# CPSC 540: Machine Learning Proximal-Gradient

#### Mark Schmidt

University of British Columbia

Winter 2018

# Admin

- Auditting/registration forms:
  - Pick up after class today.
- Assignment 1:
  - 2 late days to hand in tonight.
- Drop deadline is today.
  - Last chance to withdraw.
- Assignment 2:
  - First question up now.
  - Due in 2 weeks.

# Last Time: Projected-Gradient

• We discussed minimizing smooth functions with simple convex constraints,

# $\mathop{\rm argmin}_{w\in \mathcal{C}} f(w).$

• With simple constraints, we can use projected-gradient:

$$w^{k+\frac{1}{2}} = w^k - \alpha_k \nabla f(w^k) \qquad (\text{gradient step})$$
$$w^{k+1} = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \|v - w^{k+\frac{1}{2}}\| \qquad (\text{projection})$$

- Very similar properties to gradient descent when  $\nabla f$  is Lipschitz:
  - $O(\log(1/\epsilon))$  iterations required if f is strongly-convex.
  - Setting  $\alpha_k < 2/L$  guarantees we decerase objective.
  - We have practical line-search strategies that improve performance.
  - Solutions are "fixed points".
  - We can add momentum or make Newton-like versions.

# Last Time: Projected-Gradient

$$w^{k+\frac{1}{2}} = w^k - \alpha_k \nabla f(w^k)$$
$$w^{k+1} = \underset{v \in \mathcal{C}}{\operatorname{argmin}} \|v - w^{k+\frac{1}{2}}\|$$

(gradient step based on function f) (projection onto feasible set C)



# Why the Projected Gradient?

• We want to optimize f (smooth but possibly non-convex) over some convex set  $\mathcal{C}$ ,

 $\mathop{\rm argmin}_{w\in \mathcal{C}} f(w).$ 

• Recall that we can view gradient descent as minimizing quadratic approximation

$$w^{k+1} \in \mathop{\rm argmin}_v \left\{f(w^k) + \nabla f(w^k)(v-w^k) + \frac{1}{2\alpha_k}\|v-w^k\|^2\right\},$$

where we've written it with a general step-size  $\alpha_k$  instead of 1/L.

- Solving the convex quadratic argmin gives  $w^{k+1} = w^k \alpha_k \nabla f(w^k)$ .
- We could minimize quadratic approximation to f subject to the constraints,

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^T (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\},$$

# Why the Projected Gradient?

 $\bullet$  We write this "minimize quadratic approximation over the set  $\mathcal{C}^{\prime\prime}$  iteration as

$$\begin{split} w^{k+1} &\in \operatorname{argmin}_{y \in \mathcal{C}} \left\{ f(w^k) + \nabla f(w^k)^T (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\} \\ &\equiv \operatorname{argmin}_{v \in \mathcal{C}} \left\{ \alpha_k f(w^k) + \alpha_k \nabla f(w^k)^T (v - w^k) + \frac{1}{2} \|v - w^k\|^2 \right\} \quad (\text{multiply by } \alpha_k) \\ &\equiv \operatorname{argmin}_{v \in \mathcal{C}} \left\{ \frac{\alpha_k^2}{2} \|\nabla f(w^k)\|^2 + \alpha_k \nabla f(w^k)^T (v - w^k) + \frac{1}{2} \|v - w^k\|^2 \right\} \quad (\pm \text{ const.}) \\ &\equiv \operatorname{argmin}_{v \in \mathcal{C}} \left\{ \|(v - w^k) + \alpha_k \nabla f(w^k)\|^2 \right\} \quad (\text{complete the square}) \\ &\equiv \operatorname{argmin}_{v \in \mathcal{C}} \left\{ \|v - \underbrace{(w^k - \alpha_k \nabla f(w^k))}_{\text{gradient descent}} \| \right\}, \end{split}$$

which gives the projected-gradient algorithm:  $w^{k+1} = \text{proj}_{\mathcal{C}}[w^k - \alpha_k \nabla f(w^k)].$ 

# Simple Convex Sets

- Projected-gradient is only efficient if the projection is cheap.
- We say that  $\mathcal{C}$  is simple if the projection is cheap.
  - For example, if it costs O(d) then it adds no cost to the algorithm.
- For example, if we want  $w \ge 0$  then projection sets negative values to 0.
  - Non-negative constraints are "simple".
- Another example is  $w \ge 0$  and  $w^T 1 = 1$ , the probability simplex.
  - There are O(d) algorithm to compute this projection (similar to "select" algorithm)

# Simple Convex Sets

- Other examples of simple convex sets:
  - Having upper and lower bounds on the variables,  $LB \leq x \leq UB$ .
  - Having a linear equality constraint,  $a^T x = b$ , or a small number of them.
  - Having a half-space constraint,  $a^T x \leq b$ , or a small number of them.
  - Having a norm-ball constraint,  $||x||_p \leq \tau$ , for  $p = 1, 2, \infty$  (fixed  $\tau$ ).
  - Having a norm-cone constraint,  $||x||_p \leq \tau$ , for  $p = 1, 2, \infty$  (variable  $\tau$ ).
- It's easy to minimize smooth functions with these constraints.

# Intersection of Simple Convex Sets: Dykstra's Algorithm

 $\bullet\,$  Often our set  ${\mathcal C}$  is the intersection of simple convex set,

 $\mathcal{C} \equiv \cup_i \mathcal{C}_i.$ 

- For example, we could have a large number linear constraints.
- Dykstra's algorithm can compute the projection in this case.
  - On each iteration, it projects a vector onto one of the sets  $C_i$ .
  - Requires  $O(\log(1/\epsilon))$  such projections to get within  $\epsilon$ .

(This is not the shortest path algorithm of "Dijkstra".)

Group Sparsity

# Outline

### 1 Proximal-Gradient

#### 2 Group Sparsity

# Solving Problems with Simple Regularizers

• We were discussing how to solve non-smooth L1-regularized objectives like

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1.$$

- Use our trick to formulate as a quadratic program?
   O(d<sup>2</sup>) or worse.
- Make a smooth approximation to the L1-norm?
  - Destroys sparsity (we'll again just have one subgradient at zero).
- Use a subgradient method?
  - Needs  $O(1/\epsilon)$  iterations even in the strongly-convex case.
- $\bullet$  Transform to "smooth f with simple constraints" and use projected-gradient?
  - Works well (bonus), but increases problem size and destroys strong-convexity.
- For "simple" regularizers, proximal-gradient methods don't have these drawbacks

# Quadratic Approximation View of Gradient Method

• We want to solve a smooth optimization problem:

 $\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w).$ 

• Iteration  $w^k$  works with a quadratic approximation to f:

$$\begin{split} f(v) &\approx f(w^k) + \nabla f(w^k)^T (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2, \\ w^{k+1} &\in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ f(w^k) + \nabla f(w^k)^T (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - (w^k - \alpha_k \nabla f(w^k))\|^2 \right\},$$

and the solution is the gradient algorithm:

$$w^{k+1} = w^k - \alpha_k \nabla f(w^k).$$

# Quadratic Approximation View of Proximal-Gradient Method

• We want to solve a smooth plus non-smooth optimization problem:

 $\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + r(w).$ 

 $\bullet$  Iteration  $w^k$  works with a quadratic approximation to  $f\colon$ 

$$f(v) + r(v) \approx f(w^k) + \nabla f(w^k)^T (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 + r(v),$$
$$w^{k+1} \in \underset{v \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ f(w^k) + \nabla f(w^k)^T (v - w^k) + \frac{1}{2\alpha_k} \|v - w^k\|^2 + r(v) \right\}.$$

We can equivalently write this as the proximal optimization:

$$w^{k+1} \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - (w^k - \alpha_k \nabla f(w^k))\|^2 + \alpha_k r(v) \right\},$$

and the solution is the proximal-gradient algorithm:

$$w^{k+1} = \operatorname{prox}_{\alpha_k r}[w^k - \alpha_k \nabla f(w^k)].$$

# Proximal-Gradient for L1-Regularization

• The proximal operator for L1-regularization when using step-size  $\alpha_k$ ,

$$\operatorname{prox}_{\alpha_k\lambda\|\cdot\|_1}[w^{k+\frac{1}{2}}] \in \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 + \alpha_k \lambda \|v\|_1 \right\},$$

involves solving a simple 1D problem for each variable j:

$$w_j^{k+1} \in \operatorname*{argmin}_{v_j \in \mathbb{R}} \left\{ \frac{1}{2} (v_j - w_j^{k+\frac{1}{2}})^2 + \alpha_k \lambda |v_j| \right\}.$$

• The solution is given by applying "soft-threshold" operation:

$$If |w_j^{k+\frac{1}{2}}| \le \alpha_k \lambda, \text{ set } w_j^{k+1} = 0.$$

② Otherwise, shrink 
$$|w_j^{k+rac{1}{2}}|$$
 by  $lpha_k\lambda.$ 

# Proximal-Gradient for L1-Regularization

#### • An example sof-threshold operator with $\alpha_k \lambda = 1$ :

| Input   | Threshold | Soft-Threshold |
|---------|-----------|----------------|
| 0.6715  | [ 0 ]     | [ 0 ]          |
| -1.2075 | -1.2075   | -0.2075        |
| 0.7172  | 0         | 0              |
| 1.6302  | 1.6302    | 0.6302         |
| 0.4889  | 0         | 0              |

• Symbolically, the soft-threshold operation computes

$$w_j^{k+1} = \underbrace{\operatorname{sign}(w^{k+\frac{1}{2}})}_{-1 \text{ or } +1} \max\left\{0, |w_j^{k+\frac{1}{2}}| - \alpha_k \lambda\right\}.$$

- Has the nice property that iterations  $w^k$  are sparse.
  - Compared to subgradient method which wouldn't give exact zeroes.

# Proximal-Gradient Method

• So proximal-gradient step takes the form:

$$\begin{split} w^{k+\frac{1}{2}} &= w^k - \alpha_k \nabla f(w^k) \\ w^{k+1} &= \operatorname*{argmin}_{v \in \mathbb{R}^d} \left\{ \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 + \alpha_k r(v) \right\}. \end{split}$$

- Second part is called the proximal operator with respect to a convex α<sub>k</sub>r.
   We say that r is simple if you can efficiently compute proximal operator.
- Very similar properties to projected-gradient when  $\nabla f$  is Lipschitz-continuous:
  - $\bullet\,$  Guaranteed improvement for  $\alpha < 2/L$  , practical backtracking methods work better.
  - Solution is a fixed point,  $w^* = \mathrm{prox}_r[w^* \nabla f(w^*)].$
  - If f is strongly-convex then

$$F(w^k) - F^* \le \left(1 - \frac{\mu}{L}\right)^k \left[F(w^0) - F^*\right],$$

where F(w) = f(w) + r(w).

.

# Projected-Gradient is Special case of Proximal-Gradient

• Projected-gradient methods are a special case:

$$r(w) = \begin{cases} 0 & \text{if } w \in \mathcal{C} \\ \infty & \text{if } w \notin \mathcal{C} \end{cases}, \quad (\text{indicator function for convex set } \mathcal{C}) \end{cases}$$

gives  

$$w^{k+1} \in \underbrace{\operatorname{argmin}_{v \in \mathbb{R}^d} \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 + r(v)}_{\text{proximal operator}} \equiv \operatorname{argmin}_{v \in \mathcal{C}} \frac{1}{2} \|v - w^{k+\frac{1}{2}}\|^2 \equiv \underbrace{\operatorname{argmin}_{v \in \mathcal{C}} \|v - w^{k+\frac{1}{2}}\|}_{\text{projection}}.$$



# Proximal-Gradient Linear Convergence Rate

• Simplest linear convergence proofs are based on the proximal-PL inequality,

$$\frac{1}{2}\mathcal{D}_r(w,L) \ge \mu(F(w) - F^*),$$

where compared to PL inequality we've replaced  $\| 
abla f(w) \|^2$  with

$$\mathcal{D}_r(w,\alpha) = -2\alpha \min_{v} \left[ \nabla g(w)^T (v-w) + \frac{\alpha}{2} \|v-w\|^2 + r(v) - r(w) \right],$$

and recall that F(w) = f(w) + r(w) (bonus).

- This non-intuitive property holds for many important problems:
  - L1-regularized least squares.
  - Any time f is strong-convex (i.e., add an L2-regularizer as part of f).
  - Any f = g(Ax) for strongly-convex g and r being indicator for polyhedral set.
- But it can be painful to show that functions satisfy this property.

Group Sparsity

# Outline





Group Sparsity

# Motivation for Group Sparsity

• Recall that multi-class logistic regression uses

$$\hat{y}^i = \underset{c}{\operatorname{argmax}} \{ w_c^T x^i \},$$

where we have a parameter vector  $w_c$  for each class c.

• We typically use softmax loss and write our parameters as a matrix,

$$W = \begin{bmatrix} | & | & | & | \\ w_1 & w_2 & w_3 & \cdots & w_k \\ | & | & | & | \end{bmatrix}$$

• Suppose we want to use L1-regularization for feature selection,



• Unfortunately, setting elements of W to zero may not select features.

# Motivation for Group Sparsity

 $\bullet$  Suppose L1-regularization gives a sparse W with a non-zero in each row:

$$W = \begin{bmatrix} -0.83 & 0 & 0 & 0\\ 0 & 0 & 0.62 & 0\\ 0 & 0 & 0 & -0.06\\ 0 & 0.72 & 0 & 0 \end{bmatrix}$$

.

- Even though it's very sparse, it uses all features.
  - Remember that classifier multiplies feature j by each value in row j.
  - Feature 1 is used in  $w_1$ .
  - Feature 2 is used in  $w_3$ .
  - Feature 3 is used in  $w_4$ .
  - Feature 4 is used in  $w_2$ .
- In order to remove a feature, we need its entire row to be zero.

Group Sparsity

### Motivation for Group Sparsity

• What we want is group sparsity:

$$W = \begin{bmatrix} -0.77 & 0.04 & -0.03 & -0.09 \\ 0 & 0 & 0 & 0 \\ 0.04 & -0.08 & 0.01 & -0.06 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Each row is a group, and we want groups (rows) of variables that have all zeroes.
  If row j is zero, then x<sub>j</sub> is not used by the model.
- Pattern arises in other settings where each row gives parameters for one feature:
   Multiple regression, multi-label classification, and multi-task classification.

Group Sparsity

# Motivation for Group Sparsiy

• Categorical features are another setting where group sparsity is needed.

• Consider categorical features encoded as binary indicator features ("1 of k"):

| City      | Age | Vancouver | Burnaby | Surrey | Age ≤ 20 | 20 < Age ≤ 30 | Age > 30 |
|-----------|-----|-----------|---------|--------|----------|---------------|----------|
| Vancouver | 22  | 1         | 0       | 0      | 0        | 1             | 0        |
| Burnaby   | 35  | 0         | 1       | 0      | 0        | 0             | 1        |
| Vancouver | 28  | 1         | 0       | 0      | 0        | 1             | 0        |

• A linear model would use

$$\hat{y}^i = w_1 x_{\mathsf{van}} + w_2 x_{\mathsf{bur}} + w_3 x_{\mathsf{sur}} + w_4 x_{\leq 20} + w_5 x_{21-30} + w_6 x_{>30}$$

If we want feature selection of original categorical variables, we have 2 groups:
{w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>} correspond to "City" and {w<sub>4</sub>, w<sub>5</sub>, w<sub>6</sub>} correspond to "Age".

Group Sparsity

### Group L1-Regularization

• Consider a problem with a set of disjoint groups  $\mathcal{G}$ .

- For example,  $\mathcal{G} = \{\{1,2\},\{3,4\}\}.$
- Minimizing a function f with group L1-regularization:

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + \lambda \sum_{g \in \mathcal{G}} \|w_g\|_p,$$

where g refers to individual group indices and  $\|\cdot\|_p$  is some norm.

- For certain norms, it encourages sparsity in terms of groups g.
  - Variables  $x_1$  and  $x_2$  will either be both zero or both non-zero.
  - Variables  $x_3$  and  $x_4$  will either be both zero or both non-zero.

# Group L1-Regularization

- Why is it called group L1-regularization?
- Consider  $G=\{\{1,2\},\{3,4\}\}$  and using L2-norm,

$$\sum_{g \in G} \|w_g\|_2 = \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2 + w_4^2}.$$

• If vector v contains the group norms, it's the L1-norm of v:

If 
$$v \triangleq \begin{bmatrix} \|w_{12}\|_2 \\ \|w_{34}\|_2 \end{bmatrix}$$
 then  $\sum_{g \in G} \|w_g\|_2 = \|w_{12}\|_2 + \|w_{34}\|_2 = v_1 + v_2 = |v_1| + |v_2| = \|v\|_1$ 

So groups L1-regularization encourages sparsity in the group norms.
When the norm of the group is 0, all group elements are 0.

# Group L1-Regularization: Choice of Norm

• The group L1-regularizer is sometimes written as a "mixed" norm,

$$\|w\|_{1,p} \triangleq \sum_{g \in \mathcal{G}} \|w_g\|_p.$$

- The most common choice for the norm is the L2-norm:
  - If  $\mathcal{G} = \{\{1, 2\}, \{3, 4\}\}$  we obtain

$$\|w\|_{1,2} = \sqrt{w_1^2 + w_2^2} + \sqrt{w_3^2 + w_4^2}.$$

• Another common choice is the  $L\infty$ -norm,

 $||w||_{1,\infty} = \max\{|w_1|, |w_2|\} + \max\{|w_3|, |w_4|\}.$ 

• But note that the L1-norm does not give group sparsity,

$$||w||_{1,1} = |w_1| + |w_2| + |w_3| + |w_4| = ||w||_1,$$

as it's equivalent to non-group L1-regularization.

Group Sparsity

### Sparsity from the L2-Norm?

- Didn't we say sparsity comes from the L1-norm and not the L2-norm?
  - Yes, but we were using the squared L2-norm.
- Squared vs. non-squared L2-norm in 1D:



- Non-squared L2-norm is absolute value.
  - Non-squared L2-regularizer will set w = 0 for some finite  $\lambda$ .
- Squaring the L2-norm gives a smooth function but destroys sparsity.

Group Sparsity

### Sparsity from the L2-Norm?

• Squared vs. non-squared L2-norm in 2D:



- The squared L2-norm is smooth and has no sparsity.
- Non-squared L2-norm is non-smooth at the zero vector.
  - It doesn't encourage us to set any  $w_j = 0$  as long as one  $w_{j'} \neq 0$ .
  - But if  $\lambda$  is large enough it encourages all  $w_j$  to be set to 0.

# Sub-differential of Group L1-Regularization

• For our group L1-regularization objective with the 2-norm,

$$F(w) = f(w) + \lambda \sum_{g \in \mathcal{G}} \|w_g\|_2,$$

the indices g in the sub-differential are given by

$$\partial_g F(w) \equiv \nabla_g f(w) + \lambda \partial \|w_g\|_2.$$

• In order to have  $0 \in \partial F(w)$ , we thus need for each group that

 $0 \in \nabla_g f(w) + \lambda \partial \|w_g\|_2,$ 

and subtracting  $\nabla_g f(w)$  from both sides gives

 $-\nabla_g f(w) \in \lambda \partial \|w_g\|_2.$ 

# Sub-differential of Group L1-Regularization

 ${\, \bullet \,}$  So at minimizer  $w^*$  we must have for all groups that

 $-\nabla_g f(w^*) \in \lambda \partial \|w_g^*\|_2.$ 

• The sub-differential of the scaled L2-norm is given by

$$\partial \|w\|_2 = \begin{cases} \left\{\frac{w}{\|w\|_2}\right\} & w \neq 0\\ \{v \mid \|v\|_2 \le 1\} & w = 0. \end{cases}$$

 ${\, \bullet \,}$  So at a solution  $w^*$  we have for each group that

$$\begin{cases} -\nabla_g f(w^*) = \lambda \frac{w_g^*}{\|w_g^*\|_2} & w_g \neq 0, \\ \|\nabla_g f(w^*)\| \le \lambda & w_g^* = 0. \end{cases}$$

- $\bullet$  For sufficiently-large  $\lambda$  we'll set the group to zero.
  - With squared group norms we would need  $\nabla_g f(w^*) = 0$  with  $w_g^* = 0$  (unlikely).

# Summary

- Simple convex sets are those that allow efficient projection.
- Simple regularizers are those that allow efficient proximal operator.
- Proximal-gradient: linear rates for sum of smooth and simple non-smooth.
- Group L1-regularization encourages sparsity in variable groups.
- Next time: going beyond L1-regularization to "structured sparsity".

# Should we use projected-gradient for non-smooth problems?

- Some non-smooth problems can be turned into smooth problems with simple constraints.
- But transforming might make problem harder:
  - For L1-regularization least squares,

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1,$$

we can re-write as a smooth problem with bound constraints,

$$\underset{w_+ \ge 0, w_- \ge 0}{\operatorname{argmin}} \|X(w_+ - w_-) - y\|^2 + \lambda \sum_{j=1}^d (w_+ + w_-).$$

- Doubles the number of variables.
- Transformed problem is not strongly convex even if the original was.

Group Sparsity

### Projected-Newton Method

• We discussed how the naive projected-Newton method,

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t [H_t]^{-1} \nabla f(x^t) \qquad \text{(Newton-like step)} \\ x^{t+1} &= \underset{y \in \mathcal{C}}{\operatorname{argmin}} \|y - x^{t+\frac{1}{2}}\| \qquad \text{(projection)} \end{aligned}$$

will not work.

• The correct projected-Newton method uses

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t [H_t]^{-1} \nabla f(x^t) \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathcal{C}} \|y - x^{t+\frac{1}{2}}\|_{H_t} \end{aligned}$$

(Newton-like step) (projection under Hessian metric)

### Projected-Newton Method

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth  $H_t \approx \nabla^2 f(x^t)$ ):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H_t(y - x^t) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H_t(y - x^t) \right\}.$$

• Equivalently, we project Newton step under different Hessian-defined norm,

$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \|y - (x^t - \alpha_t H_t^{-1} \nabla f(x^t))\|_{H_t},$$

where general "quadratic norm" is  $||z||_A = \sqrt{z^T A z}$  for  $A \succ 0$ .

### Discussion of Projected-Newton

• Projected-Newton iteration is given by

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H_t(y - x^t) \right\}.$$

- But this is expensive even when  $\mathcal{C}$  is simple.
- There are a variety of practical alternatives:
  - If  $H_t$  is diagonal then this is typically simple to solve.
  - Two-metric projection methods are special algorithms for upper/lower bounds.
    - Fix problem of naive method in this case by making  $H_t$  partially diagonal.
  - Inexact projected-Newton: solve the above approximately.
    - Useful when f is very expensive but  $H_t$  and C are simple.
    - "Costly functions with simple constraints".

Group Sparsity

# Properties of Proximal-Gradient

- Two convenient properties of proximal-gradient:
  - Proximal operators are non-expansive,

$$\|\mathsf{prox}_r(x) - \mathsf{prox}_r(y)\| \le \|x - y\|,$$

it only moves points closer together.

(including  $x^k$  and  $x^*$ )

• For convex f, only fixed points are global optima,

$$x^* = \mathrm{prox}_r(x^* - \alpha \nabla f(x^*)),$$

for any  $\alpha > 0$ .

(can test  $\|x^t - \operatorname{prox}_r(x^t - \nabla f(x^t))\|$  for convergence )

- Proximal gradient/Newton has two line-searches (generalized projected variants):
  - Fix  $\alpha_t$  and search along direction to  $x^{t+1}$  (1 proximal operator, non-sparse iterates).
  - Vary  $\alpha_t$  values (multiple proximal operators per iteration, gives sparse iterations).

# Implicit subgradient viewpoint of proximal-gradient

• The proximal-gradient iteration is

$$w^{k+1} \in \underset{v \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{2} \|v - (w^k - \alpha_k \nabla f(w^k))\|^2 + \alpha_k r(v).$$

• By non-smooth optimality conditions that 0 is in subdifferential, we have that

$$0 \in (w^{k+1} - (w^k - \alpha_k \nabla f(w^k)) + \alpha_k \partial r(w^{k+1}),$$

which we can re-write as

$$w^{k+1} = w^k - \alpha_k (\nabla f(w^k) + \partial r(w^{k+1})).$$

- So proximal-gradient is like doing a subgradient step, with
  - **①** Gradient of the smooth term at  $w^k$ .
  - **2** A particular subgradient of the non-smooth term at  $w^{k+1}$ .
    - "Implicit" subgradient.

# Proximal-Gradient Convergence under Proximal-PL

 $\bullet\,$  By Lipschitz continuity of g we have

$$\begin{aligned} F(x_{k+1}) &= g(x_{k+1}) + r(x_k) + r(x_{k+1}) - r(x_k) \\ &\leq F(x_k) + \langle \nabla g(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2 + r(x_{k+1}) - r(x_k) \\ &\leq F(x_k) - \frac{1}{2L} \mathcal{D}_r(x_k, L) \\ &\leq F(x_k) - \frac{\mu}{L} [F(x_k) - F^*], \end{aligned}$$

and then we can take our usual steps.

# Faster Rate for Proximal-Gradient

- It's possible to show a slightly faster rate for proximal-gradient using  $\alpha_t=2/(\mu+L).$
- See http://www.cs.ubc.ca/~schmidtm/Documents/2014\_Notes\_ ProximalGradient.pdf

#### Group Sparsity

## **Proximal-Newton**

• We can define proximal-Newton methods using

$$\begin{aligned} x^{t+\frac{1}{2}} &= x^t - \alpha_t [H_t]^{-1} \nabla f(x^t) & (\text{gradient step}) \\ x^{t+1} &= \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x^{t+\frac{1}{2}}\|_{H_t}^2 + \alpha_t r(y) \right\} & (\text{proximal step}) \end{aligned}$$

- This is expensive even for simple r like L1-regularization.
- But there are analogous tricks to projected-Newton methods:
  - Diagonal or Barzilai-Borwein Hessian approximation.
  - "Orthant-wise" methods are analogues of two-metric projection.
  - Inexact methods use approximate proximal operator.

# L1-Regularization vs. L2-Regularization

• Last time we looked at sparsity using our constraint trick,

 $\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + \lambda \|w\|_p \quad \Leftrightarrow \quad \underset{w \in \mathbb{R}^d, \tau \in \mathbb{R}}{\operatorname{argmin}} f(w) + \lambda \tau \text{ with } \tau \geq \|w\|_p.$ 



- $\bullet$  Note that we're also minimizing the radius  $\tau.$ 
  - If  $\tau$  shrinks to zero, all w are set to zero.
  - But if  $\tau$  is squared there is virtually no penalty for having  $\tau$  non-zero.

# Group L1-Regularization

• Minimizing a function f with group L1-regularization,



• We're minimizing f(w) plus the radiuses  $\tau_g$  for each group g.

• If  $\tau_g$  shrinks to zero, all  $w_g$  are set to zero.

# Group L1-Regularization

• We can convert the non-smooth group L1-regularization problem,

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} g(x) + \lambda \sum_{g \in G} \|x_g\|_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \underbrace{g(x) + \lambda \sum_{g \in G} r_g, \text{ subject to } r_g \geq \|x_g\|_2 \text{ for all } g.}_{f}$$

- Here the constraitnts are separable:
  - We can project onto each norm-cone separately.
- Since norm-cones are simple we can solve this with projected-gradient.
  - But we have more variables in the transformed problem and lose strong-convexity.

# Proximal-Gradient for L0-Regularization

- There are some resutls on proximal-gradient for non-convex r.
- Most common case is L0-regularization,

 $f(w) + \lambda \|w\|_0,$ 

where  $||w||_0$  is the number of non-zeroes.

- Includes AIC and BIC from 340.
- The proximal operator for  $\alpha_k \lambda ||w||_0$  is simple:
  - Set  $w_j = 0$  wihenever  $|w_j| \le \alpha_k \lambda$  ("hard" thresholding).
- Analysis is complicated a bit because discontinuity of prox as function of  $\alpha_k$ .