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Last Time: Coordinate Optimization

@ In coordinate optimization we only update one variable on each iteration.

1 _ ok K
wiT = w; — Vi f(w"),

@ More efficient than gradient descent if the iterations are d-times cheaper.
e True for pairwise separable f like label propagation,

d
f(w) ZZfi(wj)Jr > fijlwi, wy).

(i,7)€EE

under random choice of jy.
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Analyzing Coordinate Descent

@ To analyze coordinate descent, we can write it as

k+1 k k
wh = w — age;, Vi f(w"),

where “elementary vector” e; has a zero in every position except j,
T _
es=1[0010 0 0 0
e We usually assume that each V; f is L-Lipshitz (“coordinate-wise Lipschitz"),
IVif(w+nej) = V;f(w)| < L,

which for C? functions is equivalent to |V, f(w)| < L for all i.
(diagonals of Hessian are bounded)
@ This is not a stronger assumption:
o If the gradient is L-Lipschitz then it's also coordiante-wise L-Lipschitz.
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Convergence Rate of Coordinate Optimization

@ Coordinate-wise Lipschitz assumption implies a coordinate-wise descent lemma,

Pt < k) + 95 ) @ )+ T - k),

for any w1 and w* that only differ in coordinate j.

o With ay, = 1/L (for simplicity), plugging in (w**! —w*) = —(1/L)e;, V;, f(w")
gives

Pt < fh) — S|V F@h)P,

a progress bound based on only updating coordinate jy.

o If we did optimal update (as in label propagation), this bound would still hold.
o Optimal update decreases f by at least as much as any other update.
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Convergence Rate of Randomized Coordinate Optimization

@ Our bound for updating coordinate jj is

Pt < fh) — oIV F@h)P,

so progress depends on which j; that we choose.
@ Let's consider expected progress with random selection of ji,

E[f(w ™) <E [f(wk) - 21L|ijf(wk)|2] (expectation wrt j; given w®)
= E[f(w")] - iE[\V]'kf(wk)|2] (linearity of expectation)
Zp NVjf(w )| (definition of expectation)

no jk
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Convergence Rate of Randomized Coordinate Optimization

@ The bound from the previous slide is

d
Blf ()] < %Z P = DIV Fh)P.
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Convergence Rate of Randomized Coordinate Optimization

@ Our guaranteed progress bound for randomized coordinate optimization,

E[f(w"™))] < f(w") = o= IV f (")

2dL

@ If we use strongly convexity or PL and recurse carefully (see bonus) we get
. A% .
Elfh)] - £ < (1= 22) ) - 7.

which means we expect to need O (dZlog(1/€)) iterations.
o

e For PL functions gradient descent needs O (% log(l/e)) iterations.

@ So coordinate optimization needs d-times as many iterations?
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Randomized Coordinate Optimization vs. Gradient Descent

@ If coordinate descent step are d-times cheaper then both algorithms need
L
0 (10(1/9))
1

in terms of “gradient descent iteration cost”.

@ So why prefer coordinate optimization?

@ The Lipschitz constants L are different.
o Gradient descent uses Ly and coordinate optimization uses L.
o L. is maximum gradient changes if you change one coordinate.
e Ly is maximum gradient changes if you change all coordinates.

@ Since L. < Ly, coordinate optimization is faster.
e The gain is because coordinate descent allows bigger step-sizes.
o For [non-]convex functions, similar trade-off: O(Ly/€) vs. O(dL./¢) iterations.
o Comparison is harder with line-search/coordinate-optimization, quasi-Newton, etc.
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Lipschitz Sampling

@ Can we do better than choosing ji uniformly at random?

@ You can go faster if you have an L, for each coordinate:
IVif (w+e;) = Vif(w)| < Lyl

@ Using L;, as the step-size and sampling j; proportional to L, gives

E[f(w*) - £ < (1= £) 11" - 1),

where L as the average Lipschitz constant (previously we used the maximum L;).

@ For label propagation, this requires stronger assumptions on the graph structure:

o We need expected number of edges connected to ji to be O(|E|/d).
o This might not be true if the high-degree nodes have the highest L; values.
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Greedy Gauss-Southwell Selection Rule

@ Our bound on the progress if we choose coordinate jj is

1
Fh) < Fh) — o2 1V fb)
and the “best” j; according to the bound is
i, € argmax{|V; f(w®)]},
J

o This is called greedy selection or the Gauss-Southwell rule.

'\ Gauss-Southwell
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Greedy Gauss-Southwell Selection Rule
@ Our bound on the progress if we choose coordinate jj is
Fr) < Fb) — oIV, F@h)
and the “best” j; according to the bound is
gk € arg?ﬁaX{!ij(wk)l},
@ This is called greedy selection or the Gauss-Southwell rule.

@ Can we ever find max gradient value d-times cheaper than computing gradient?
o Yes, for pairwise-separable where maximum degree is similar to average degree.
@ Includes lattice-structured graphs, complete graphs, and Facebook graph.
e You can efficiently track the gradient values and track the max with a max-heap.
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Numerical Comparison of Coordinate Selection Rules
Comparison on problems where Gauss-Southwell has similar cost to random:

U5 -regularized sparse least squares

Tp

Objective
o o o
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“Cyclic” goes through the j in order: bad worst-case bounds but often works well
There also exist accelerated coordinate descent methods.
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Problems Suitable for Coordinate Optimization

@ We now know that many problems satisfy the “d-times faster” condition.
@ For example, composition of a smooth function with affine map plus separable
d
F(w) = f(Aw) + ) f;(wy)
j=1
for a matrix A, smooth function f, and potentially non-smooth f;.
o Includes L1-regularized least squares, logistic regression, etc.

@ Key idea: you can track Aw as you go for a cost O(n) instead of O(nd) (bonus).

@ In this setting, we get same rate as if non-smooth f; were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)

@ Recent works: coordinate optimization leads to faster PageRank methods.
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Finite-Sum Optimization Problems

@ Solving our standard regularized optimization problem

n
argminZIossi(w) +  r(w),
weR? i=1

data fitting term 4+ regularizer
is a special case of solving the generic finite-sum optimization problem
1
argmin _ ; fi(w),
where fi(w) = loss;(w) + Lr(w).
o Gradient methods are effective when d is very large.

@ What if number of training examples n is very large?
o E.g., ImageNet has =~ 14 million annotated images.
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Stochastic vs. Deterministic Gradient Methods

o We consider minimizing f(w) = 1 3" | fi(w).

n

@ Deterministic gradient method [Cauchy, 1847]:
whtl = Wk — aka(wk) S L —. Z Vfi(wk).

e lteration cost is linear in n.
o Convergence with constant «y, or line-search.
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Stochastic vs. Deterministic Gradient Methods

@ Stochastic gradient method [Robbins & Monro, 1951]:
o Random selection of 45 from {1,2,...,n}.

whtt = wh — Vi (w").

o With p(ix = i) = 1/n, the stochastic gradient is an unbiased estimate of gradient,

E[Vf,, (w szk—szz Z Vfilw) = -3 Viilw) = Vf(w),
=1

e lteration cost is mdependent of n.
e Convergence requires ay, — 0.
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Stochastic vs. Deterministic Gradient Methods
Stochastic iterations are n times faster, but how many iterations are needed?

e If Vf is Lipschitz continuous then we have:
Assumption ‘ Deterministic ‘ Stochastic

Convex O(1/+/¢) O(1/€?)
Strongly O(log(1/¢)) O(1/e)

@ Stochastic has low iteration cost but slow convergence rate.

e Sublinear rate even in strongly-convex case.
e Bounds are unimprovable with “unbiased gradient approximation” oracle.

o Oracle returns a g, satisfying E[gx] = V f(w").

@ Momentum and Newton-like methods do not improve rates in stochastic case.
e Can only improve constant factors.
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

=

stochastic

deterministic

log(excess cos

time

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

@ The story changes for non-smooth problems.

e Consider the binary support vector machine (SVM) objective:

n
A
flw) = z;max{O, 1—y(w'z)} + §Hw||2
1=
@ Rates for subgradient methods for non-smooth objectives:

Assumption ‘ Deterministic ‘ Stochastic
Convex O(1/€?) O(1/€%)
Strongly O(1/e) O(1/e)

@ So for non-smooth problems:

o Deterministic methods are not faster than stochastic method.
e So use stochastic subgradient (iterations are n times faster).
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Subgradient Method

The basic subgradient method:

k+1 _  k
=W — Oggk,

for some gy € Of (wh).

@ Decreases distance to solution for small enough ay, (for convex f).

@ The basic stochastic subgradient method:

k+1 k

w =w — Qpgi,

for some g¢;, € 0f;, (w”) for some random iy, € {1,2,... n}.

Stochastic subgradient is n times faster with similar convergence properties.

Decreases expected distance to solution for small enough a4, (for convex f).



More Coordinate Optimization Stochastic Sub-Gradient

Convergence Rate of Stochastic Gradient Method

o We'll first show progress bound for stochastic gradient assuming V f is Lipschitz.
o We'll come back to the non-smooth case.

o Recall the the descent lemma applied to w**! and w”,

f(wk+l) < f(wk) + Vf(wk)T(warl o wk) + g”wk+1 _ wkH2'

o Plugging in stochastic gradient iteration (w**! — w*) = —;, V fi, (w*) gives

F) < f(b) - g F(h) TV Fi () + o SV £ ()
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Convergence Rate of Stochastic Gradient Method

@ So far any choice of a; and i we have
L
F@™) < fw®) = apV f (") TV fig (") + af S IV iy (")
@ Let's take the expectation with respect to ix assuming p(ip = i) = 1/n,
L
E[f(w* )] <E[f(w") — axV f(w®) "V fiy (") + aignvm ()]

= f(w") =V f(w*) TE[V f;, (w >}+ak2 [V Fir ("),

where the second line uses linearity of expectation (and ay, not depending on iy).
o We know that E[V f;, (w")] = Vf(w") (unbiased) so this gives

E[f ()] < f(0¥) — o[ V£ (@b + o LB 9 i, ()]

good

bad
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Convergence Rate of Stochastic Gradient Method

@ So a progress bound for stochastic gradient is

E[f ()] < F(u¥) — o[ VS ()| + o DE]|V £, ()]

good

bad

@ "Good"” term looks like usual measure of progress: big gradient — big progress.
@ "Bad” term is the problem: less progress if gradients are very different.

e And now choosing o, = 1/L might not be small enough.
e But we can control badness: if oy is small then ap >> a%.

@ Step-size oy, controls how fast we move towards solution.
@ And squared step-size oz%, controls how much variance moves us away.
o This term will destroy linear convergence.
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Summary

Convergence rate of d coordinate descent iterations is faster than gradient descent.

Better coordinate selection with Lipschitz sampling or Gauss-Southwell.
f(Az) + 3, fj(w;) structure also allows coordinate optimization.
o Even for non-smooth f;.

Stochastic subgadient method: same rate as subgradient but n times cheaper.

@ Next time: new stochastic methods with linear convergence rates.
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Applying Expected Bound Recursively (Coordinate Optimization)

@ Our guaranteed progress bound for randomized coordinate optimization,

B[/ ()] < f(h) = 5= IV F@h)2

o If we subtract f* and use strong-convexity or PL (as before),

E[f(*)] - £* < (1= £ [f@h) - £,

@ By recursing we get linear convergence rate,

E[E[f(w* )] - f* <E[(1— 2 [f(w") — £]]  (expectation wrt ji_1)

E[f (w* )] — f(w*) < (1 - d%) [E[f(w*)] — f*]  (iterated expectations)
< (1- 2 [ - £

@ You keep alternating between taking an expectation back in time and recursing.
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Gauss-Southwell Convergence Rate

@ The progress bound under the greedy Gauss-Southwell rule is

Pt < fwh) — IV AR,
and this leads to a faster rate of
Fh) - £ < (1= Y [rd) - 71,
where 117 is the PL constant in the co-norm
ulf(w) — £ < Sl F@)
@ This is faster because % < w1 < p (by norm equivalences).

o If you know the L; values, a faster rule is “Gauss-Southwell-Lipschitz” .



Gauss-Southwell-Lipschitz

@ Our bound on the progress with an L; for each coordinate is

F) < ) = 5195 fb)

@ The best coordinate to update according to thls bound is

\v k\|2
Jr € argmax 7| Jf(w )
j Lj

which is called the Gauss-Southwell-Lipschitz rule.

o "If gradients are similar, pick the one that changes more slowly”.

Gauss-Southwell

@ This is the optimal update for quadratic functions.

Stochastic Sub-Gradient
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Problems Suitable for Coordinate Optimization

We now know that many problems satisfy the “d-times faster” condition.

For example, consider composition of a smooth function with affine map,
F(w) = f(Aw),

for a matrix A and a smooth function g with cost of O(n).
(includes least squares and logistic regression)

Using f’ as the gradient of f, the partial derivatives have the form
V;F(z) = a] f'(Aw).
If we have Aw, this costs O(n) instead of O(nd) for the full gradient.

We can track the product Aw" as we go with O(n) cost,

k+1 k k
A" = A(w" + yej, ) = Aw® +yy Aej,,
old value O(n)
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Coordinate Optimization for Non-Smooth Objectives

@ We can apply coordinate optimization for problems of the form

~—~—~

SMOO

d
F(z) = f(z) + > fi=s),
th  J=L

N——

separable

where the f; can be non-smooth.
e This includes enforcing non-negative constraints, or using L1-regularization.

@ For proximal-PL F', with coordinate-wise proximal-gradient steps we have
TR
Blf(w®)] - f* < (1 22 () - £,

the same convergence linear rate as if the non-smooth f; were not there.
(and faster than the sublinear O(1/k) rate for subgradient methods)
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Block Coordinate Descent

@ We can't apply coordinate optimization for group L1-regularization.
e Non-smooth term is non-separable, so coordinate optimization can get stuck.

@ Block coordinate optimization and block coordinate descent:
o Update groups of variables on each iteration.

@ If you choose the “blocks” to be the “groups”, you can apply to group
L1-regularization.

@ Many problems have this “block” structure.

e You might also use blocks to apply Newton's method to the blocks.
e This is efficient if the block size isn't too big.
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