positive semi-definiteness important?
e With finite domain we can define K over all points.
o By symmetry of K it has a spectral decomposition

K =UTAU,

and K > 0 means A\; > 0 and so we have a real diagonal A3,
o Thus we hav K = UTAZAzU = (A2U)T(A2U) and we could use

7 = A%U7 which means z; = A%U:ﬂ‘-

@ The above reasoning isn't quite right for continuous domains.

@ The more careful generalization is known as “Mercer’s theorem™ .

Large-Scale Kernel Methods

Fenchel Dual

@ Lagrangian for constrained problem is
Lv,w,2) = f(v) +r(w) + 2" (Xw — v),
so the dual function is
D(:) = inf{f(v) +r(w) + 2T (Xw - v)}
@ For the inf wrt v we have
inf{f(v) -z v} = —sup{v'z — f(v)} = —f*(2).
@ v
@ For the inf wrt w we have
mf{r(+ 2 Xw} = —r* (=X "2).

o This gives
D(z) = —f*(z) —=r*(-X"2),
but we could alternately get this in terms of —z by replacing (Xw — v) with
(v — Xw) in the Lagrangian.

	Kernel Trick
	Valid Kernels and Representer Theorem
	Fenchel Duality
	Large-Scale Kernel Methods

