CPSC 540: Machine Learning

SGD Convergence Rate

Mark Schmidt

University of British Columbia

Winter 2019
Last time: Stochastic sub-gradient

- We discussed minimizing finite sums,
 \[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w), \]
 when \(n \) is very large.

- For non-smooth \(f_i \), we discussed stochastic subgradient method,
 \[w^{k+1} = w^k - \alpha_k g_{i_k}, \]
 for some \(g_{i_k} \in \partial f_{i_k}(w^k) \) for some random \(i_k \in \{1, 2, \ldots, n\} \).
 - May increase \(f \), but moves closer to \(w^* \) for small \(\alpha_k \) in expectation.

- Same rate as deterministic subgradient method but \(n \) times faster.
Stochastic Gradient Convergence Assumptions

- We're going to analyze stochastic gradient rate under these assumptions:
 - f is bounded below (not necessarily convex).
 - ∇f is L-Lipschitz continuous.
 - $\mathbb{E}[\|\nabla f_i(w)\|^2] \leq \sigma^2$ for some constant σ^2 and all w ("variance" is bounded).
 - This bounds the worst-case effect of the "bad term".

- Possible to relax noise bound to more-realistic $\mathbb{E}[\|\nabla f_i(w^k) - \nabla f(w^k)\|^2] \leq \sigma^2$.
 - Just get some extra terms in the result.

- Possible to show similar results for non-smooth functions.
 - Need something stronger than "bounded below" ("weak convexity" or "tame").
Convergence Rate of Stochastic Gradient Method

- Let's use the “variance” bound inside previous bound,

\[
\mathbb{E}[f(w^{k+1})] \leq f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L}{2} \mathbb{E}[\|\nabla f_i(w^k)\|^2]
\]

\[
\leq f(w^k) - \alpha_k \|\nabla f(w^k)\|^2 + \alpha_k^2 \frac{L\sigma^2}{2}
\]

- As before, re-arrange to get the gradient norm on the left side,

\[
\alpha_k \|\nabla f(w^k)\|^2 \leq f(w^k) - \mathbb{E}[f(w^{k+1})] + \alpha_k^2 \frac{L\sigma^2}{2}.
\]

- Sum this up (and use iterated expectation) to get

\[
\sum_{k=1}^{t} \alpha_k \mathbb{E}[\|\nabla f(w^k)\|^2] \leq \sum_{k=1}^{t} \mathbb{E}[f(w^{k-1}) - \mathbb{E}[f(w^{k})]] + \sum_{k=1}^{t} \alpha_k^2 \frac{L\sigma^2}{2}.
\]
Convergence Rate of Stochastic Gradient Method

- The bound from the previous slide:

\[
\sum_{k=1}^{t} \alpha_{k-1} \mathbb{E}\left[\|\nabla f(w_{k-1})\|^2\right] \leq \sum_{k=1}^{t} \left[\mathbb{E}f(w_{k-1}) - \mathbb{E}f(w_k)\right] + \sum_{k=1}^{t} \alpha_{k-1}^2 \frac{L\sigma^2}{2}.
\]

- Applying the above operations gives

\[
\min_{k=0,1,\ldots,t-1} \left\{\mathbb{E}\left[\|\nabla f(w_k)\|^2\right]\right\} \sum_{k=0}^{t-1} \alpha_k \leq f(w^0) - \mathbb{E}f(w_t) + \frac{L\sigma^2}{2} \sum_{k=0}^{t-1} \alpha_k^2.
\]

- Using \(\mathbb{E}f(w^k) \geq f^*\) and dividing both sides by \(\sum_k \alpha_k - 1\) gives

\[
\min_{k=0,1,\ldots,t-1} \left\{\mathbb{E}\left[\|\nabla f(w_k)\|^2\right]\right\} \leq \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \sum_{k=0}^{t-1} \alpha_k^2.
\]
Convergence Rate of Stochastic Gradient Method

The final bound:
\[
\min_{k=0,1,...,t-1} \left\{ \mathbb{E} \| \nabla f(w^k) \|^2 \right\} \leq \frac{f(w^0) - f^*}{\sum_{k=0}^{t-1} \alpha_k} + \frac{L\sigma^2}{2} \sum_{k=0}^{t-1} \frac{\alpha_k^2}{\sum_{k=0}^{t-1} \alpha_k}.
\]

If \(\sigma^2 = 0 \), then we could use a constant step-size and would get a \(O(1/t) \) rate.
- Same as regular gradient descent.
- But due to stochasticity, convergence rate is determined by \(\sum_k \alpha_k^2 / \sum_k \alpha_k \).

Classic decreasing step-sizes: set \(\alpha_k = \alpha/k \) for some \(\alpha \).
- Gives \(\sum_k \alpha_k = O(\log(t)) \) and \(\sum_k \alpha_k^2 = O(1) \), so error at \(t \) is \(O(1/\log(t)) \).

Bigger decreasing step-sizes: set \(\alpha_k = \alpha/\sqrt{k} \) for some \(\alpha \).
- Gives \(\sum_k \alpha_k = O(\sqrt{k}) \) and \(\sum_k \alpha_k^2 = O(\log(k)) \), so error at \(t \) is \(O(\log(t)/\sqrt{t}) \).

Constant step-sizes: set \(\alpha_k = \alpha \) for some \(\alpha \).
- Gives \(\sum_k \alpha_k = k\alpha \) and \(\sum_k \alpha_k^2 = k\alpha^2 \), so error at \(t \) is \(O(1/t) + O(\alpha) \).
Convergence of Stochastic [Sub]Gradient under Strong Convexity

- You can get faster rates if f is strongly-convex:
 - With decreasing $\alpha_k = 1/\mu k$ you get $O(1/t)$ for t iterations (but not linear).
 - But be careful, if you over-estimate μ rate can be much worse.
 - Also, initial steps are huge (this approach only seems to work for binary SVMs).

 - With constant $\alpha_k = \alpha < 1/2\mu$ you get $O(\rho^k) + O(\alpha)$ for t iterations.
 - Linear convergence up to some accuracy proportional to α for sufficiently small α.

- For non-smooth strongly-convex f you get similar results:
 - Setting $\alpha_k = 1/\mu k$ gives $O(\log(t)/t)$.
 - Can improve to $O(1/t)$ by using averaging of the last $t/2$ values of w^k.

 - Setting $\alpha_k = \alpha < 1/2\mu$ still gives $\mathbb{E}[\|w^k - w^*\|^2] = O(\rho^k) + O(\alpha)$.
 - Looks like linear convergence if far from solution (or gradients are similar).
 - No progress if close to solution or have high variance in gradients.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):
 \[\mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha\mu)^k\|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu},\]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):
 \[
 \mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha\mu)^k \|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu},
 \]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):
 \[E[\|w^k - w^*\|^2] \leq (1 - 2\alpha \mu)^k \|w^0 - w^*\|^2 + \frac{\alpha \sigma^2}{2\mu}, \]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):
 \[\mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha\mu)^k\|w^0 - w^*\|^2 + \frac{\alpha\sigma^2}{2\mu}, \]

- First term looks like linear convergence, but second term does not go to zero.
Stochastic Subgradient with Constant Step Size

- Expected distance with constant step-size and strong convexity (see bonus):

\[\mathbb{E}[\| w^k - w^* \|^2] \leq (1 - 2\alpha \mu)^k \| w^0 - w^* \|^2 + \frac{\alpha \sigma^2}{2\mu}, \]

- First term looks like linear convergence, but second term does not go to zero.

- Theory justifies “divide the step-size in half if it looks like it’s stalled” heuristic.
 - Halving \(\alpha \) divides radius of the ball around \(w^* \) in half (similar for non-convex).
For many datasets, our feature vectors x^i are very sparse:

<table>
<thead>
<tr>
<th>“CPSC”</th>
<th>“Expedia”</th>
<th>“vicodin”</th>
<th><recipient name></th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

Consider case where d is huge but each row x^i has at most z non-zeroes:

- The $O(d)$ cost of stochastic subgradient might be too high.
- We can often modify stochastic subgradient to have $O(z)$ cost.

See bonus slides for details on this issue, and how to handle regularization.

Various forms of “lazy updates” to deal with non-sparse gradient of regularizer.
Early Stopping

- It’s hard to decide when to stop stochastic gradient.
- Common heuristic is “early stopping”:
 - Every m iterations, stop and compute the validation error.
 - Stop if the validation error starts increasing.

- This can be viewed as a form regularization (“stop overfitting before it happens”).
“Hidden” Regularization in Neural Networks

- Fitting single-layer neural network with SGD and no regularization:

 ![MNIST Results](https://www.neyshabur.net/papers/inductive_bias_poster.pdf)
 ![CIFAR-10 Results](https://www.neyshabur.net/papers/inductive_bias_poster.pdf)

- Training error goes to 0 with enough units: we’re finding a global min.

- What should happen to training and test error for larger number of hidden?
“Hidden” Regularization in Neural Networks

- Fitting single-layer neural network with SGD and no regularization:

 ![MNIST график](#)
 ![CIFAR-10 график](#)

- Test error continues to go down!?! Where is fundamental trade-off??
- There exists global mins where large number of units leads to accuracy 0.
 - But among the global minima, SGD is somehow converging to “good” ones.

https://www.neyshabur.net/papers/inductive_bias_poster.pdf
Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters.

- Beyond empirical evidence, we know this happens in simpler cases.

- Example:
 - Consider a least squares problem where there exists a w with $Xw = y$.
 - Residuals are all zero, we fit the data exactly.
 - You run [stochastic] gradient descent starting from $w = 0$.
 - Converges to solution w^* of $Xw = y$ that has minimum L2-norm.
 - So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.
Implicit Regularization of SGD

- There is growing evidence that using SGD regularizes parameters.

- Beyond empirical evidence, we know this happens in simpler cases.

- Example:
 - Consider a logistic regression problem where data is linearly separable.
 - We can fit the data exactly.
 - You run [stochastic] gradient descent starting from $w = 0$.
 - Converges to max-margin solution w^* of the problem.
 - So using SGD is equivalent to encouraging large margin (and to SVM solutions).
Stochastic Nesterov/Newton Methods?

- Should we use Nesterov/Newton-like stochastic methods?
 - These **do not** improve the $O(1/\epsilon)$ convergence rate.

- In fact, there is a **negative result** due to Polyak and Ruppert:
 - Classic result is that scaling by $\nabla^2 f(w^*)$ gives optimal asymptotic rate.
 - You can get same rate without Hessian, by just averaging the later iterations:

 $$\bar{w}^t = \frac{1}{t-k} \sum_{k'=k}^{t} w^{k'}$$

- Practical averaging strategies:
 - Could weight all iterations equally.
 - Could ignore first half of the iterations then weight equally.
 - Could weight proportional to k.
Some positive results regarding stochastic Nesterov/Newton:

- Nesterov/Newton can improve dependence on L and μ.

- Two-phase Newton-like method achieves $O(1/\epsilon)$ without strong-convexity.

- AdaGrad method,

\[
 w^{k+1} = w^k + \alpha D^{-1} g_{ik}, \quad \text{with diagonal } D_{jj} = \sqrt{\delta + \sum_{k'=0}^{k} (\nabla_j f_{ik'}(w^{k'}))^2},
\]

improves “regret” but not optimization error.

Some heuristic extensions of AdaGrad:

- RMSprop: variant of AdaGrad where step-size does not go to zero.
- Adam: variant where momentum is added.
- Recent work: these AdaGrad variants have worse implicit regularization.
Outline

1. More Stochastic Subgradient

2. Mini-Batches and Batching
Better Methods for Smooth Objectives and Finite Datasets?

- **Stochastic methods:**
 - $O(1/\epsilon)$ iterations but requires 1 gradient per iteration.
 - Rates are unimprovable for general stochastic objectives.

- **Deterministic methods:**
 - $O(\log(1/\epsilon))$ iterations but requires n gradients per iteration.
 - The faster rate is possible because n is finite.

- For finite n, can we design a better method?
Hybrid Deterministic-Stochastic

- Approach 1: control the sample size.
 - Deterministic method uses all n gradients,
 \[\nabla f(w^k) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w^k). \]
 - Stochastic method approximates it with 1 sample,
 \[\nabla f_{i_k}(w^k) \approx \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w^k). \]

- A common variant is to use larger sample B^k ("mini-batch"),
 \[\frac{1}{|B^k|} \sum_{i \in B^k} \nabla f_i(w^k) \approx \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w^k), \]
 particularly useful for vectorization/parallelization.
 - For example, with 16 cores set $|B^k| = 16$ and compute 16 gradients at once.
Mini-Batching as Gradient Descent with Error

- The SG method with a sample B^k (“mini-batch”) uses iterations

$$w^{k+1} = w^k - \frac{\alpha_k}{|B^k|} \sum_{i \in B^k} \nabla f_i(w^k).$$

- Let’s view this as a “gradient method with error”,

$$w^{k+1} = w^k - \alpha_k (\nabla f(w^k) + e^k),$$

where e^k is the difference between approximate and true gradient.

- If you use $\alpha_k = 1/L$, then using descent lemma this algorithm has

$$f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \| \nabla f(w^k) \|^2 + \frac{1}{2L} \| e^k \|^2,$$

for any error e^k.

Mini-Batches and Batching
Effect of Error on Convergence Rate

- Our progress bound with $\alpha_k = 1/L$ and error in the gradient of e^k is

 $$f(w^{k+1}) \leq f(w^k) - \frac{1}{2L} \left\| \nabla f(w^k) \right\|^2 + \frac{1}{2L} \left\| e^k \right\|^2.$$

 - good
 - bad

- Connection between “error-free” rate and “with error” rate:
 - If “error-free” rate is $O(1/k)$, you maintain this rate if $\left\| e^k \right\|^2 = O(1/k)$.
 - If “error-free” rate is $O(\rho^k)$, you maintain this rate if $\left\| e^k \right\|^2 = O(\rho^k)$.
 - If error goes to zero more slowly, then rate that it goes to zero becomes bottleneck.

- So to understanding effect of batch-size, need to know how $|B^k|$ affects $\left\| e^k \right\|^2$.
Effect of Batch Size on Error

- Effect of batch size $|B^k|$ control error size e^k.
 - If we sample with replacement we get
 \[
 \mathbb{E}[\|e^k\|^2] = \frac{1}{|B^k|} \sigma^2,
 \]
 where σ^2 is the variance of the gradient norms.
 - “Doubling the batch size cuts the error in half”.
 - If we sample without replacement from a training set of size n we get
 \[
 \mathbb{E}[\|e^k\|^2] = \frac{n - |B^k|}{n} \frac{1}{|B^k|} \sigma^2,
 \]
 which drives error to zero as batch size approaches n.
 - For $O(\rho^k)$ linear convergence, need a schedule like $|B^{k+1}| = |B^k|/\rho$.
 - For $O(1/k)$ sublinear convergence, need a schedule like $|B^{k+1}| = |B^k| + \text{const.}$
Batching: Growing-Batch-Size Methods

The SG method with a sample B^k uses iterations

$$w^{k+1} = w^k - \frac{\alpha_k}{|B^k|} \sum_{i \in B^k} \nabla f_i(w^k).$$

For a fixed sample size $|B^k|$, the rate is sublinear.
- Still need step-size to go to zero to get convergence.

But we can grow $|B^k|$ to achieve a faster rate:
- Early iterations are cheap like SG iterations.
- Later iterations can use a sophisticated gradient method.
 - No need to set a magical step-size: use a line-search.
 - Can incorporate linear-time approximations to Newton.

Another approach: at some point switch from stochastic to deterministic:
- Often after a small number of passes (but hard to know when to switch).
Summary

- **Stochastic subgradient convergence rate:**
 - **Constant step-size:** subgradient quickly converges to approximate solution.
 - **Decreasing step-size:** subgradient slowly converges to exact solution.

- **Practical aspects of stochastic gradient methods:**
 - Sparse datasets, early stopping, “hidden regularization”.
 - Negative and positive results regarding second-order methods.

- **Increasing batch sizes:**
 - Leads to faster rate in terms of iterations.
 - Makes setting the step-size easier.

- **Next time:** new stochastic methods with fast rates batch size of 1.
Convergence Rate of Stochastic Subgradient Method

- The basic stochastic subgradient method (for random i_t and $g_{i_t} \in \partial f_{i_t}(x^t)$):
 \[x^{t+1} = x^t - \alpha g_{i_t}, \]

- We can't use descent lemma because f is non-differentiable.

- Since function value may not decrease, we analyze distance to x^*:
 \[\|x^t - x^*\|^2 = \|(x^{t-1} - \alpha_t g_{i_t}) - x^*\|^2 \]
 \[= \|(x^{t-1} - x^*) - \alpha_t g_{i_t}\|^2 \]
 \[= \|x^{t-1} - x^*\|^2 - 2\alpha_t g_{i_t}^\top (x^{t-1} - x^*) + \alpha_t^2 \|g_{i_t}\|^2. \]

- Take expectation with respect to i_t:
 \[\mathbb{E}[\|x^t - x^*\|^2] = \mathbb{E}[\|x^{t-1} - x^*\|^2] - 2\alpha_t \mathbb{E}[g_{i_t}^\top (x^{t-1} - x^*)] + \alpha_t^2 \mathbb{E}[\|g_{i_t}\|^2] \]
 \[= \underbrace{\|x^{t-1} - x^*\|^2}_{\text{old distance}} - 2\alpha_t g_{i_t}^\top (x^{t-1} - x^*) + \alpha_t^2 \underbrace{\mathbb{E}[\|g_{i_t}\|^2]}_{\text{“variance”}}. \]

where g_t is a subgradient of f at w^k (expected progress is positive by convexity).
Convergence Rate of Stochastic Subgradient

- Our expected distance given x^{t-1} is

$$\mathbb{E}[\|x^t - x^*\|^2] = \|x^{t-1} - x^*\|^2 - 2\alpha_t g_t^\top (x^{t-1} - x^*) + \alpha_t^2 \mathbb{E}[\|g_t\|^2].$$

- It follows from strong-convexity that (next slide),

$$g_t^\top (x^{t-1} - x^*) \geq \mu \|x^{t-1} - x^*\|^2,$$

which gives (assuming variance is bounded by constant σ^2):

$$\mathbb{E}[\|x^t - x^*\|^2] \leq \|x^{t-1} - x^*\|^2 - 2\alpha_t \mu \|x^{t-1} - x^*\|^2 + \alpha_t^2 \sigma^2$$

$$= (1 - 2\alpha_t \mu) \|x^{t-1} - x^*\|^2 + \alpha_t^2 \sigma^2.$$

- With constant $\alpha_k = \alpha$ (with $\alpha < 2/\mu$) and applying recursively we get (with work)

$$\mathbb{E}[\|w^k - w^*\|^2] \leq (1 - 2\alpha \mu)^k \|w^0 - w^*\|^2 + \frac{\alpha \sigma^2}{2\mu},$$

where second term bounds a geometric series.
Strong-Convexity Inequalities for Non-Differentiable f

- A “first-order” relationship between subgradient and strong-convexity:
 - If f is μ-strongly convex then for all x and y we have
 \[
 f(y) \geq f(x) + f'(y)\top (y - x) + \frac{\mu}{2} \|y - x\|^2,
 \]
 for $f'(y) \in \partial f(x)$.
 - The first-order definition of strong-convexity, but with subgradient replacing gradient.
 - Reversing y and x we can write
 \[
 f(x) \geq f(y) + f'(x)\top (x - y) + \frac{\mu}{2} \|x - y\|^2,
 \]
 for $f'(x) \in \partial f(x)$.
 - Adding the above together gives
 \[
 (f'(y) - f'(x))\top (y - x)) \geq \mu \|y - x\|^2.
 \]
 - Applying this with $y = x^{t-1}$ and subgradient g_t and $x = x^*$ (which has $f'(x^*) = 0$ for some subgradient) gives
 \[
 (g_t - 0)\top (x^{t-1} - x^*) \geq \mu \|x^{t-1} - x^*\|^2.
 \]
Convergence Rate of Stochastic Subgradient

- For full details of analyzing stochastic gradient under strong convexity, see:
 - Constant α_k: http://circle.ubc.ca/bitstream/handle/2429/50358/stochasticGradientConstant.pdf.

- For both cases under PL, see Theorem 4 here:
Operations on Sparse Vectors

- Consider a vector \(g \in \mathbb{R}^d \) with at most \(z \) non-zeroes:

\[
g^T = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & 0 & -0.5 & 0 & 0 & 0 \end{bmatrix}.
\]

- If \(z << d \), we can store the vector using \(O(z) \) storage instead of \(O(d) \):
 - Just store the non-zero values:
 \[
g^T_{\text{value}} = \begin{bmatrix} 1 & 2 & -0.5 \end{bmatrix}.
\]
 - Store index of each non-zero ("pointer"):
 \[
g^T_{\text{point}} = \begin{bmatrix} 4 & 5 & 7 \end{bmatrix}.
\]

- With this representation, we can do standard vector operations in \(O(z) \):
 - Compute \(\alpha g \) in \(O(z) \) by setting \(g_{\text{value}} = \alpha g_{\text{value}} \).
 - Compute \(w^T g \) in \(O(z) \) by multiplying \(g_{\text{value}} \) by \(w \) at positions \(g_{\text{point}} \).
Stochastic Subgradient with Sparse Features

- Consider optimizing the hinge-loss,

$$\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y^i (w^T x^i)\},$$

when \(d\) is huge but each \(x^i\) has at most \(z\) non-zeroes.

- A stochastic subgradient method could use

$$w^{k+1} = w^k - \alpha_k g_k,$$

where

$$g_i = \begin{cases} -y^i x^i & \text{if } 1 - y^i (w^T x^i) > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Calculating \(w^{k+1}\) is \(O(z)\) since these are sparse vector operations.

- So stochastic subgradient is fast if \(z\) is small even if \(d\) is large.

 - This is how you “train on all e-mails”: each e-mail has a limited number of words.
But consider the L2-regularized hinge-loss in the same setting,

$$\text{argmin}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x^i)\} + \frac{\lambda}{2} \|w\|^2,$$

using a stochastic subgradient method,

$$w^{k+1} = w^k - \alpha_k g_{ik} - \alpha_k \lambda w^k,$$

where g_{ik} is same as before.

Problems is that w^k could have d non-zeroes:
- So adding L2-regularization increases cost from $O(z)$ to $O(d)$?

There are two standard ways to keep the cost at $O(z)$:
- L2-regularization: use a $w^k = \beta^k v^k$ (scalar times vector) representation.
- “Lazy” updates (which work for many regularizers).
More Stochastic Subgradient

Stochastic Subgradient with Sparse Features

- But consider the L2-regularized hinge-loss in the same setting,

\[
\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i (w^T x_i)\} + \frac{\lambda}{2} \|w\|^2,
\]

using a stochastic subgradient method,

\[
w^{k+1} = w^k - \alpha_k g_{i_k} - \alpha_k \lambda w^k, \text{ where } g_{i_k} \text{ is same as before}
\]

- Problems is that \(w^t\) could have \(d\) non-zeroes:
 - So adding L2-regularization increases cost from \(O(z)\) to \(O(d)\)?
 - To use L2-regularization and keep \(O(z)\) cost, re-write iteration as

\[
w^{t+1} = w^t - \alpha_t g_{i_t} - \alpha_t \lambda w^t
\]

\[
= (1 - \alpha_t \lambda) w^t - \alpha_t g_{i_t}.
\]

changes scale of \(w^t\) sparse update
Let’s write the update as two steps

\[w^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) w^t, \quad w^{t+1} = w^{t+\frac{1}{2}} - \alpha_t g_{i_t}. \]

We can implement both steps in \(O(z) \) if we re-parameterize as

\[w^t = \beta^t v^t, \]

for some scalar \(\beta^t \) and vector \(v^t \).

For the first step we can use

\[\beta^{t+\frac{1}{2}} = (1 - \alpha_t \lambda) \beta^t, \quad v^{t+\frac{1}{2}} = v^t. \]

which costs \(O(1) \).

For the second step we can use

\[\beta^{t+1} = \beta^{t+\frac{1}{2}}, \quad v^{t+1} = v^{t+\frac{1}{2}} - \frac{\alpha_t}{\beta^{t+\frac{1}{2}}} g_{i_t}, \]

which costs \(O(z) \).
Lazy Updates for Sparse Features with Dense Regularizers

Consider a feature j that has been zero in the loss for 10 iterations (constant α):

$$w_j^k = w_j^{k-1} \cdot 0 - \alpha \lambda w_j^{k-1}$$

$$= (1 - \alpha \lambda) w_j^{k-1}$$

$$= (1 - \alpha \lambda)^2 w_j^{k-2}$$

$$\vdots$$

$$= (1 - \alpha \lambda)^{10} w_j^{k-10}.$$

So we can apply 10 regularizer gradient steps in $O(1)$.

Lazy updates:

- If j is zero in g_{i_k}, do nothing.
- If j is non-zero, apply all the old regularizer updates then do the gradient step.
 - Requires keeping a “checkpoint” of the last time each variable was updated.
Lazy Updates for Sparse Features with Dense Regularizers

- **Lazy updates** that track cumulative effects of simple updates.

- Consider a **stochastic proximal-gradient** for L1-regularization:
 - Soft-threshold operator with constant step-size α applies to each element,

 $$w_{j}^{k+1} = \text{sign}(w_{j}^{k}) \max\{0, |w_{j}^{k}| - \alpha \lambda\}.$$
 - If all that happens to w_{j} for 10 iterations is the proximal operator, we can use

 $$w_{j}^{k+10} = \text{sign}(w_{j}^{k}) \max\{0, |w_{j}^{k}| - 10\alpha \lambda\}.$$

- **Digression:** **stochastic proximal-gradient** methods:
 - Same convergence rates as basic stochastic gradient method (doesn’t help).
 - Unlike deterministic proximal-gradient method, does not find final non-zero pattern in finite time.
 - **Regularized dual averaging** is a variant that has this property.