
Structured Reguarization Non-Smooth Optimization Wrap-Up

CPSC 540: Machine Learning
Structured Regularization

Mark Schmidt

University of British Columbia

Winter 2018

Structured Reguarization Non-Smooth Optimization Wrap-Up

Last Time: Group L1-Regularization

Last time we discussed group L1-regularization:

argmin
w∈Rd

f(w) + λ
∑
g∈G
‖wg‖2.

Encourages sparsity in terms of groups g.
For example, if G = {{1, 2}, {3, 4}} then we have:∑

g∈G
‖wg‖2 =

√
w2

1 + w2
2 +

√
w2

3 + w2
4.

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.

Relevant for feature selection when each feature affects multiple parameters.

It’s important that we are using non-squared L2-norm.
Non-squared L2-norm is non-differentiable at zero.

Structured Reguarization Non-Smooth Optimization Wrap-Up

L2 and L1 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. L1-regularization path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖1, each wj gets set to exactly zero for a finite λ.

Structured Reguarization Non-Smooth Optimization Wrap-Up

L22 and L2 Regularization Paths
The regularization path is the set of w values as λ varies,

wλ = argmin
w∈Rd

f(w) + λr(w),

Squared L2-regularization path vs. non-squared path:

With r(w) = ‖w‖2, each wj gets close to 0 but is never exactly 0.
With r(w) = ‖w‖2, all wj get set to exactly zero for same finite λ.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Group L1-Regularization Paths

The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Group L1-Regularization Paths

The regularization path for group L1-regularizaiton for different p values:

With p = 1 there is no grouping effect.

With p = 2 the groups become zero at the same time.

With p =∞ the groups converge to same magnitude which then goes to 0.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Last Time: Proximal-Gradient

We discussed proximal-gradient methods for problems of the form

argmin
w∈Rd

f(w)︸ ︷︷ ︸
smooth

+ r(w)︸︷︷︸
simple

.

These methods use the iteration

wk+
1
2 = wk − αk∇f(wk) (gradient step)

wk+1 ∈ argmin
v∈Rd

{
1

2
‖v − wk+

1
2 ‖2 + αkr(v)

}
(proximal step)

Examples of simple functions include:

L1-regularization.
Group L1-regularization.

Proximal operators for these cases are soft-thresholds: sets variables/groups to 0.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Proximal-Gradient for Group L1-Regularization

The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Proximal-Gradient for Group L1-Regularization
The proximal operator for group L1-regularization,

argmin
v∈Rd

1

2
‖v − w‖2 + αkλ

∑
g∈G
‖v‖2

 ,

applies a soft-threshold group-wise,

wg ←
wg
‖wg‖2

max{0, ‖wg‖2 − αkλ}.

So we can solve group L1-regularization problems as fast as smooth problems.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Outline

1 Structured Reguarization

2 Non-Smooth Optimization Wrap-Up

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Regularization

There are many other patterns that regularization can encourage.

We’ll call this structured regularization.

The three most common cases:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Structured sparsity encourages sparsity in variable patterns.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Total-Variation Regularization
1D total-variation regularization (“fused LASSO”) takes the form

argmin
w∈Rd

f(w) + λ

d−1∑
j=1

|wj − wj+1|.

Encourages consecutive parameters to have same value.
Often used for time-series or sequence data.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Here xi is the time and yi is noisy signal value.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html

Structured Reguarization Non-Smooth Optimization Wrap-Up

Total-Variation Regularization
More generally, we could penalizes differences on general graph between variables.

An example is social regularization in recommeder systems:
Penalizing the difference between your parameters and your friends’ parameters.

argmin
W∈Rd×k

f(W) + λ
∑

(i,j)∈Friends

‖wi − wj‖2.

Typically use L2-regularization (we aren’t aiming for identical parameters).

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

http://asawicki.info/news_1453_social_graph_-_application_on_facebook.html

Structured Reguarization Non-Smooth Optimization Wrap-Up

Total-Variation Regularization
Consider applying latent factor models (from 340) on image patches.

Similar to learning first layer of convolutional neural networks.

Latent-factors discovered on patches with/without TV regularization.
Encouraging neighbours in a spatial grid to have similar filters.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Similar to “cortical columns” theory of visual cortex.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

Structured Reguarization Non-Smooth Optimization Wrap-Up

Total-Variation Regularization

Another application is inceptionism.

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Find image x that causes strongest activation of class c in neural network.

argmin
x

f(vTc h(W
(m)h(W (m−1) · · ·h(W (1)x) + λ

∑
(xi,xj)∈neigh.

(xi − xj)2,

Total variation based on neighbours in image (needed to get interpretable images).

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Structured Reguarization Non-Smooth Optimization Wrap-Up

Nuclear Norm Regularization

With matrix parameters an alternative is nuclear norm regularization,

argmin
W∈Rd×k

f(W) + λ‖W‖∗,

where ‖W‖∗ is the sum of singular values.

“L1-regularization of the singular values”.
Encourages parameter matrix to have low-rank.

Consider a multi-class logistic regression with a huge number of features/labels,

W =

w1 w2 · · · wk

 = UV T , with U =

u1 u2

 , V =

v1 v2

 ,
U and V can be much smaller, and XW = (XU)V T can be computed faster:

O(ndr + nrk) for rank r instad of O(ndk), which is faster if r < d and r < k.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity
Structured sparsity is variation on group L1-regularization,

argmin
w∈Rd

f(w) +
∑
g∈G

λg‖wg‖p,

where now the groups g can overlap.

Why is this interesting?
Consider the case of two groups, {1} and {1, 2},

argmin
w∈Rd

f(w) + λ1|w1|+ λ2

√
w2

1 + w2
2.

This encourages 3 non-zero “patterns”: {}, {w2}, {w1, w2}.
“You can only take w1 if you’ve already taken w2.”

If w1 6= 0, the third term is smooth and doesn’t encourage w2 to be zero.
If w2 6= 0, we still pay a λ1 penalty for making w1 non-zero.
We can use this type of “ordering” to impose patterns on our sparsity.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity

Consider a problem with matrix parameters W .

We want W to be “band-limited”:
Non-zeroes only on the main diagonals.

W =

w11 w12 w13 0 0 0 0
w21 w22 w23 w24 0 0 0
w31 w32 w33 w34 w35 0 0
0 w42 w43 w44 w45 w46 0
0 0 w53 w54 w55 w56 w57

0 0 0 w64 w65 w66 w67

0 0 0 0 w75 w76 w77

.

This makes many computations much faster.

We can enforce this with structured sparsity:
Only allow non-zeroes on ±1 diagonal if you are non-zero on main diagonal.
Only allow non-zeroes on ±2 diagonal if you are non-zero on ±1 diagonal.
Only allow non-zeroes on ±3 diagonal if you are non-zero on ±2 diagonal.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity

Consider a linear model with higher-order terms,

ŷi = w0 + w1x
i
1 + w2x

i
2 + w3x

i
3 + w12x

i
1x
i
2 + w13x

i
1x
i
3 + w23x

i
2x
i
3 + w123x

i
1x
i
2x
i
3.

If d is non-trivial, then the number of higher-order terms is too large.

We can use structured sparsity to enforce a hierarchy.
We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.

You can enforce this using the groups {{w12}, {w1, w12}, {w2, w12}}:

argmin
w

f(w) + λ12|w12|+ λ1

√
w2

1 + w2
12 + λ2

√
w2

2 + w2
12.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity

We can use structured sparsity to enforce a hierarchy.

We only allow w12 6= 0 if w1 6= 0 and w2 6= 0.
We only allow w123 6= 0 if w12 6= 0, w13 6= 0, and w23 6= 0.
We only allow w1234 6= 0 if all threeway interactions are present.

http://arxiv.org/pdf/1109.2397v2.pdf

For certain bases, you can work with the full hierarchy in polynomial time.

Otherwise, a heuristic is to gradually “grow” the set of allowed bases.

http://arxiv.org/pdf/1109.2397v2.pdf

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity

Structured sparsity encourages zeroes to be any intersections of groups.

Possible Zeroes are given by ∩g∈G′g for all G′ ⊆ G.
Our first example used {1} and {1, 2} so possible zeroes are {}, {1}, {1, 2}.

So it selects either {}, {2}, or {1, 2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

https://arxiv.org/pdf/1109.2397v2.pdf

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible Zeroes are given by ∩g∈G′g for all G′ ⊆ G.
Our first example used {1} and {1, 2} so possible zeroes are {}, {1}, {1, 2}.

So it selects either {}, {2}, or {1, 2}.
Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

https://arxiv.org/pdf/1109.2397v2.pdf

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity

Structured sparsity encourages zeroes to be any intersections of groups.

Possible Zeroes are given by ∩g∈G′g for all G′ ⊆ G.
Our first example used {1} and {1, 2} so possible zeroes are {}, {1}, {1, 2}.

So it selects either {}, {2}, or {1, 2}.

Example is enforcing convex non-zero patterns:

https://arxiv.org/pdf/1109.2397v2.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

https://arxiv.org/pdf/1109.2397v2.pdf

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Sparsity
Structured sparsity encourages zeroes to be any intersections of groups.

Possible Zeroes are given by ∩g∈G′g for all G′ ⊆ G.
Our first example used {1} and {1, 2} so possible zeroes are {}, {1}, {1, 2}.

So it selects either {}, {2}, or {1, 2}.
Example is enforcing convex non-zero patterns:

www.di.ens.fr/~fbach/icml2010a.pdf

There is also a variant (“over-LASSO”) that considers unions of groups.

www.di.ens.fr/~fbach/icml2010a.pdf

Structured Reguarization Non-Smooth Optimization Wrap-Up

Outline

1 Structured Reguarization

2 Non-Smooth Optimization Wrap-Up

Structured Reguarization Non-Smooth Optimization Wrap-Up

Structured Regularization

The three most common cases of structured regularization:

Total-variation regularization encourages slow/sparse changes in w.
Nuclear-norm regularization encourages sparsity in rank of matrices.
Structure sparsity encourages sparsity in variable patterns.

Unfortunately, these regularizers are not “simple”.

But we can efficiently approximate the proximal operator in all these cases.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Inexact Proximal-Gradient Methods

For total-variation and overlapping group-L1, we can use Dykstra’s algorithm

Iterative method that computes proximal operator for sum of “simple” functions.

For nuclear-norm regularization, many method approximate top singular vectors.

Krylov subspace methods, randomized SVD approximations.

Inexact proximal-gradient methods:

Proximal-gradient methods with an approximation to the proximal operator.
If approximation error decreases fast enough, same convergence rate:

To get O(ρt) rate, error must be in o(ρt).

Structured Reguarization Non-Smooth Optimization Wrap-Up

Alternating Direction Method of Multipliers
ADMM is also popular for structured sparsity problems

Alternating direction method of multipliers (ADMM) solves:

min
Aw+Bv=c

f(w) + r(v).

Alternates between proximal operators with respect to f and r.
We usually introduce new variables and constraints to convert to this form.

We can apply ADMM to L1-regularization with an easy prox for f using

min
w

1

2
‖Xw − y‖2 + λ‖w‖1 ⇔ min

v=Xw

1

2
‖v − y‖2 + λ‖w‖1,

For total-variation and structured sparsity we can use

min
w
f(w) + ‖Aw‖1 ⇔ min

v=Aw
f(w) + ‖v‖1.

If prox can not be computed exactly: linearized ADMM.
But ADMM rate depends on tuning parameter(s) and iterations aren’t sparse.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Frank-Wolfe Method

In some cases the projected gradient step

wk+1 = argmin
y∈C

{
f(wk) +∇f(wk)T (v − wk) + 1

2αk
‖v − wk‖2

}
,

may be hard to compute.

Frank-Wolfe step is sometimes cheaper:

wk+
1
2 = argmin

v∈C

{
f(wk) +∇f(wk)T (v − wk)

}
,

requires compact C, algorithm takes convex combination of wk and wk+
1
2 .

https://www.youtube.com/watch?v=24e08AX9Eww

O(1/t) rate for convex objectives, some linear convergence results for
strongly-convex.

https://www.youtube.com/watch?v=24e08AX9Eww

Structured Reguarization Non-Smooth Optimization Wrap-Up

UV T Parameterization for Matrix Problems

Nuclear norm regularization problems,

argmin
W∈Rd×k

f(W) + λ‖W‖∗,

give a solution with a low rank representation W = UV T .

But standard algorithms are too costly in many applications.

We often can’t store W .

Many recent approaches directly minimize under UV T parameterization,

argmin
U∈Rd×R,V ∈Rk×R

f(UV T) + λU‖U‖2F + λV ‖V ‖2F ,

and just regularize U and V (here we’re using the Frobenius matrix norm).

Structured Reguarization Non-Smooth Optimization Wrap-Up

UV T Parameterization for Matrix Problems

We used this approach in 340 for latent-factor models,

f(W,Z) =
1

2
‖ZW −X‖2F +

λ1
2
‖Z‖2F +

λ2
2
‖W‖2F .

We can sometimes prove these non-convex re-formulation give a global solution.

Includes PCA.

In other cases, people are working hard on finding assumptions where this is true.

These assumptions are typically unrealistically strong.
But it works well enough in practice that practitioners don’t seem to care.

Structured Reguarization Non-Smooth Optimization Wrap-Up

Summary

Structured regularization encourages more-general patterns in variables.

Total-variation penalizes differences between variables.

Structured sparsity can enforce sparsity hierarchies.

Inexact proximal-gradient methods are a common approach to solving these.

Next time: finding all the cat videos on YouTube.

	Structured Reguarization
	Non-Smooth Optimization Wrap-Up

