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Admin

e Auditting/registration forms:

e Submit them at end of class, pick them up end of next class.
o | need your prereq form before I'll sign registration forms.
o | wrote comments on the back of some forms.

@ Assignment 1:
o 1 late day to hand in tonight, 2 late days for Wednesday.
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Last Time: Iteration Complexity

@ We discussed the iteration complexity of an algorithm for a problem class:
e "How many iterations ¢ before we guarantee an accuracy €7

@ lteration complexity of gradient descent when V f is Lipschitz continuous:

Assumption Iteration Complexity Quantity
Non-Convex t=0(1/e) ming—12, ¢ |V (wF)|? <e
Convex t=0(1/e) flwh) — f* <e
Strongly-Convex t = O(log(1/¢)) flwt) — f*<e

@ Adding L2-regularization to a convex function gives a strongly-convex function.
e So L2-regularization can make gradient descent converge much faster.



Motivation: Automatic Brain Tumour Segmentation

@ Task: identifying tumours in multi-modal MRI data.

@ Applications:

o Image-guided surgery.
Radiation target planning.
Quantifying treatment response.
Discovering growth patterns.



Motivation: Automatic Brain Tumour Segmentation

e Formulate as supervised learning:

o Pixel-level classifier that predicts “tumour” or “non-tumour”.
o Features: convolutions, expected values (in aligned template), and symmetry.

o All at multiple scales.
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Motivation: Automatic Brain Tumour Segmentation

@ Logistic regression was among the most effective, with the right features.
@ But if you used all features, it overfit.
o We needed feature selection.

@ Classical approach:
e Define some score: AIC, BIC, cross-validation error, etc.
e Search for features that optimize score:
@ Usually NP-hard, so we use greedy: forward selection, backward selection,. ..
e In brain tumour application, even greedy methods were too slow.

@ Just one image gives 8 million training examples.
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Feature Selection

@ General feature selection problem:
o Given our usual X and y, we'll use x; to represent column j:

X = r1T T2 ... Td| y=1Yy
o We think some features/columns x; are irrelevant for predicting y.

@ We want to fit a model that uses the “best” set of features.

@ One of most important problems in ML /statistics, but very very messy.
e In 340 we saw how difficult it is to define what “relevant” means.
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L1-Regularization

A popular appraoch to feature selection we saw in 340 is L1-regularization:

Fw) = f(w) + Aw]:.

Advantages:
o Fast: can apply to large datasets, just minimizing one function.
o Convex if f is convex.
e Reduces overfitting because it simultaneously regularizes.
@ Disadvantages:
e Prone to false positives, particularly if you pick A by cross-validation.
o Not unique: there may be infinite solutions.

@ There exist many extensions:
o “Elastic net” adds L2-regularization to make solution unique.
o “Bolasso” applies this on bootstrap samples to reduce false positives.
e Non-convex regularizers reduce false positives but are NP-hard.
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L1-Regularization

Key property of L1-regularization: if A is large, solution w* is sparse:
e w* has many values that are exactly zero.

How setting variables to exactly 0 performs feature selection in linear models:
N i i i i i
Y = wixq + Wokg + W3T3 + Wyl + WsTs.

fw=1[0 0 3 0 —2]" then:

gt = 0z} 4 0xb + 32k + 02 + (—2)at

_ ) )

Features {1,2,4} are not used in making predictions: we “selected” {2,5}.
e To understand why variables are set to exactly 0, we need the notion of subgradient.
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Sub-Gradients and Sub-Differentials

Differentiable convex functions are always above tangent,

f) = f(w) + V f(w) (v —w), Yw, v.

A vector d is a subgradient of a convex function f at w if

f() > f(w) + d¥ (v — w), Vo.
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Sub-Gradients and Sub-Differentials Properties

@ We can have a set of subgradients called the sub-differential, Jf(w).
e "Subdifferential is all the possible ‘tangent’ lines”.

@ For convex functions:

o Sub-differential is always non-empty (except some weird degenerate cases).
e At differentiable w, the only subgradient is the gradient.
e At non-differentiable w, there will be a convex set of subgradients.

o We have 0 € 0f(w) iff w is a global minimum.
e This generalizes the condition that V f(w) = 0 for differentiable functions.

@ For non-convex functions:

o "Global” subgradients may not exist for every w.
e Instead, we define subgradients “locally” around current w.

@ This is how you define “gradient” of ReLU function in neural networks.
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Example: Sub-Differential of Absolute Function

@ Sub-differential of absolute value function:

1 w >0
Olw| =< -1 w <0
[-1,1] w=0

e “Sign of the variable if it's non-zero, anything in [—1, 1] if it's zero."
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Sub-Differential of Common Operations

@ Two convenient rules for calculating subgradients of convex functions:
e Sub-differential of max is all convex combinations of argmax gradients:

Vfi(z) fi(x) > fa(z)
V fa(x) fa(z) > fi(z)
OVfi(z) + (1= 0)Vfa(z) fi(z) = fo()

forall0 <6 <1

dmax{ fi(x), fa(x)} =

o This rules gives sub-differential of absolute value, using that || = max{«a, —a}.

o Sub-differential of sum is all sum of subgradients of individual functions:
(fi(z) + fa(z)) = d1 +d2 forany di € 0fi(z),dz € Ofa(z).
e Sub-differential of composition with affine function works like the chain rule:
Of1(Aw) = ATof1(2), where 2= Aw,

and we also have daf (w) = adf(w) for a > 0.
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Why does L1-Regularization but not L2-Regularization give Sparsity?

o Consider L2-regularized least squares,
1 A
flw) = Sl Xw —y|* + S[lw|.
2 2
@ Element j of the gradient at w; = 0 is given by
Vif(w) = a:jT (Xw —y) +A0.
—————
T

e For wj =0 to be a solution, we need 0 = V, f(w) or that

T, _
xzjr =0,

that column j is orthogonal to the final residual.

e This is possible, but it is very unlikely (probability 0 for random data).
e Increasing A\ doesn't help.
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Why does L1-Regularization but not L2-Regularization give Sparsity?

o Consider L1-regularized least squares,
1 A
f(w) = 51 Xw =y + Slwlh.

@ Element j of the subdifferential at w; = 0 is given by

0 f(w) = a:;[ (Xw—y)+A[—-1,1].
|w; |
r olw;
@ For wj =0 to be a solution, we need 0 € 0; f(w) or that

|2 < A,

that column j is “close to” orthogonal to the final residual.

o So features j that have little to do with y will often lead to w; = 0.
e Increasing A\ makes this more likely to happen.
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Outline

© Projected-Gradient Methods
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Solving L1-Regularization Problems

@ How can we minimize non-smooth L1-regularized objectives?

!
argmin = || Xw — y[|> + A|w|;.
weR? 2
@ Use our trick to formulate as a quadratic program?
e O(d?) or worse.

@ Make a smooth approximation to the L1-norm?

o Destroys sparsity (we'll again just have one subgradient at zero).

Use a subgradient method?

Projected-Gradient Methods
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Projected-Gradient Methods

Subgradient Method
@ The basic subgradient method:

wt = wh — gy,
for some g € Of(wh).

@ This can increase the objective even for small ay.
e Though for convex f the distance to solutions decreases:
° ||wk+1

—w*|| < ||w® — w*|| for small enough a.
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Subgradient Method

@ The basic subgradient method:

k+1 _ K
w =W — gk,

for some g € Of(wh).
@ This can increase the objective even for small ay.

e Though for convex f the distance to solutions decreases:
o ||w*tt —w*| < |jw* —w*|| for small enough ay,.
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Subgradient Method

@ The basic subgradient method:

k+1

k
w =W — oGk,

for some g, € Of (w).

@ This can increase the objective even for small ay.
e Though for convex f the distance to solutions decreases:
o ||w ! —w*|| < ||lw* — w*| for small enough .

@ The subgradients g; don't necessarily converge to 0 as we approach a w*.
o If we are at a solution w*, we might move away from it.
e So as in stochastic gradient, we need decreasing step-sizes like

ar = O(1/k), or ap=0(1/Vk) (and averaging the w"),

in order to converge.
o This destroys performance.
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Convergence Rate of Subgradient Methods

@ Subgradient methods are slower than gradient descent:
Assumption Gradient Subgradient Quantity
Convex O(1/¢) O(1/€?) flwh) — f*<e

Strongly-Convex  O(log(1/€)) O(1/e) flwt) — f*<e

@ Other subgradient-based methods are not faster.

o There are matching lower bounds in dimension-independent setting.
e Includes cutting plane and bundle methods.

In particular, acceleration doesn’t improve subgradient rates.
o We do NOT go from O(1/€?) to O(1/€) by adding momentum.

Smoothing f and applying gradient descent doesn’t help.

e May need to have L = 1/e in a sufficiently-accurate smooth approximation.
o However, if you smooth and accelerate you can close the gaps a bit (bonus).
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The Key to Faster Methods

@ How can we achieve the speed of gradient descent on non-smooth problems?
o Make extra assumptions about the function/algorithm f.

@ For L1-regularized least squares, we'll use that the objective has the form
Fw) = f(w) + r(w) ,
—— —~—
smooth  “simple”

that it's the sum of a smooth function and a “simple” function.
o We'll define “simple” later, but simple functions can be non-smooth.

@ Proximal-gradient methods have rates of gradient descent for such problems.
e A generalization of projected gradient methods.
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Projected-Gradient for Non-Negative Constraints

o We used projected gradient in 340 for NMF to find non-negative solutions,

argmin f(w).

w>0
@ In this case the algorithm has a simple form,

wh T = max{0, w* — ax, Vf(w®)},

gradient descent

where the max is taken element-wise.
o “Do a gradient descent step, set negative values to 0.”

@ An obvious algorithm to try, and works as well as unconstrained gradient descent.
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A Broken “Projected-Gradient” Algorithms

Projected-gradient addresses problem of minimizing smooth f over a convex set C,

argmin f(w).
wel

As another example, we often want w to be a probability,

argmin  f(w),

w>0, 1Tw=1

Based on our “set negative values to 0" intuition, we might consider this
algorithm:

@ Perform an unconstrained gradient descent step.

@ Set negative values to 0 and divide by the sum.

This algorithms does NOT work.
e But it can be fixed if we use the projection onto the set in Step 2...
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Projected-Gradient

@ We can view the projected-gradient algorithm as having two steps:
@ Perform an unconstrained gradient descent step,

whtE =k - arV f(wh).
@ Compute the projection onto the set C,

w1 € argmin |jv — whtz .
veC

@ Projection is the closest point that satisfies the constraints.

o Generalizes “projection onto subspace” from linear algebra.
o We'll also write projection of w onto C as

projc[w] = argmin [|v — wl,
veC

and for convex C it's unique.
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Projected-Gradient

whts =k — axVf(wF), wh € argmin|jv — whte |-
vel

gradient step
projection step

f(x)
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Projected-Gradient

whtE =k — apVI(wh), w*t e argmin|jv — whte Il
veC

gradient step ~~
projection step
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Projected-Gradient

whte =k — apVf(wh), w* € argmin|jv — whts |-
velC

/

~
gradient step

projection step
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whte =k — apVf(wh), w*t € argmin|jv — whte |-

Projected-Gradient

/

~~ veC

gradient step

-~

projection step

‘x-af’(x)‘

AN

=

Feasible Set
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Projected-Gradient

whts =k — apVf(wh), w* € argmin|jv — whtz |-

~\~ veC
gradient step -

projection step

Feasible Set

Projected-Gradient Methods
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Convergence Rate of Projected Gradient

@ Projected versions have same complexity as unconstrained versions:
Assumption Proj(Grad)  Proj(Subgrad) Quantity

Convex O(1/e¢) O(1/€?) flwh) — f*<e
Strongly-Convex  O(log(1/¢)) O(1/e) fwh) — f*<e

@ Nice properties in the smooth case:
e With oy < 2/L, guaranteed to decrease objective.

Projected-Gradient Methods

o There exist practical step-size strategies as with gradient descent (bonus).

e For convex f a w* is optimal iff it's a “fixed point” of the update,
w* = proje[w” — aV f(w")],

for any step-size a > 0.

@ There exist accelerated versions and Newton-like versions (bonus slides).

o Acceleration is an obvious modification, Newton is more complicated.
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Summary

L1-regularization: feature selection as convex optimization.
Subgradients: generalize gradients for non-smooth convex functions.
Subgradient method: optimal but very-slow general non-smooth method.

Projected-gradient allows optimization with simple constraints.

Next time: going beyond L1-regularization to “structured sparsity”.
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L1-Regularization vs. L2-Regularization
@ Another view on sparsity of L2- vs. L1-regularization using our constraint trick:

argmin f(w) + Mwll, << argmin f(w) + AT with 7 > |Jw||,.
weRd wER?, 7ER

-.. | @Unconstrained Solution "‘-__ - ... | @Unconstrained Solution
] ©L2-Regularized Solution .| |, b 3 <] © L1-Regularized Solution |,

@ Notice that L2-regularization has a rotataional invariance.
e This actually makes it more sensitive to irrelevant features.
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Does Smoothing Help?

@ Nesterov's smoothing paper gives a way to take a non-smooth convex f and
number ¢, then it constructs a new function f. such that

f(w) < fe(w) < f(w) + ¢,

so that minimizing f.(w) gets us within € of the optimal solution.
o And further that f.(w) is differentiable with L = O(1/e).

o If we apply gradient descent to the smooth function, we get

t=O(LJe) = 0O(1/) ,
—— ———

smoothed problem original problem

for convex functions (same speed as subgradient).
@ For strongly-convex functions we get

t = O(Llog(1/€)) = O((1/€)log(1/e)),

which is actually worse than the best subgradient methods by a log factor.
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Does Smoothing Help?

@ Nesterov's smoothing paper gives a way to take a non-smooth convex f and
number ¢, then it constructs a new function f. such that

f(w) < fe(w) < f(w) + ¢,

so that minimizing fe(w) gets us within € of the optimal solution.
o And further that f.(w) is differentiable with L = O(1/e).

o If we apply accelerated gradient descent to the smooth function, we get

t = O(v/L/e) = O(1/e),
which is faster than subgradient methods.

(same speed as unaccelerated gradient descent)
@ For strongly-convex functions the accelerated method gets

t = O(VLlog(1/€)) = O((1/v/€) log(1/e)),

which is faster than subgradient methods (but not linear converence).
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What is the best subgradient?
@ We considered the deterministic subgradient method,

t+1

ot =2t — ayg;, where g; € Of(21),

under any choice of subgradient.

@ But what is the “best” subgradient to use?

e Convex functions have directional derivatives everywhere.
e Direction —g; that minimizes directional derivative is minimum-norm subgradient,

g' = argmin ||g||
gedf(xt)

This is the steepest descent direction for non-smooth convex optimization problems.

You can compute this for L1-regularization, but not many other problems.
Used in best deterministic L1-regularization methods, combined with Newton.
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Line-Search for Projected Gradient
@ There are two ways to do line-search for this algorithm:

o Backtrack along the line between 2™ and « (search interior).
o “Backtracking along the feasible direction”, costs 1 projection per iteration.

DN i 0.9] Pz C— )

T

o Backtrack by decreasing a and re-projecting (search boundary).

e “Backtracking along the projection arc”, costs 1 projection per backtrack.
e More expensive but (under weak conditions) we reach boundary in finite time.
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Faster Projected-Gradient Methods

@ Accelerated projected-gradient method has the form

2" = projely’ — V£ (a")]
yt—I—l — :L't + Bt(xt—kl _ :L't).

@ We could alternately use the Barzilai-Borwein step-size.
e Known as spectral projected-gradient.

@ The naive Newton-like methods with Hessian approximation H;,
2™ = proje[a’ — au[H] 'V f(2")],

does NOT work.
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Naive Projected-Newton

Naive projected Newton method can point in the wrong direction.
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