
Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

CPSC 540: Machine Learning
Kernel Methods and Fenchel Duality

Mark Schmidt

University of British Columbia

Winter 2019

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Motivation: Multi-Dimensional Polynomial Basis

Consider quadratic polynomial basis with only have two features (xi ∈ R2):

ŷi = w0 + w1x
i
1 + w2x

i
2 + w2(x

i
1)

2 + w3(x
i
2)

2 + w4x
i
1x
i
2.

In 340 we saw that we can fit this model using a change of basis:

X =

 0.2 0.3
1 0.5
−0.5 −0.1

⇒ Z =

1 0.2 0.3 (0.2)2 (0.3)2 0.2 · 0.3
1 1 0.5 (1)2 (0.5)2 1 · 0.5
1 −0.5 −0.1 (−0.5)2 (−0.1)2 −0.5 · −0.1


If you have d = 100 and p = 5, there are O(1005) possible degree-5 terms:

(xi1)
5, (xi1)

4xi2, (x1)
4xi3, . . . , (x

i
1)

3(xi2)
2, (xi1)

3(xi2)
2, . . . , (xi1)

3xi2x
i
3, . . .

How can we do this when number of features k in basis is huge?

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

The ”Other” Normal Equations

Recall the L2-regularized least squares model with basis Z,

argmin
v∈Rd

1

2
‖Zv − y‖2 +

λ

2
‖v‖2.

By solving for ∇f(v) = 0 we get that

v = (Z>Z︸ ︷︷ ︸
k by k

+λId)
−1Z>y,

where Id is the k by k identity matrix.

An equivalent way to write the solution is:

v = Z>(ZZ>︸ ︷︷ ︸
n by n

+λIn)−1y,

by using a variant of the matrix inversion lemma (bonus slide).
Computing v with this formula is faster if n << k:

ZZ> is n by n while Z>Z is k by k.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Predictions using Equivalent Form

Given test data X̃, we predict ŷ using:

ŷ = Z̃v

= Z̃ Z>(ZZ> + λIn)−1y︸ ︷︷ ︸
“other” normal equations

If we define K = ZZ> (Gram matrix) and K̃ = Z̃Z>, then we have

ŷ = K̃(K + λIn)−1y,

where K is n× n and K̃ is t× n.

Key observation behind kernel trick:

If we can directly compute K and K̃, we don’t need to form Z or Z̃.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Gram Matrix

The Gram matrix K is defined by:

K = ZZ> =


— (z1)> —
— (z2)> —

...
— (zn)> —


 · · ·
z1 z2 z3 · · · zn

· · ·



=


〈z1, z1〉 〈z1, z2〉 · · · 〈z1, zn〉
〈z2, z1〉 〈z2, z2〉 · · · 〈z2, zn〉

...
...

. . .
...

〈zn, z1〉 〈zn, z2〉 · · · 〈zn, zn〉

=


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)


K contains the inner products between all training examples in basis z

K̃ contains the inner products between training and test examples.

Kernel trick: if we can compute k(xi, xj) = 〈zi, zj〉, we don’t need zi and zj .

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Polynomial Kernel

In 340 we saw the polynomial kernel of degree p,

k(xi, xj) = (1 + 〈xi, xj〉)p,

which corresponds to a general degree-p polynomial zi.

You can make predictions with these zi using

ŷ = K̃(K + λI)−1y.

Total cost is only O(n2d+ n3) even though number of features is O(dp).

Kernel trick:
We have kernel function k(xi, xj) that gives 〈zi, zj〉.
Skip forming Z and directly form K and K̃.
Size of K is n by n even if Z has exponential or infinite columns.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Guasian-RBF Kernels
The most common kernel is the Gaussian-RBF (or ‘squared exponential’) kernel,

k(xi, xj) = exp

(
−‖x

i − xj‖2

2σ2

)
.

What features zi would lead to this as the inner-product?
To simplify, assume d = 1 and σ = 1,

k(xi, xj) = exp

(
−1

2
(xi)2 + xixj − 1

2
(xj)2

)
= exp

(
−1

2
(xi)2

)
exp(xixj) exp

(
−1

2
(xj)2

)
,

so we need zi = exp(− 1
2 (xi)2)ui where uiuj = exp(xixj).

For this to work for all xi and xj , zi must be infinite-dimensional.

If we use that

exp(xixj) =

∞∑
k=0

(xi)k(xj)k

k!
,

then we obtain

zi = exp

(
−1

2
(xi)2

)[
1 1√

1!
xi 1√

2!
(xi)2 1√

3!
(xi)3 · · ·

]
.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Kernel Trick for Structured Data

Kernel trick can be useful for structured data:

Consider data doesn’t look like this:

X =


0.5377 0.3188 3.5784
1.8339 −1.3077 2.7694
−2.2588 −0.4336 −1.3499
0.8622 0.3426 3.0349

 , y =


+1
−1
−1
+1

 ,
but instead looks like this:

X =


Do you want to go for a drink sometime?

J’achète du pain tous les jours.
Fais ce que tu veux.

There are inner products between sentences?

 , y =


+1
−1
−1
+1

 .
It might be easier to define a “similarity” between sentences than to define features.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Kernel Trick for Structured Data

A classic “string kernel”:
We want to compute k(“cat”, “cart”).
Find common subsequences: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’.
Weight them by total length in original strings:

‘c’ is has lengths (1,1), ‘ca’ has lengths (2,2), ‘ct’ has lengths (3,4), and son.

Add up the weighted lengths of common subsequences to get a similarity:

k(“cat”,“cart’) = γ1γ1︸︷︷︸
‘c’

+ γ1γ1︸︷︷︸
‘a’

+ γ1γ1︸︷︷︸
‘t’

+ γ2γ2︸︷︷︸
‘ca’

+ γ2γ3︸︷︷︸
‘at’

+ γ3γ4︸︷︷︸
‘ct’

+ γ3γ4︸︷︷︸
‘cat’

,

where γ is a hyper-parameter controlling influence of length.
Corresponds to exponential feature set (counts/lengths of all subsequences).

But kernel can be computed in linear time by dynamic programming.

Many variations exist. And there are “image kernels”, “graph kernels”, and so on.
You can turn probabilities over examples (second half of course) into kernels.
A survey on the topic is here.

http://homepages.rpi.edu/~bennek/class/mmld/papers/p49-gartner.pdf

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Valid Kernels

Can we use any function k for our kernel/similarity function k(xi, xj)?

We need to have kernel k be an inner product in some space:

There exists transformation zi = φ(xi) such that k(xi, xj) = 〈φ(xi), φ(xj)〉.

We can decompose a (continuous or finite-domain) function k into

k(xi, xj) = 〈φ(xi), φ(xj)〉,

iff it is symmetric and for any finite {x1, x2, . . . , xn} we have K � 0.

For finite domains you can show existence of φ using spectral theorem (bonus).

The general case is called Mercer’s Theorem.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Valid Kernels

Mercer’s Theorem is nice in theory, what do we do in practice?

You could show explicitly that k(xi, xj) = 〈〈φ(xi), φ(xj)〉 for some function φ.
You could that K is positive semi-definite by construction.
Or you can show k is constructed from other valid kernels.

(If we use invalid kernel, lose feature-space interpretation but may work fine.)

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Constructing Valid Kernels
If k1(x

i, xj) and k2(x
i, xj) are valid kernels, then the following are valid kernels:

Non-negative scaling: αk1(xi, xj) for α ≥ 0.
Sum: k1(xi, xj) + k2(xi, xj).
Product: k1(xi, xj)k2(xi, xj).

Special case: φ(xi)k1(x
i, xj)φ(xj) for any function φ.

Exponentiation: exp(k1(xi, xj)).
Recursion: k1(φ(xi), φ(xj)) for any function φ.

Example: Gaussian-RBF kernel:

k(xi, xj) = exp

(
−‖x

i − xj‖2

2σ2

)
= exp

(
−‖x

i‖2

2σ2
+

1

σ2
〈xi, xj〉 −

1

2σ2
‖xj‖2

)

= exp

(
−‖x

i‖2

2σ2

)
︸ ︷︷ ︸

φ(xi)

exp

 1

σ2︸︷︷︸
α>0

〈xi, xj〉︸ ︷︷ ︸
valid


︸ ︷︷ ︸

exp(valid)

exp

(
−‖x

j‖2

2σ2

)
︸ ︷︷ ︸

φ(xj)

.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Models allowing Kernel Trick

Besides L2-regularized least squares, when can we apply the kernel trick?
Distance-based methods from CPSC 340:

‖zi − zj‖2 = 〈zi, zi〉 − 2〈zi, zj〉+ 〈zj , zj〉
= k(xi, xi)− 2k(xi, xj) + k(xj , xj).

k-nearest neighbours.
Clustering algorithms (k-means, density-based clustering, hierarchical clustering).
Distance-based outlier detection (KNN-based, outlier ratio)
“Amazon product recommendation”.
Multi-dimensional scaling (ISOMAP, t-SNE).
Label propagation.

L2-regularized linear models (today).
Eigenvalue methods:

Principle component analysis (need trick for centering in high-dimensional space).
Canonical correlation analysis.
Spectral clustering.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Representer Theorem

Consider L2-regularized loss only depending on Xw,

argmin
w∈Rd

f(Xw) +
λ

2
‖w‖2.

Setting the gradient equal to zero we get

0 = X>r + λw,

where r = ∇f(Aw).

So any solution w∗ be can written as a linear combination of features xi,

w∗ = − 1

λ
X>r = X>v,

where v = 1
λr (this means we can restrict to w satisfying w = X>v).

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Representer Theorem

Since we know w∗ = X>v for some v, let’s optimize over v instead of w:

argmin
w∈Rd

f(Xw) +
λ

2
‖w‖2

= argmin
v∈Rn

f(XXT v) +
λ

2
‖X>v‖2

= argmin
v∈Rn

f(XXT v) +
λ

2
vTXXT v

≡ argmin
v∈Rn

f(Kv) +
λ

2
v>Kv.

Which is a kernelized version of the problem.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Representer Theorem

Using w = X>v, at test time we use

ŷ = X̃w

= X̃X>v

= K̃v,

or that each ŷi =
∑n

j=1 vjk(x̃i, xj).

That prediction is a linear combination of kernels is called representer theorem.

It holds under more general conditions, including non-smooth fi like SVMs.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Multiple Kernel Learning

We can kernelize L2-regularized linear models,

argmin
w∈Rd

f(Xw, y) +
λ

2
‖w‖2 ⇔ argmin

v∈Rn
f(Kv, y) +

λ

2
‖v‖2K ,

under fairly general conditions.
What if we have multiple potential kernels and don’t know which to use?

Obvious approach: cross-validation to choose the best one.
What if we have multiple potentially-relevant kernels?

Multiple kernel learning:

argmin
v1∈Rn,v2∈Rn,...,vk∈Rn

f

(
k∑

c=1

Kcvc, y

)
+

1

2

k∑
c=1

λc‖v‖Kc .

Defines a valid kernel and is convex if f is convex (affine function).
Group L1-regularization of parameters associated with each kernel.

Selects a sparse set of kernels.
Hiearchical kernel learning:

Use structured sparsity to search through exponential number of kernels.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Outline

1 Kernel Trick

2 Valid Kernels and Representer Theorem

3 Fenchel Duality

4 Large-Scale Kernel Methods

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Motvation: Getting Rid of the Step-Size

SVMs are a widely-used model but objective is non-differentiable.

The non-differentiable part is the loss, which isn’t nice like L1-regularization.
We can’t apply coordinate optimization or proximal-gradient or SAG.

Stochastic subgradient methods achieve O(1/ε) without dependence on n.

But choosing the step-size is painful.

Can we develop a method where choosing the step-size is easy?

To do this, we first need the concept of the Lagrangian...

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Lagrangian Function for Equality Constraints

Consider minimizing a differentiable f with linear equality constraints,

argmin
Ax=b

f(x).

The Lagrangian of this problem is defined by

L(x, z) = f(x) + z>(Ax− b),

for a vector z ∈ Rn (with A being n by d).

At a solution of the problem we must have

∇xL(x, z) = ∇f(x) +A>z = 0 (gradient is orthogonal to constraints)

∇zL(x, z) = Ax− b = 0 (constraints are satisfied)

So solution is stationary point of Lagrangian.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Dual Function

But we can’t just minimize with respect to x and z.

The solution for convex f is actually a saddle point,

max
z

min
x
L(x, z).

(in cases where the max and min have solutions)

One way to solve this is to eliminate x,

max
z
D(z),

where D(z) = minx L(x, z) is called the dual function.

Another method is eliminate constraints (see Michael Friedlander’s course).
(find a feasible x, find basis for null-space of A, optimize f over null-space.)

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Digression: Supremum and Infimum

To handle case where minx f(x) is not achieved for any x, we can use infimum.

Generalization of min that includes limits:

min
x∈R

x2 = 0, inf
x∈R

x2 = 0,

but
min
x∈R

ex = DNE, inf
x∈R

ex = 0.

The infimum of a function f is its largest lower-bound,

inf f(x) = max
y | y≤f(x)

y.

The analogy for max is called the supremum (sup).

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Dual function
Even for non-smooth convex f solution is a saddle point of the Lagrangian,

max
z

inf
x
f(x) + z>(Ax− b)︸ ︷︷ ︸

L(x,z)

.

(restricted to z where the max is finite)

We’re going to eliminate x by working with the dual function,

max
z
D(z),

with D(z) = infx{f(x) + z>(Ax− b)}.
(D is concave for any f , so −D is convex)

Why?????
If f is strongly-convex, dual is smooth (not obvious).
Dual sometimes has sparse kernel representation.
Dual has fewer variables if n < d.
Dual gives lower bound, D(z) ≤ f(x) (weak duality).
We can solve dual instead of primal, D(z∗) = f(x∗) (strong duality).

(see Michael Friedlander’s class for details/conditions.)

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈X
{y>x− f(x)},

where X is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

It’s the maximum that the linear function y>x can get above f(x).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Convex Conjugate

The convex conjugate f∗ of a function f is given by

f∗(y) = sup
x∈X
{y>x− f(x)},

where X is values where sup is finite.

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

If f is differentable, then sup occurs at x where y = ∇f(x).

Note that f∗ is convex even if f is not (but we may lose strong duality).

If f is convex then f∗∗ = f (“closed” f).

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Convex Conjugate Examples

If f(x) = 1
2‖x‖

2 we have

f∗(y) = supx{y>x− 1
2‖x‖

2} or equivalently (by taking derivative and setting to 0):

0 = y − x,

and pluggin in x = y we get

f∗(y) = y>y − 1

2
‖y‖2 =

1

2
‖y‖2.

If f(x) = a>x we have

f∗(y) = sup
x
{y>x− a>x} = sup

x
{(y − a)>x} =

{
0 y = a

∞ otherwise.

For other examples, see Boyd & Vandenberghe.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Fenchel Dual

In machine learning our primal problem is usually (for convex f and r)

argmin
w∈Rd

f(Xw) + r(w).

If we introduce equality constraints,

argmin
v=Xw

f(v) + r(w).

then dual has a special form called the Fenchel dual,

argmax
z∈Rn

D(z) = −f∗(−z)− r∗(X>z),

where we’re maximizing the (negative) convex conjugates f∗ and r∗.
(bonus slide)

If r is strongly-convex, dual will be smooth...

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Fenchel Dual of SVMs

Consider support vector machines,

argmin
w∈Rd

n∑
i=1

max{0, 1− yiw>xi}+
λ

2
‖w‖2.

The Fenchel dual is given by

argmax
0≤z≤1

n∑
i=1

zi −
1

2λ
‖X>Y z‖2︸ ︷︷ ︸
z>Y XX>Y z

,

with w∗ = 1
λX
>Y z∗ and constraints coming from f∗ <∞.

A couple magical things have happened:
We can apply kernel trick.
Non-negativity makes dual variables z sparse (non-zeroes are “support vectors”):

Can give faster training and testing.

Dual is differentiable (though not strongly-convex).
And for this function coordinate optimization is efficient.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Stochastic Dual Coordinate Ascent

If we have an L2-regularized linear model,

argmin
w∈Rd

n∑
i=1

fi(w
>xi) +

λ

2
‖w‖2,

then Fenchel dual is a problem where we can apply coordinate optimization,

argmax
z∈Rn

−
n∑
i=1

f∗i (zi)︸ ︷︷ ︸
separable

− 1

2λ
‖X>z‖2︸ ︷︷ ︸
z>XX>z

.

It’s known as stochastic dual coordinate ascent (SDCA):
Only needs to looks at one training example on each iteration.
Obtains O(log(1/ε)) rate if ∇fi are L-Lipschitz.

Performance similar to SAG for many problems, worse if µ >> λ.

Obtains O(1/ε) rate for non-smooth f :
Same rate/cost as stochastic subgradient, but we can use exact/adaptive step-size.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Outline

1 Kernel Trick

2 Valid Kernels and Representer Theorem

3 Fenchel Duality

4 Large-Scale Kernel Methods

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Large-Scale Kernel Methods

Let’s go back to the basic L2-regularized least squares setting,

ŷ = K̂(K + λI)−1y.

Obvious drawback of kernel methods: we can’t compute/store K.

It has O(n2) elements.

Standard general approaches:
1 Kernels with special structure.
2 Subsampling methods.
3 Explicit feature construction.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Kernels with Special Structure

The bottleneck in fitting the model is O(n3) cost of solving the linear system

(K + λI)v = y.

Consider using the “identity” kernel,

k(xi, xj) = I[xi = xj].

In this case K is diagonal so we can solve linear system in O(n).

More interesting special K structures that support fast linear algebra:
Band-diagonal matrices.
Sparse matrices (via conjugate gradient).
Diagonal plus low-rank, D + UV >.
Toeplitz matrices.
Kronecker product matrices.
Fast Gauss transform.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Subsampling Methods

In subsampling methods we only use a subset of the kernels.

For example, some loss functions have support vectors.

But this mainly helps at testing time, and some problems have O(n) support vectors.

Nystrom approximation chooses a random and fixed subset of training examples.

Many variations exist such as greedily choosing kernels.

A common variation is the subset of regressors approach....

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Subsampling Methods

Consider partitioning our matrices as

K =

[
K11 K12

K21 K22

]
=
[
K1 K2

]
, K̂ =

[
K̂1 K̂2

]
,

where K11 corresponds to a set of m training examples
K is m by m, K1 is n by m.

In subset of regressors we use the approximation

K ≈ K1K
−1
11 K

>
1 , K̂ ≈ K̂1K

−1
11 K

>
1 .

Which for L2-regularized least squares can be shown to give

ŷ = K̂1 (K>1 K1 + λK11)
−1K>1 y︸ ︷︷ ︸

v

.

Given K1 and K11, computing v costs O(m2n+m3) which is cheap for small m.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Explicit Feature Construction

In explicit feature methods, we form Z such that Z>Z ≈ K.

But where Z has a small number of columns of m.

We then use our non-kernelized approach with features Z,

w = (Z>Z + λI)−1(Z>y).

Random kitchen sinks approach does this for translation-invariant kernels,

k(xi, xj) = k(xi − xj , 0),

by sampling elements of inverse Fourier transform (not obvious).

In the special case of the Gaussian RBF kernel this gives Z = exp(iXR).

R is a d by m matrix with elements sampled from the Gaussian (same variance).
i is
√
−1 and exp is taken element-wise.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Summary

Kernel trick: allows working with “similarity” instead of features.

Also allows exponential- or infinite-sized feature spaces.

Valid kernels are typically constructed from other valid kernels.

Representer theorem allows kernel trick for L2-regularized linear models.

Fenchel dual re-writes sum of convex functions with convex conjugates:

Dual may have nice structure: differentiable, sparse, coordinate optimization.

Large-scale kernel methods is an active research area.

Special K structures, subsampling methods, explicit feature construction.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Equivalent Form of Ridge Regression

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Constructing Feature Space (Finite Domain)

Why is positive semi-definiteness important?

With finite domain we can define K over all points.
By symmetry of K it has a spectral decomposition

K = U>ΛU,

and K � 0 means λi ≥ 0 and so we have a real diagonal Λ
1
2 .

Thus we hav K = U>Λ
1
2 Λ

1
2U = (Λ

1
2U)>(Λ

1
2U) and we could use

Z = Λ
1
2U, which means zi = Λ

1
2U:,i.

The above reasoning isn’t quite right for continuous domains.

The more careful generalization is known as “Mercer’s theorem”.

Kernel Trick Valid Kernels and Representer Theorem Fenchel Duality Large-Scale Kernel Methods

Fenchel Dual
Lagrangian for constrained problem is

L(v, w, z) = f(v) + r(w) + z>(Xw − v),

so the dual function is

D(z) = inf
v,w
{f(v) + r(w) + z>(Xw − v)}

For the inf wrt v we have

inf
v
{f(v)− z>v} = − sup

v
{v>z − f(v)} = −f∗(z).

For the inf wrt w we have

inf
w
{r(w) + z>Xw} = −r∗(−X>z).

This gives
D(z) = −f∗(z)− r∗(−X>z),

but we could alternately get this in terms of −z by replacing (Xw − v) with
(v −Xw) in the Lagrangian.

	Kernel Trick
	Valid Kernels and Representer Theorem
	Fenchel Duality
	Large-Scale Kernel Methods

