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Label Propagation Coordinate Optimization

Last Time: Structured Regularization

@ We discussed total variation regularization,

argmmf Z Aij(w ) ,

(i,5)eE

if we want w; values to be similar across nodes in a graph.

@ We discussed structured sparsity,

argmmf Z)\ llwgll,

geg

where overlapping groups can enforce patterns of sparsity.

@ These regularizers aren’t “simple”, but several solvers exist.
o Gradient descent if smooth, inexact proximal gradient for non-smooth.
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Transductive Learning

@ Our usual supervised learning framework:
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@ In transductive learning, we also have unlabeled examples,
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and our goal is to label these particular examples.
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Transductive Learning

Transductive learning framework:

@ We have n labeled examples (2, 4%).
@ We have t unabeled examples Z* that we want to label.

@ This arises a lot:

o Usually getting unlabeled data is easy but getting labeled data is hard (¢ >> n).
o Typically situation: small number labeled examples and huge number of unlabeled.

@ Sometimes classifying the data is an intermediate step:

o Goal is to ulimately use labeled examples to do something else.
o "l can label a small number of examples, if it helps labeling them all”.

@ Sometimes it's not possible to obtain labels for any z°.
e Predicting gene functions is limited by what we can measure.
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Transductive Learning vs. (Semi-)Supervised Learning

Transductive learning is a special case semi-supervised learning (SSL).
o Learning with labeled and unlabeled examples (we'll come back to SSL later).

@ But transductive SSL has an unusual measure of performance:

e We don't worry about “test error” (performance on all possible examples).
o We only care about error for our “test” examples z°.

Any supervised or semi-supervised method can be used for transduction.
e Fit model, then apply it to unlabeled examples.

@ But in transductive learning, we don’t need a model that can predict on new 7,
e Some methods don't fit a generic model for mapping from z* to 1.
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Transductive Learning

@ Why should unlabeled data tell us anything about labels?
o Usually, we assume that similar features — similar labels.
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Label Propagation

Transductive Learning

@ Why should unlabeled data tell us anything about labels?
e Usually, we assume that similar features — similar labels.
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Label Propagation

Digression: Transductive vs. Inductive SSL

Coordinate Optimization

@ In transductive learning we don't need to be able to predict on new examples.
o In inductive semi-supervised learning goal is to predict well on new examples.
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Label Propagation (Graph-Based SSL)

e We could optimize the 7 to encourage “similar features — similar labels” .

@ Label propagation (“graph-based SSL") method:

o Define weights w;; saying how similar labeled example i is to unlabled example j.
o Define weights w;; saying how similar unlabeled example i is to unlabeled example j.
e Find labels * minimizing a measure of total variation on the label space:
no ot I
argmin ) ) wiily' ') +3 2. > wily — )
geER" 1 5 i=1 j=1
o First term' unlabeled example should get similar labels to “close” labeled examples.
o “If z* and @’ are similar, then 3’ should be similar to y*.”
e Second term: similar unlabeled examples should have similar labels.

o “Label information 'propagates’ through the graph of 7* values".
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Label Propagation (Graph-Based SSL)

@ Label propagation is often surprisingly effective (even with few labeled examples).

@ A common choice of the weights (many variations exist):
o Find the k-nearest neighbours of each example (among labeled and unlabeled).
o Set w;; and w;; to 0 if nodes ¢ and j aren’t neighbours.
o Otherwise, set these to some measure of similarity between features.
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Label Propagation for YouTube Tagging and Bioinformatics

@ Label propagation doesn't necessarily need features.
o Consider assigning “tags’ to YouTube vidoes (e.g., “cat”).

1

www.youtube.com
o Construct a graph based on sequence of videos that people watch.
e Give high weight if video ‘A’ is often followed/preceded by video ‘B’.
e Use label propagation to tag all videos.

@ Becoming popular in bioinformatics:

o Label a subset of genes using manual experiments.
e Find out which genes interact using more manual experiments.
o Predict function/location/etc. of genes using label propagation.


www.youtube.com

Label Propagation

Label Propagation Variations

@ Many variations on label propagation exist:

Different ways to choose the graph/weights.
Multi-class versions,

argmmzzwwlly — 7P+ = Zzwmlly — 7.

YeERtxF 1j=1 11]1

o Other measures of similarity/distance,

argmmZZj” (v, 7’ +ZZJ‘:;U )

UeRzljl =1 j=1

Variants where the given labels ¢ are also variables (as they might be wrong).
e Weight gives how much you trust original label.

Variants where the unlabeled % are regularized towards a default value.
o Can reflect that example is really far from any labeled examples.
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Beyond Gradient Descent

@ For high-dimensional problems we often prefer gradient descent over Newton.

e Gradient descent requires far more iterations.
o But iteration cost is only linear in d.

@ For very large datasets, even gradient descent iterations can be too slow.
o If iteration cost is O(nd), we may only be able to do a small number of iterations.

@ Two common strategies for yielding even cheaper iterations:

o Coordinate optimization (today).
o Stochastic gradient (next time).
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Coordinate Optimization

@ Each iteration of coordinate optimization only updates on variable:

@ For example, on iteration k we select a variable j; and set

k+1 _  k k
w;T = wj, — ar Vi, f(w"),

a gradient descent step on coordinate j;, (other w; stay the same).

e This variation is called coordinate descent (many variations exist).

Coordinate Optimization
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Why use Coordinate Descent?

@ Theoretically, coordinate descent is a provably bad algorithm:

e The convergence rate is slower than gradient descent.
e The iteration cost can be similar to gradient descent.

o Computing 1 partial derivative may have same cost as computing gradient.

@ But it is widely-used in practice:

o Nothing works better for certain problems.
o Certain fields think it is the “ultimate” algorithm.

@ 1720202770227

@ Renewed theoretical interest began with a paper by Nesterov in 2010:

e Showed global convergence rate for randomized coordinate selection.
o Coordinate descent is faster than gradient descent if iterations are d times cheaper.
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Problems Suitable for Coordinate Optimization

@ For what functions is coordinate descent d times faster than gradient descent?

@ The simplest example is separable functions,
d
Flw) =" fi(w;),
j=1

@ Here f is the sum of an f; applied to each w;, like

@) = llw —ol® = 35 (w; —vp)*.

@ Cost of gradient descent vs. coordinate descent:
o Gradient descent costs O(d) to compute each f’(wf).
o Coordinate descent costs O(1) to compute the one f; (wﬁ).
@ In fact, for separable functions you should only use coordinate optimization.
o The variables w; have “separate” effects, so can be minimized independently.
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Problems Suitable for Coordinate Optimization

@ A more interesting example is pairwise-separable functions,

d d
- ZZ i (Wi, w5),
=1 j=1

which depend on a function of each pair of variables.

@ An example is label propagation.
e Also includes any quadratic function.

@ Cost of gradient descent vs. coordinate descent:

o Gradient descent costs O(d”) to compute each f/;.
o Coordinate descent costs O(d) to compute d values of f;
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Problems Suitable for Coordinate Optimization

@ Our label propagation example looked a bit more like this:

d
Fw)y=>"filw)+ > fij(wi,wy),
J=1 (i.J)EE

where E is a set of (i,7) pairs (“edges” in a graph).

@ Adding a separable function doesn't change costs.
o We could just combine the f; with one f;;.

@ Restricting (7,j) to E' makes gradient descent cheaper:
o Now costs O(|E|) to compute gradient.
o Coordinate descent could also cost O(|E|) if degree of ji is O(|E)).

o Coordinate descent is still d times faster in expectation if you randomly pick jy.
o Each fj; is needed with probability 2/d.
o So expected cost of O(|E|/d) to compute one partial derivative.
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Label Propagation with Coordinate Optimization
@ For the binary label propagation objective,
1 t t
argmin 3" 3w 4" ) P B
yeR? =1 j=1 i=1 j=1

we can exactly optimize one coordinate given the others.
o Take the gradient with respect to a particular 7,

n t
Vil @) =2 wi(y) —5)+2) wy(y —5),
j=1 j=1

assuming that w;; = wj; (otherwise, you could replace both by their average).
e Solving for 7' gives
. .
L i wigy? + 3 Wi
= T
Z?:l Wi+ Y iq Wi
@ So coordinate optimization takes weighted average of neighbours.
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Label Propagation with Coordinate Optimization

@ Label propagation with coordinate optimization in action:

Partially Labelled Data
T T T
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Coordinate Optimization

Label Propagation with Coordinate Optimization

@ Label propagation with coordinate optimization in action:

Partially Labelled Data
T T T
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Label Propagation with Coordinate Optimization

@ Label propagation with coordinate optimization in action:

Partially Labelled Data
T T T
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Label Propagation with Coordinate Optimization

@ Label propagation with coordinate optimization in action:

Partially Labelled Data
T T T
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Label Propagation with Coordinate Optimization

@ Label propagation with coordinate optimization in action:

Partially Labelled Data
T T T

. .. ° ©®
oL o
L]

1 LY .o'. - -::‘.:.:-‘.‘-0 .

. Ve, Yee .
TS ok
c. s oe® o ..:..n .3» o® . .

o5 e ® .,.'c . g “ *
. ° * % ..' 0% o % & L
.‘o o ."'.‘ P -t .. e

. UAC S R IR R
e e @ et et .

0 LI .‘}:..'. LT ¢ ."#'..
Ce et BTN, T S
e® o - . e o, & o

s hTeglan e

sl . "'. 8 esy 9 oo, . *

. ?° iy 0 - .
. . ‘..
9 . . . L L L L




Label Propagation Coordinate Optimization

Label Propagation with Coordinate Optimization

@ Label propagation with coordinate optimization in action:

Partially Labelled Data
T T T
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Analyzing Coordinate Descent
@ To analyze coordinate descent, we can write it as
Wit = wh — age;, Vi, f(wh),
where “elementary vector” e; has a zero in every position except j,
e5=[0 0100 0 0
e We usually assume that each V; f is L-Lipshitz (“coordinate-wise Lipschitz"),

Vif(w+e;) — Vjf(w)] < Ll

which for C? functions is equivalent to |V, f(w)| < L for all i.
(diagonals of Hessian are bounded)
@ This is not a stronger assumption:
o If the gradient is L-Lipschitz then it's also coordiante-wise L-Lipschitz.
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Convergence Rate of Coordinate Optimization

@ Coordinate-wise Lipschitz assumption implies a coordinate-wise descent lemma,

Pt < k) + 95 ) @ )+ T - k),

for any w1 and w* that only differ in coordinate j.

e Using ay = 1/L (for simplicity), plugging in (w**! —w*) = —(1/L)e;, V;, f(w")
gives

Pt < fh) — oIV F@h)P,

a progress bound based on only updating coordinate jy.

o If we did optimal update (as in label propagation), this bound would still hold.
o Optimal update decreases f by at least as much as any other update.
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Convergence Rate of Randomized Coordinate Optimization

@ Our bound for updating coordinate jj is

Fk) < fh) = SV fh)P,

so progress depends on which 7, that we choose.
@ Let's consider expected progress with random selection of ji,

E[f(w* )] <E [f(w ) — ]Vka )\2] (expectation wrt j; given w)

= E[f(w")] - L]E[\ijf(w,uk)|2] (linearity of expectation)

Zp IV f(wh))? (definition of expectation)
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Convergence Rate of Randomized Coordinate Optimization

@ The bound from the previous slide is
T
BUH < $0) = 57 3t = DIV 0

@ Let's choose jj uniformly in this bound, p(jx = j) = 1/d.

d
Ef ()] < fut) %Z
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Convergence Rate of Randomized Coordinate Optimization

@ Our guaranteed progress bound for randomized coordinate optimization,

E[f(w"™))] < f(w") = o= IV f (")

2dL

@ If we use strongly convexity or PL and recurse carefully (see bonus) we get
] A% ]
Elf ()] - £ < (1= 42) [/ @®) - £1.
dL
which means we expect to need O (d% log(l/e)> iterations.
@ Remember that gradient descent needs O (ﬁ log(l/e)) iterations.

@ So coordinate optimization needs d-times as many iterations?
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Randomized Coordinate Optimization vs. Gradient Descent

o If coordinate descent step are d-times cheaper then both algorithms need
L
0] < 10g(1/e)> ,
I

in terms of gradient descent iteration costs.

@ So why prefer coordinate optimization?

@ The Lipschitz constants L are different.
o Gradient descent uses Ly and coordinate optimization uses L.
e L. is maximum gradient changes if you change one coordinate.
o L is maximum gradient changes if you change all coordinates.

@ Since L, < Ly, coordinate optimization is faster.
e By a factor that could be as large as d.
e The gain is because coordinate descent allows bigger step-sizes.



Summary

Transductive learning:

o Given labeled and unlabeled examples, label the unlabeled examples.
Label propagation:

e Transductive learning method minimizing variation in the label space.
Coordinate optimization: updating one variable at a time.

o Efficient if updates are d-times cheaper than gradient descent.

Next time: the most important algorithm in machine learning.

Coordinate Optimization
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Applying Expected Bound Recursively

@ Our guaranteed progress bound for randomized coordinate optimization,

B[/ ()] < f(h) = 5= IV F@h)2

o If we subtract f* and use strong-convexity or PL (as before),

E[f(*)] - £* < (1= £ [f@h) - £,

@ By recursing we get linear convergence rate,

E[E[f(w*+1)]] - f* <E [(1 — diL) [f(wF) — f*]] (expectation wrt ji_1)

E[f (w* )] — f(w*) < (1 - d%) [E[f(w*)] — f*]  (iterated expectations)
< (1- 2 [ - £

@ You keep alternating between taking an expectation back in time and recursing.
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