
More Coordinate Optimization Stochastic Sub-Gradient

CPSC 540: Machine Learning
Stochastic Subgradient

Mark Schmidt

University of British Columbia

Winter 2019



More Coordinate Optimization Stochastic Sub-Gradient

Last Time: Coordinate Optimization

In coordinate optimization we only update one variable on each iteration.

wk+1
jk

= wkjk − αk∇kf(wk),

More efficient than gradient descent if the iterations are d-times cheaper.
True for pairwise separable f like label propagation,

f(w) =

d∑

i=1

fi(wj) +
∑

(i,j)∈E

fij(wi, wj).

under random choice of jk.
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Analyzing Coordinate Descent

To analyze coordinate descent, we can write it as

wk+1 = wk − αkejk∇jkf(wk),

where “elementary vector” ej has a zero in every position except j,

e>3 =
[
0 0 1 0 0 0 0

]

We usually assume that each ∇jf is L-Lipshitz (“coordinate-wise Lipschitz”),

|∇jf(w + γej)−∇jf(w)| ≤ L|γ|,

which for C2 functions is equivalent to |∇2
jjf(w)| ≤ L for all i.

(diagonals of Hessian are bounded)

This is not a stronger assumption:

If the gradient is L-Lipschitz then it’s also coordiante-wise L-Lipschitz.
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Convergence Rate of Coordinate Optimization

Coordinate-wise Lipschitz assumption implies a coordinate-wise descent lemma,

f(wk+1) ≤ f(wk) +∇jf(wk)(wk+1 − wk)j +
L

2
(wk+1 − wk)2j ,

for any wk+1 and wk that only differ in coordinate j.

With αk = 1/L (for simplicity), plugging in (wk+1 − wk) = −(1/L)ejk∇jkf(wk)
gives

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2,

a progress bound based on only updating coordinate jk.

If we did optimal update (as in label propagation), this bound would still hold.

Optimal update decreases f by at least as much as any other update.
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Convergence Rate of Randomized Coordinate Optimization

Our bound for updating coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2,

so progress depends on which jk that we choose.

Let’s consider expected progress with random selection of jk,

E[f(wk+1)] ≤ E
[
f(wk)− 1

2L
|∇jkf(wk)|2

]
(expectation wrt jk given wk)

= E[f(wk)]− 1

2L
E[|∇jkf(wk)|2] (linearity of expectation)

= f(wk)︸ ︷︷ ︸
no jk

− 1

2L

d∑

j=1

p(jk = j)|∇jf(wk)|2 (definition of expectation)
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Convergence Rate of Randomized Coordinate Optimization

The bound from the previous slide is

E[f(wk+1)] ≤ f(wk)− 1

2L

d∑

j=1

p(jk = j)|∇jf(wk)|2.

Let’s choose jk uniformly in this bound, p(jk = j) = 1/d.

E[f(wk+1)] ≤ f(wk)− 1

2L

d∑

j=1

1

d
|∇jf(wk)|2

= f(wk)− 1

2dL

d∑

j=1

|∇jf(wk)|2

= f(wk)− 1

2dL
‖∇f(wk)‖2.
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Convergence Rate of Randomized Coordinate Optimization

Our guaranteed progress bound for randomized coordinate optimization,

E[f(wk+1))] ≤ f(wk)− 1

2dL
‖∇f(wk)‖2.

If we use strongly convexity or PL and recurse carefully (see bonus) we get

E[f(wk)]− f∗ ≤
(

1− µ

dL

)k
[f(w0)− f∗].

which means we expect to need O
(
dLµ log(1/ε)

)
iterations.

For PL functions gradient descent needs O
(
L
µ log(1/ε)

)
iterations.

So coordinate optimization needs d-times as many iterations?
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Randomized Coordinate Optimization vs. Gradient Descent
If coordinate descent step are d-times cheaper then both algorithms need

O

(
L

µ
log(1/ε)

)
,

in terms of “gradient descent iteration cost”.

So why prefer coordinate optimization?

The Lipschitz constants L are different.
Gradient descent uses Lf and coordinate optimization uses Lc.
Lc is maximum gradient changes if you change one coordinate.
Lf is maximum gradient changes if you change all coordinates.

Since Lc ≤ Lf , coordinate optimization is faster.
The gain is because coordinate descent allows bigger step-sizes.
For [non-]convex functions, similar trade-off: O(Lf/ε) vs. O(dLc/ε) iterations.
Comparison is harder with line-search/coordinate-optimization, quasi-Newton, etc.
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Lipschitz Sampling

Can we do better than choosing jk uniformly at random?

You can go faster if you have an Lj for each coordinate:

|∇jf(w + γej)−∇jf(w)| ≤ Lj |γ|.

Using Ljk as the step-size and sampling jk proportional to Lj gives

E[f(wk)]− f∗ ≤
(

1− µ

dL̄

)w
[f(w0)− f∗],

where L̄ as the average Lipschitz constant (previously we used the maximum Lj).

For label propagation, this requires stronger assumptions on the graph structure:

We need expected number of edges connected to jk to be O(|E|/d).
This might not be true if the high-degree nodes have the highest Lj values.
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Greedy Gauss-Southwell Selection Rule

Our bound on the progress if we choose coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2.

and the “best” jk according to the bound is

jk ∈ argmax
j
{|∇jf(wk)|},

This is called greedy selection or the Gauss-Southwell rule.

x1 x2 x3
Gauss-Southwell
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Greedy Gauss-Southwell Selection Rule

Our bound on the progress if we choose coordinate jk is

f(wk+1) ≤ f(wk)− 1

2L
|∇jkf(wk)|2.

and the “best” jk according to the bound is

jk ∈ argmax
j
{|∇jf(wk)|},

This is called greedy selection or the Gauss-Southwell rule.

Can we ever find max gradient value d-times cheaper than computing gradient?
Yes, for pairwise-separable where maximum degree is similar to average degree.

Includes lattice-structured graphs, complete graphs, and Facebook graph.

You can efficiently track the gradient values and track the max with a max-heap.
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Numerical Comparison of Coordinate Selection Rules
Comparison on problems where Gauss-Southwell has similar cost to random:
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“Cyclic” goes through the j in order: bad worst-case bounds but often works well
There also exist accelerated coordinate descent methods.
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Problems Suitable for Coordinate Optimization

We now know that many problems satisfy the “d-times faster” condition.

For example, composition of a smooth function with affine map plus separable

F (w) = f(Aw) +

d∑

j=1

fj(wj)

for a matrix A, smooth function f , and potentially non-smooth fj .
Includes L1-regularized least squares, logistic regression, etc.

Key idea: you can track Aw as you go for a cost O(n) instead of O(nd) (bonus).

In this setting, we get same rate as if non-smooth fj were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)

Recent works: coordinate optimization leads to faster PageRank methods.
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Finite-Sum Optimization Problems

Solving our standard regularized optimization problem

argmin
w∈Rd

n∑

i=1

lossi(w) + r(w),

data fitting term + regularizer

is a special case of solving the generic finite-sum optimization problem

argmin
w∈Rd

1

n

n∑

i=1

fi(w),

where fi(w) = lossi(w) + 1
nr(w).

Gradient methods are effective when d is very large.
What if number of training examples n is very large?

E.g., ImageNet has ≈ 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

We consider minimizing f(w) = 1
n

∑n
i=1 fi(w).

Deterministic gradient method [Cauchy, 1847]:

wk+1 = wk − αk∇f(wk) = wk − αk
n

n∑

i=1

∇fi(wk).

Iteration cost is linear in n.
Convergence with constant αk or line-search.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods
Stochastic gradient method [Robbins & Monro, 1951]:

Random selection of ik from {1, 2, . . . , n}.
wk+1 = wk − αk∇fik(wk).

With p(ik = i) = 1/n, the stochastic gradient is an unbiased estimate of gradient,

E[∇fik(w)] =

n∑

i=1

p(ik = i)∇fi(w) =

n∑

i=1

1

n
∇fi(w) =

1

n

n∑

i=1

∇fi(w) = ∇f(w).

Iteration cost is independent of n.
Convergence requires αk → 0.

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)
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Stochastic vs. Deterministic Gradient Methods
Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption Deterministic Stochastic

Convex O(1/
√
ε) O(1/ε2)

Strongly O(log(1/ε)) O(1/ε)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable with “unbiased gradient approximation” oracle.

Oracle returns a gk satisfying E[gk] = ∇f(wk).

Momentum and Newton-like methods do not improve rates in stochastic case.

Can only improve constant factors.
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine (SVM) objective:

f(w) =

n∑

i=1

max{0, 1− yi(w>xi)}+
λ

2
‖w‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/ε2) O(1/ε2)
Strongly O(1/ε) O(1/ε)

So for non-smooth problems:

Deterministic methods are not faster than stochastic method.
So use stochastic subgradient (iterations are n times faster).
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Subgradient Method

The basic subgradient method:

wk+1 = wk − αkgk,

for some gk ∈ ∂f(wk).

Decreases distance to solution for small enough αk (for convex f).

The basic stochastic subgradient method:

wk+1 = wk − αkgik ,

for some gik ∈ ∂fik(wk) for some random ik ∈ {1, 2, . . . , n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough αk (for convex f).
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Convergence Rate of Stochastic Gradient Method

We’ll first show progress bound for stochastic gradient assuming ∇f is Lipschitz.

We’ll come back to the non-smooth case.

Recall the the descent lemma applied to wk+1 and wk,

f(wk+1) ≤ f(wk) +∇f(wk)>(wk+1 − wk) +
L

2
‖wk+1 − wk‖2.

Plugging in stochastic gradient iteration (wk+1 − wk) = −αk∇fik(wk) gives

f(wk+1) ≤ f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.
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Convergence Rate of Stochastic Gradient Method

So far any choice of αk and ik we have

f(wk+1) ≤ f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2.

Let’s take the expectation with respect to ik assuming p(ik = i) = 1/n,

E[f(wk+1)] ≤ E[f(wk)− αk∇f(wk)>∇fik(wk) + α2
k

L

2
‖∇fik(wk)‖2]

= f(wk)− αk∇f(wk)>E[∇fik(wk)] + α2
k

L

2
E[‖∇fik(wk)‖2],

where the second line uses linearity of expectation (and αk not depending on ik).

We know that E[∇fik(wk)] = ∇f(wk) (unbiased) so this gives

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.
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Convergence Rate of Stochastic Gradient Method

So a progress bound for stochastic gradient is

E[f(wk+1)] ≤ f(wk)− αk‖∇f(wk)‖2︸ ︷︷ ︸
good

+ α2
k

L

2
E[‖∇fik(wk)‖2]

︸ ︷︷ ︸
bad

.

“Good” term looks like usual measure of progress: big gradient → big progress.

“Bad” term is the problem: less progress if gradients are very different.

And now choosing αk = 1/L might not be small enough.
But we can control badness: if αk is small then αk >> α2

k.

Step-size αk controls how fast we move towards solution.

And squared step-size α2
k controls how much variance moves us away.

This term will destroy linear convergence.
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Summary

Convergence rate of d coordinate descent iterations is faster than gradient descent.

Better coordinate selection with Lipschitz sampling or Gauss-Southwell.

f(Ax) +
∑

j fj(wj) structure also allows coordinate optimization.

Even for non-smooth fj .

Stochastic subgadient method: same rate as subgradient but n times cheaper.

Next time: new stochastic methods with linear convergence rates.
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Applying Expected Bound Recursively (Coordinate Optimization)

Our guaranteed progress bound for randomized coordinate optimization,

E[f(wk+1))] ≤ f(wk)− 1

2dL
‖∇f(wk)‖2.

If we subtract f∗ and use strong-convexity or PL (as before),

E[f(wk+1)]− f∗ ≤
(

1− µ

dL

)
[f(wk)− f∗].

By recursing we get linear convergence rate,

E[E[f(wk+1)]]− f∗ ≤ E
[(

1− µ

dL

)
[f(wk)− f∗]

]
(expectation wrt jk−1)

E[f(wk+1)]− f(w∗) ≤
(

1− µ

dL

)
[E[f(wk)]− f∗] (iterated expectations)

≤
(

1− µ

dL

)2
[f(wk−1)− f∗]

You keep alternating between taking an expectation back in time and recursing.
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Gauss-Southwell Convergence Rate

The progress bound under the greedy Gauss-Southwell rule is

f(wk+1) ≤ f(wk)− 1

2L
‖∇f(wk)‖2∞,

and this leads to a faster rate of

f(wk)− f∗ ≤
(

1− µ1
L

)k
[f(w0)− f∗],

where µ1 is the PL constant in the ∞-norm

µ[f(w)− f∗] ≤ 1

2
‖f(w)‖2∞.

This is faster because µ
n ≤ µ1 ≤ µ (by norm equivalences).

If you know the Lj values, a faster rule is “Gauss-Southwell-Lipschitz”.
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Gauss-Southwell-Lipschitz
Our bound on the progress with an Lj for each coordinate is

f(wk+1) ≤ f(wk)− 1

2Ljk
|∇jkf(wk)|2.

The best coordinate to update according to this bound is

jk ∈ argmax
j

|∇jf(wk)|2
Lj

which is called the Gauss-Southwell-Lipschitz rule.
“If gradients are similar, pick the one that changes more slowly”.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

This is the optimal update for quadratic functions.
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Problems Suitable for Coordinate Optimization
We now know that many problems satisfy the “d-times faster” condition.

For example, consider composition of a smooth function with affine map,

F (w) = f(Aw),

for a matrix A and a smooth function g with cost of O(n).
(includes least squares and logistic regression)

Using f ′ as the gradient of f , the partial derivatives have the form

∇jF (x) = a>j f
′(Aw).

If we have Aw, this costs O(n) instead of O(nd) for the full gradient.

We can track the product Awk as we go with O(n) cost,

Awk+1 = A(wk + γkejk) = Awk︸︷︷︸
old value

+γk Aejk︸︷︷︸
O(n)

,
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Coordinate Optimization for Non-Smooth Objectives

We can apply coordinate optimization for problems of the form

F (x) = f(x)︸︷︷︸
smooth

+

d∑

j=1

fj(xj)

︸ ︷︷ ︸
separable

,

where the fj can be non-smooth.
This includes enforcing non-negative constraints, or using L1-regularization.

For proximal-PL F , with coordinate-wise proximal-gradient steps we have

E[f(wk)]− f∗ ≤
(

1− µ

dL

)k
[f(w0)− f∗],

the same convergence linear rate as if the non-smooth fj were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)
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Block Coordinate Descent

We can’t apply coordinate optimization for group L1-regularization.

Non-smooth term is non-separable, so coordinate optimization can get stuck.

Block coordinate optimization and block coordinate descent:

Update groups of variables on each iteration.

If you choose the “blocks” to be the “groups”, you can apply to group
L1-regularization.

Many problems have this “block” structure.

You might also use blocks to apply Newton’s method to the blocks.
This is efficient if the block size isn’t too big.
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